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Abstract This study develops a relaxed formulation of a method for controlling individual
muscle forces using exoskeleton robots. Past studies have developed a muscle-force control
method with very strict limitations on the conditions. These conditions will be removed, and
the problem will be reformulated as a constrained optimization of several parameters. The
optimization algorithm recognizes when a solution to the muscle control problem cannot
be exactly realized, and finds the solution that minimizes the mean errors of the individual
muscles between expected and desired muscle activation. This is demonstrated in a computer
simulation of human arm dynamics and compared against the prior method to demonstrate
its wider applicability. In addition, the control method is extended to resolve issues associ-
ated with a nonideal exoskeleton with incomplete torque application to the joints. A quasi-
optimized motor-task that minimizes the errors in target muscles and nontarget muscles can
be obtained. This paper presents theoretical analysis, simulation, and experimental results
on the performance of the relaxed individual muscle control.
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1 Introduction

Wearable exoskeleton robots, which can apply torques directly to the wearer’s joints, are
capable of either assisting the motion of the wearer, by applying torques which aid those of
their muscles, or resisting the motion of the wearer, by applying torques that oppose those
of their muscles. This makes them an ideal platform for designing systems for the purposes
of exercise and rehabilitation of human muscles or diagnosis of muscle related disorders
due to their ability to apply torques directly to human joints [8, 12, 15, 17, 20, 22]. In
these tasks, it is often desired to induce certain target muscles to generate a desired force
level. This is useful in exercise or rehabilitation to strengthen the muscle, and for diagnostic
cases to induce some expected muscle activation pattern and observe any deviation from it.
However, targeting a specific muscle or group of muscles can be difficult, due to the large
number of muscles compared to the relatively small number of joints where torque may be
applied.

Several studies have presented methods for predicting the activation pattern of human
muscles under a known applied loading [2, 7, 14]. These are usually based on the Optimality
Principle in the neuromotor system, which was developed from empirical data on how the
human neuromuscular system optimizes the activation pattern of muscles. This muscle force
prediction allows a mathematical formulation that has been reliably demonstrated in several
studies [5, 7, 9, 16].

With a mathematical formulation for a muscle activation pattern for a given applied load-
ing, it should be possible to perform the inverse calculation and find the required applied
loading to achieve a certain activation pattern for some target muscles. To accomplish this
objective, the mechanisms of redundant muscle coordination during human–robot physical
interaction need to be rigorously formulated and understood. Such a method has been de-
veloped by [6, 18–20], wherein it is possible to provide target forces for a certain subset of
arm muscles.

The previous method could exactly achieve the desired target muscle forces without in-
ducing activity in otherwise inactive muscles. Thus, the algorithm was able to calculate the
necessary joint torques to be applied by an exoskeleton. However, this method had several
key limitations. It included several feasibility criteria that had to be met in order for the
muscle activation pattern to be physically feasible [20]. These criteria required that target
muscle forces be achieved exactly, which may not always be possible or necessary. For many
exercise or rehabilitation situations, approximate forces may be acceptable. In addition, it re-
quired that inactive muscles be maintained as inactive, another requirement that may not be
strictly necessary. Finally, the formulation did not address the upper limit of muscle forces,
requiring only that the calculated forces be nonnegative. In reality, using such a system on
a person could result in excess applied force, causing muscle strain. These limitations were
accepted to simplify the resultant formulation. This study will relax these requirements and
reframe the feasibility criteria as optimization problems to achieve the target muscle pattern
with as little error as possible, as well as account for the upper limit of muscle forces.

Furthermore, an ideal exoskeleton should be able to apply force to all joints of the wearer,
but practical difficulties in the design of exoskeletons leads to nonideal devices that may be
able assist/resist movement of only certain joints. For example, the shoulder joint is more
complicated than the elbow joint in terms of the number of degrees-of-freedom (DOF).
The application of torques to the torso and the neck joints is almost impossible, due to the
complex structure of the vertebral column and limitations of wearable designs. Inadequate
application of joint torques of such a nonideal exoskeleton may result in errors in individual
muscle forces. Similar problems can widely be observed in existing exoskeletons, nearly all
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Fig. 1 Concept of individual
muscle control via physical
human–robot interaction

of which are nonideal in this fashion: the wearer’s joints have more DOF than the device
can control. The hip joint has three DOF. However, some leg exoskeletons only control
movements in the frontal plane. Therefore, robustness to the lack of actuators needs to be
examined and incorporated with the computational algorithm for practical use. Instead of
finding a solution that perfectly realizes a muscle activation pattern in targeted muscles, a
quasi-optimized solution that minimizes errors in individual muscles is obtained.

2 Problem formulation

2.1 System equation

The methods explained in this article will consider the individual muscle force control for
static tasks, where it is assumed that a subject does not change his or her posture during
a task and all muscle contractions are isometric. The dynamics of the body and robot are
neglected. Figure 1(a) shows a schematic diagram where a human operator is performing a
motor task, which requires the human to exert their muscles to accomplish some target force
or motion, while interacting with a robotic manipulator and wearing an exoskeleton device.
The robot is capable of applying force to the human’s hand in three dimensions, while the
exoskeleton is assumed to be ideal and designed such that it is capable of applying torques to
all nine of the human’s arm joints. The goal, as shown by Fig. 1(b), is to modulate the muscle
forces applied by the human through these forces and torques applied by the manipulator
and exoskeleton. For a human musculoskeletal model that has M joints and N muscles, the
net torques in the human joints is given by (1).

τ h = g(θ) + J(θ)T F − τ a (1)

Here, τ h ∈ �M is a vector of human joint torques, θ = [θ1, . . . , θM ]T ∈ �M is a vector of
joint angles, F = [Fx,Fy,Fz]T is the translational force at the tip (i.e., the force the human
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applies to the environment or the force applied by the manipulator to the human), J(θ) is
the Jacobian between the joints and end-point, g(θ) is the gravity force, and τ a ∈ �M is the
joint torque applied by the exoskeleton. The static equation of the musculoskeletal system is
then given by (2). In order to achieve the desired muscle control, the muscle forces should
be induced such that the joint torques are those applied externally by (1).

τ h = A(θ)f =
⎡
⎣

a11 · · · a1N

...
. . .

...

aM1 · · · aMN

⎤
⎦

⎡
⎣

f1
...

fN

⎤
⎦ (2)

In this relation, A ∈ �M×N is the moment-arm matrix of the muscles and f = [f1, . . . , fN ]T
∈ �N is the human muscle force vector. The element aij of A represents the moment arm
of muscle j for joint i, so aij = 0 is given if fj does not affect joint i. Note fj ≥ 0
(j = 1, . . . ,N) because muscle contraction cannot generate negative forces. g(θ), J(θ),
and A(θ) for a given posture θ can be calculated by the musculoskeletal model developed in
[18–20]. This model of the upper-right limb with 51 muscles has been developed to analyze
the physical interaction between the exoskeleton and the wearer at the level of individual
muscles. Its model consists of 5 rigid links and 9 joints. For more detail, see [20]. To sim-
plify the problem, no upper-bound is given for τ a .

2.2 Optimization principle in the neuromuscular system and muscle force prediction

The human body has a much larger number of muscles than the number of joints, i.e.,
N � M , leading to muscle redundancy. This fact makes the prediction of muscle forces
f by knowing joint torques τ h an ill-posed problem. Various optimization approaches have
been proposed to model the Optimization Principle in the neuromuscular system [2, 13, 14,
21] and to solve this problem by minimizing a cost function. The main difference among the
approaches is the structure of cost functions that represent performance criteria on which the
neuromuscular system optimizes the activation of muscle forces. In the literature that deals
with isometric or relatively slow motions, the cost functions have a general form comprised
of the sum of muscular stress or force raised to a power. The static optimization method can
be formulated as follows:

Minimize u(f ) =
N∑

j=1

cjf
r
j (3)

subject to

{
τ h = Af

0 ≤ fj ≤ fmaxj
(j = 1, . . . ,N)

(4)

The cost function u(f ) is determined by the weighting factors cj ’s, which are determined
based on the physical characteristics of each muscle, and the integer power r . It should be
noted that arguments still exist on the choice of the weighting factors cj and the integer
r of the power [2, 13, 14, 21]. There are still arguments and criticism of the neurological
background of this muscle force prediction; however, this approach has been implemented
in publicly or commercially available software [3, 4]. The effectiveness of this approach for
predicting stereotyped motor performances has been reported in the literature [5, 7, 9].

2.3 Individual muscle control

Individual muscle control requires solving the inverse problem of the aforementioned mus-
cle force prediction in (3) to control N muscles by adjusting M joint torque inputs. Note
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that this inverse solution is not straightforward since any induced muscle activation pattern
must satisfy the physiology-based optimality criterion. The first condition in (4) represents
the balance of joint torques. The second condition means that each muscle can only “pull,”
exerting positive contracting force limited by its maximum voluntary force. Mathematically,
this can be treated as finding an adequate equality constraint for the joint torques such that
desired muscle forces are obtained as a result of the cost function minimization. As de-
scribed earlier, the exoskeleton merely modifies human joint torques, which is equivalent to
the modification of the first equality condition in (4).

Let f 0 be the nominal muscle forces when a subject is performing a nominal motor
task. The human force vector f 0 may be permutated according to three groups of muscles:
target muscles, which will be controlled to achieve a desired force level; non-target muscles,
which are active but not directly controlled; and inactive muscles, which provide no force.
Let Ñ ≤ N be the number of the active muscles, and N − Ñ be the number of the inactive
muscles. The active muscles have elements with nonzero values in f 0, and the inactive
muscles have zeros. The active muscle group consists of target muscles f t ∈ �Nt and non-
target muscles f n ∈ �Nn where Nt + Nn = Ñ . Without the loss of generality, the order
of the N muscles may be permutated according to these three groups for the simplicity of
description.

f
�=

⎡
⎣

f t

f n

0

⎤
⎦

· · · targetmuscles
· · ·non-targetmuscles
· · · inactivemuscles

(5)

The above permutation for f is also applied to the moment-arm matrix A, accordingly

AT =
⎡
⎣

At

An

Av

⎤
⎦

· · · targetmuscles
· · ·non-targetmuscles
· · · inactivemuscles

(6)

Hereafter, these permutated vectors and matrices will be used.
The desired target muscle forces f td are given as follows by explicitly specifying the

ratio of change for each of the target muscles:

f td = diag[γ1, γ2, . . . , γNt ]f t0 (7)

where γj (> 0) is the ratio of change of the j th target muscle. The subscript d denotes the
desired muscle forces, and 0 denotes the nominal muscle forces. Let the total external torque
τ ex ∈ �M be

τ ex = J T F − τ a (8)

Equation (8) shows how the joint toques can be adjusted by applying τ a from the exoskele-
ton and by exerting F at the tip either by performing a motor task or through a robot ma-
nipulator. Note that there is a certain freedom in choosing F and τ a to achieve a given τ ex .
This will be discussed in a later section. The problem to realize f td can be formulated as
follows.

Perfect individual muscle control Find F and τ a that will achieve a τ ex such that the
solution of (3) includes a desired muscle activation pattern for the target muscles, f td , i.e.,

[
f T

td ,f
T
nd ,0T

]T = argmin
f (τ ex )

u(f ) (9)

with minimum changes in nontarget muscle forces, i.e., |f nd − f n0| → min.
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2.4 Solution for perfect muscle force control

The previous work by Ueda, Ming, et al. [6, 18–20] provided a solution to exactly realize the
desired target muscles forces, which will be referred to as perfect muscle control. Performing
the minimization in (9) to find a solution to (2) results in the external torque τ ex for the
perfect control given by

τ ex = [
AT

t AT
n

]
w−1

([
At

An

]
α

)
(10)

where α is the control input vector and represents in a moment arm independent manner the
change in torques that must be applied to achieve the desired muscle activation pattern. The
transformation w(∗) is a function that converts the muscle force vector f to a new vector q

as q = w(f ) where the j th elements of f and q are given as

qj
�= ∂u(f )

∂fj

= rcjfj
r−1, (j = 1, . . . ,N) (11)

and w−1(q) = f is the inverse function of w(∗) and the cj ’s are as in (3). q can be permu-
tated in a similar manner to f :

q =
⎡
⎣

q t

qn

qv

⎤
⎦

· · · targetmuscles
· · ·non-targetmuscles
· · · inactivemuscles

(12)

The control input vector α is the main element in the solution and is given as

α = A+
t

[
w(f td ) − w(f t0)

] + (
I − A+

t At

)
β (13)

where I is the identity matrix, and β is a free parameter that represents the remaining re-
dundancy for controlling the nontarget muscles as the second priority. This solution holds
regardless of the choice of the parameter r in (3) and (11), which was verified in [14] (see the
Appendix for further details). In [20], the existence of this solution relied on three criteria:

1. The target muscles forces must all be linearly independent of one another:

rank(At ) = rank
([

At w(f td ) − w(f t0)
])

(14)

2. The inactive muscles must be maintained as exactly inactive:

−Av

[
At

An

]+ [
q t0

qn0

]
− Avα > 0 (15)

3. The nontarget active muscles must be maintained as active:

Anα + w(f n0) > 0 (16)

Due to space limitation, only the final criteria are given here. Please see [20] for detailed
derivation. The method attempted to find a solution by minimizing the change in nontarget
active muscles while satisfying the three criteria. If this was not possible, then no solution
existed that could exactly realize the target muscles forces within physiological constraints.
This resulted in a very narrow range of feasibility that could be practically expanded by
relaxing the required assumptions.

In addition, it was assumed that the exoskeleton is ideal and, therefore, has means to
adjust all of the joints, i.e., τ h is fully modifiable by τ ex , and a combination of F and τ a

always exists that realizes a given τ ex via the physical human–robot interaction.
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4. The exoskeleton is ideal, and therefore τ a exists (as well as F in the case where a ma-
nipulator arm is also used) and can realize τ ex in (8).

This paper shows theoretical results that relax these requirements and reframe the feasi-
bility criteria to achieve the target muscle pattern with as little error as possible.

3 Relaxing the feasibility conditions

3.1 Problem reformulation

The above limitations on the use of the perfect muscle control solution motivated generaliz-
ing the solution to eliminate assumptions and make the control scheme more widely appli-
cable. To do so, it is necessary to examine the three key assumptions, criteria 1–3 discussed
in Sect. 2.4.

First, the solution ignores the upper bound on an individual muscle’s force. While math-
ematically sound, this assumption has serious physiological consequences. Should an ex-
oskeleton attempt to apply the resultant torques, and one or more muscles are required to
supply more force than physically possible, the wearer of the device could sustain serious
injury. Accounting for this limit requires adding the right side of the inequality condition,
fj ≤ fmax j (j = 1, . . . ,N), into the Karush–Kuhn–Tucker (KKT) equation, which will re-
sult in a second set of λ’s. For clarity, the λ’s in the initial solution, which correspond to the
lower bound 0 ≤ fj , will be denoted as λl , while the λ’s corresponding to the upper bound
will be denoted as λu.

The second assumption is that it is necessary and possible to match the desired target
muscle forces exactly. In reality, it is never possible to exactly match all muscle forces, and
it is likely not absolutely necessary, either. Therefore, instead of requiring fj = fjd , a small
error tolerance ej is allowed such that fj = fjd + ej . When performing the transformation
q = w(f ), this becomes q t = q td + εt , where εt is the allowable error tolerance in q t and
takes the same units as q .

Finally, the third assumption states that inactive muscles must stay inactive, and non-
target active muscles must stay active. Physically, this may be difficult to realize. Therefore,
in the interest of finding a control scheme that is as widely application as possible, it is de-
sired to allow initially active non-target muscles to become inactive, while allowing initially
inactive muscles to generate a small amount of force. The former requires including the
Lagrange multipliers in the KKT condition as with the generalization applied for the first
assumption. The latter requires the introduction of an error tolerance term, εv , as with the
generalization for the second assumption.

3.1.1 New KKT condition

Combining the generalizations for all three assumptions, a new feasibility equation is ob-
tained from the KKT condition [1, 11]. For convenience, the inequality constraint 0 ≤ fj ≤
fmaxj (j = 1, . . . ,N) was split into two conditions, with the lower and upper bounds corre-
sponding to gjl and gju, respectively. The updated KKT condition is shown in (17) and is
subject to the conditions in (18), (19), and (20).

∇u(f ) +
M∑
i=1

μi∇hi(f ) +
N∑

j=1

(
λjl∇gjl(f ) + λju∇gju(f )

) = 0 (17)



84 W. Gallagher et al.

hi(f ) = 0 (18)

λjlgjl(f ) = 0, λjl ≥ 0, gjl(f ) ≤ 0 (19)

λjugju(f ) = 0, λju ≥ 0, gju(f ) ≤ 0 (20)

where (i = 1, . . . ,M), (j = 1, . . . ,N)

The constraints hi , gjl , and gju are given by (21), (22), and (23).

hi(f ) = τi − aT
i f (21)

gjl(f ) = −fj (22)

gju(f ) = fj − fmaxj (23)

The derivatives of the three constraints are then given by (24), (25), and (26).

∂hi

∂fj

= −aij (24)

∂gj1l

∂fj2

=
{−1, j1 = j2

0, j1 �= j2
(25)

∂gj1u

∂fj2

=
{

1, j1 = j2

0, j1 �= j2
(26)

These, combined with the definition of q in (11), which remains unchanged, give the updated
equation given by (27).

q = w(f ) = AT μ + λ

where q =
⎡
⎣

q1
...

qN

⎤
⎦ , μ =

⎡
⎣

μ1
...

μM

⎤
⎦ , λ = λl − λu =

⎡
⎣

λ1l − λ1u

...

λNl − λNu

⎤
⎦ (27)

Permutating this equation as done for (12), but without making any simplifications or as-
sumptions, results in (28).

[
q t

qn

qv

]
=

[
At

An

Av

]
μ +

[
λt l − λtu

λnl − λnu

λvl − λvu

]
(28)

It is possible to make a few simplifications regarding the inequality constraint multipliers.
Target muscles will necessarily always be active and, therefore, will supply a nonzero force,
so the lower constraint is always satisfied (λt l = 0). In addition, inactive muscles by defini-
tion supply zero force, so the upper constraint is satisfied (qv = 0 and λvu = 0). This yields
the result in (29). ⎡

⎣
q t

qn

0

⎤
⎦ =

[
At

An

Av

]
μ +

[ −λtu

λnl − λnu

λvl

]
(29)

The result can be evaluated for both the nominal muscle forces, f 0, and the desired muscle
forces, f d . For the nominal case, by definition, the active nontarget muscles will have a
positive force, so the lower bound is automatically satisfied (λ0nl = 0), giving (30). For the
desired case, it can be assumed that the desired values of the target muscles will never be
the maximum force for safety reasons, while there is no assumption that the nontarget active
muscles will stay active. Also, the allowable error tolerance terms, ε, are incorporated, which
gives (31).
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⎡
⎣

q0t

q0n

0

⎤
⎦ =

[
At

An

Av

]
μ0 +

[ −λ0tu

−λ0nu

λ0vl

]
(30)

[
qdt + εt

qdn

εv

]
=

[
At

An

Av

]
μd +

[ 0
λdnl − λdnu

λdvl

]
(31)

3.1.2 Muscle control

Using the generalized KKT conditions given in (30) and (31), it is possible to derive a control
law that can be used to find the value of τ h that will induce the desired muscle activation
pattern. Since μ corresponds to the vector of human joint torques, it is the ideal quantity
to control, as finding an appropriate value for μd will lead to finding τ ex , and subsequently
F and τ a , to realize the desired muscle forces. Therefore, let μd = μ0 + α, where α is the
control input vector, similar to that presented in (13) for the case of perfect muscle control.
Through the derivation below, this leads to (32).

qd = AT (μ0 + α) + λd

= AT μ0 + AT α + λd

= AT μ0 + λ0 + AT α + λd − λ0

= q0 + AT α + λd − λ0

qd − q0 = AT α + λd − λ0

[
qdt + εt

qdn

εv

]
−

⎡
⎣

q0t

q0n

0

⎤
⎦ =

[
At

An

Av

]
α +

[ 0
λdnl − λdnu

λdvl

]
−

[ −λ0tu

−λ0nu

λ0vl

]
(32)

The unknown to be solved for in (32) is the control input for the joint torques, α. The q0’s
are known from calculating the nominal case and qdt is known from the desired muscle
activation pattern, while AT is known from the geometry and configuration of the muscles.
This leaves qdn, both ε’s, and all λ’s as parameters that can be chosen to make the solution
feasible. There are so many parameters due to the large difference between the number of
muscles, N , and the number of joints, M (N � M).

Examining (32), it can be seen that each term has a physical meaning. The left-hand side,
from (11), gives the desired change in muscle forces. The first term on the right-hand side
provides the effect of the control input on the muscles, since AT gives the mapping from
joint torques to muscles forces, while the remaining terms account for any muscles, which
are exactly equal to zero or the muscle’s maximum force. It is important to note that the
inequality constraint multiplier vectors, λ’s, will tend to be sparse. The elements of these
are only nonzero if that particular muscle is exactly on the constraint multiplied by that λ.
For example, if nontarget muscle j is providing maximum force in the nominal case, but is
between zero and maximum in the desired case, then λj0nu > 0, λjdnu = 0, and λjdnl = 0. In
general, many of the elements in these vectors will be zero.

3.1.3 Solution

The goal of this algorithm is to match the desired target muscle forces as exactly as possible.
Since the number of outputs (muscle forces), N , is significantly larger than the number of
inputs (joint torques), M , a priority based approach is used to find a solution. Therefore,
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the solution for α can be found from the first row of (32): qdt + εt − q0t = Atα + λ0tu.
Rearranging slightly, this becomes (33).

qdt − q0t + εt − λ0tu = Atα (33)

Assuming the solution exists (the existence of a solution is discussed in Sect. 3.1.4), it is
given by (34), which is analogous to (13) for the perfect control case.

α = A+
t (qdt − q0t + εt − λ0tu) + (I − A+

t At )β (34)

This new solution is applied to (10) to obtain external torques. The free parameter β in-
dicates the redundancy of the solution, and has an effect on the values of the remaining
non-target (active and inactive) muscles. The choice of β is generally arbitrary, and will be
discussed further with the choice of the other parameters in Sect. 3.1.4.

3.1.4 Feasibility and choice of parameters

Due to the way in which the matrices were permutated, each row of (32) deals with a dif-
ferent set of muscles. The first row is concerned with the target muscles, the second row
with the active (in the nominal case) nontarget muscles, and the last row with the inactive
(again, in the nominal case) nontarget muscles. Therefore, each row can be extracted from
the matrix equation to determine a set of feasibility criteria for the existence of the solution
discussed in Sect. 3.1.3.

The first row, previously extracted to get (33), is the most important, since it deals with
the target muscles. In order to solve (33) using linear algebra, a matrix composed of At

augmented with the left-hand side of the equation must have the same number of linearly
independent rows as At itself. This is concisely expressed in (35).

rank(At ) = rank
([

At (qdt − q0t + εt − λ0tu)
])

(35)

When this condition is satisfied, it is possible to obtain the desired target muscle forces while
also satisfying the bounds on muscle force. The error tolerance εt is a parameter that can
be chosen to make this condition hold when it is not possible to exactly realize the target
forces. In this case, a small value can be given to some or all elements of εt to make an
approximation of the desired qdt realizable. The multiplier λ0tu is known from the nominal
muscle distribution, and is only nonzero for muscles that are initially at their maximum
force.

The next priority in choosing the solution is to maintain inactive muscles as inactive (or
keep them minimally active if this is not possible). The third row of (32), given by (36),
provides the necessary condition for this.

λdvl − εv = λ0vl − Avα (36)

For inactive muscles to remain inactive, λdvl must be positive and εv will be zero, requiring
the right-hand side of the equation to be greater than zero. If, however, it is not possible (or
not necessary) to meet this exactly, then elements of εv can be chosen to be nonzero, leading
to the condition given by (37).

Avα + λ0vl > −εv (37)

The final priority is to minimize the change in the forces of the nontarget muscles. The
second row of (32) can be written as in (38).

qdn − q0n = Anα + λdnl − λdnu + λ0nu (38)
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Fig. 2 Nominal task,
F = [10,10,10]

In the ideal case, none of the nontarget muscles are at maximum force, and it is desired to
keep them from becoming inactive, so all the λn’s are zero. For this to be the case, (39) must
be true, where qmax = w(f max).

0 < Anα + q0n < qmax (39)

Substituting the solution for α from (34) into (38), then making the same decisions that
lead to (39), the only remaining free parameter is β . Therefore, a reasonable way to choose β

is to avoid a change in the non-target muscles, or to minimize ‖qdn − q0n‖, where qdn − q0n

is given by (40).

qdn − q0n = An

[
A+

t (qdt − q0t + εt − λ0tu) + (I − A+
t At )β

]

= AnA
+
t (qdt − q0t + εt − λ0tu) − [−An(I − A+

t At )
]
β (40)

In general, this is consistent with the condition given by (39). However, due to the need to
use the pseudoinverse of A (since A is not square), it is possible for numerical inaccuracies
to arise. In this case, if the condition is not satisfied, then one or more nontarget muscles is
at the upper or lower limit. To maintain feasibility, the appropriate elements of λdnu and λdnl

must be chosen such that the condition is again satisfied (note that λ0nu is known from the
nominal muscle distribution).

3.2 Validation

The relaxed formulation was validated and compared to the perfect muscle control solu-
tion using a computer model. The model, developed in prior work by Ueda, Ming et al.,
[18–20], simulated the muscles of the human upper arm using a total of 9 joints (M = 9)
from the torso to wrist joint with 51 muscles (N = 51). The Crowninshield’s cost func-
tion (see the Appendix) is applied for the optimization criterion in the model. The joint
torques an exoskeleton should apply for a variety of target muscle activation patterns, given
in Table 1, were calculated using both the perfect control method and the relaxed control
method, for comparison. The feasibility of each pattern for both methods is shown in Ta-
ble 2. For the relaxed method solution, the norm of the error tolerances, εt and εv , are
presented normalized by the nominal muscle forces, q0. For all three patterns, the arm is
in held straight down at the side of the body with the elbow bent 90◦ and the forearm held
out, as in Fig. 2, with an external applied force [Fx,Fy,Fz] = [10,10,0] for the nominal
task.
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Table 1 Desired muscle activation patterns for testing

# Muscle 1 Ratio Muscle 2 Ratio

1 Brachioradialis ×0.8 Flexor Carpi Ulnaris ×1.2

2 Brachioradialis ×1.7 Flexor Carpi Ulnaris ×0.8

3 Brachioradialis ×1.5 Extensor Carpi Ulnaris ×1.5

Table 2 Desired muscle activation pattern feasibility results

# Perfect Relaxed Error tolerance

1 Pass Pass 0.0

2 Fail (Cond. 2, (15)) Pass 0.12

3 Fail (Cond. 3, (16)) Pass 0.05

To demonstrate that the relaxed method includes the solutions the perfect method could
find, Fig. 3(a) shows the results of both methods for pattern 1. Both solutions are identical,
showing that a problem solvable by the perfect control method would yield the same solution
using the relaxed. For patterns 2 and 3, however, the perfect method could not find a phys-
iologically feasible solution, but the relaxed method could. Figure 3(b) shows the resulting
muscle forces for some of the muscles returned by the relaxed method for target pattern 2.
The relaxed method was able to find a feasible solution and match the target muscles by
allowing inactive muscles to become active. For pattern 3, the results are shown in Fig. 3(c).
A feasible solution was found by not matching the target muscles exactly. The muscle forces
are presented normalized by q0.

Figure 4 explores the feasibility of combinations between the muscles used in the three
patterns for both the perfect and relaxed methods. The hatched areas in both plots represent
the feasibility region of the perfect control method. Outside this region, only the relaxed con-
trol method was able to find a solution. The shading of the plot indicates the required mag-
nitude of the error tolerance terms, εt and εv , normalized by the nominal muscle force, q0.
The relaxed method demonstrated a much larger region in which a feasible solution could
be found than the perfect method, with large regions requiring only small allowable errors.
In both cases, however, as the limits of the muscle forces were approached, large allowable
errors were required to find a feasible solution.

4 Solutions for a nonideal exoskeleton

4.1 Limitation in adjusting joint torques

The problem in realizing desired joint torques with incomplete torque application to the
joints (i.e., with lack of means to apply torques to certain human joints) is considered. Cri-
terion 4 discussed in Sect. 2.4 is relaxed. Instead of finding a solution that perfectly realizes
a muscle activation pattern in targeted muscles, a quasi-optimized solution that minimizes
errors in individual muscles is obtained.
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Fig. 3 Simulation results of
relaxed method

Consider the individual muscle control shown in Fig. 1(a) where the exoskeleton is not
capable of controlling all of the joints torques involved in a task due to a lack of means
to apply torques. Even if f td is realizable and a solution of τ ex exists mathematically, a
combination of F and τ a that satisfies (8) may not exist. In other words, τ ex may not
be realizable due to the inability to control all of the joint torques. Such use of a non-
ideal exoskeleton may result in errors in target muscle forces. Recall that F is projected
onto the torque space through J T . The number of elements of F is three (i.e., Fx,Fy,Fz),
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Fig. 4 Comparison of feasibility
region of both methods: Hatched
region shows perfect method
feasibility, shading indicates
required error tolerance to obtain
feasible result using relaxed
method

but that of τ ex is much larger than three in general. Therefore, the control of the tip-
force via a manipulator arm F could mitigate the issue but would not completely resolve
the problem. Note that other controllability issues, such as misalignment of or insufficient
torque from exoskeleton actuators are not considered here and may be addressed in future
work.

To overcome such a nonideal exoskeleton problem, the realizability of (8) is further ana-
lyzed. Equation (8) is rewritten as follows by considering the controllable degrees-of- free-
dom of the exoskeleton:

τ ex = J T F − τ a

= J T F − Eτ ac (41)

= [
J T −E

][
F

τ ac

]
�= J T

e F e (42)

where J e = [J T −E]T and F e = [F T τ T
ac]T . τ ac is a vector that only contains the torque

components controllable by the exoskeleton’s actuators. Matrix E maps these components
onto the joint torque space. For example, if τ ex ∈ �9×1 (i.e., a total of 9 joints are involved
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in a movement) and the exoskeleton robot can control three torques, τ3, τ5, τ9, then τ ac =
[τ3, τ5, τ9]T and

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0

...

0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

9×3

Substituting (41) for (10) gives

[
AT

t AT
n

]
w−1

([
At

An

]
α

)
= J T

e F e. (43)

4.2 Perfect individual muscle control with a nonideal exoskeleton

While previous sections have left r unspecified, this section explicitly utilizes Crownin-
shield’s cost function with r = 2 (see the Appendix) to obtain closed-form solutions. Gen-
eralization with respect to r will be considered in future work. The Crowninshield’s cost
function is quadratic:

u(f ) = f T S2f (44)

S =
⎡
⎢⎣

1
PCSA1

. . .
1

PCSAN

⎤
⎥⎦ (45)

q = w(f ) = 2S−2f , or f = 1

2
S2q (46)

Although the range of feasible f td is limited, perfect control of target muscles is still feasible
if the following condition holds.

Theorem (Perfect individual muscle control with a nonideal exoskeleton) Assume that ei-
ther the feasibility conditions presented in [20] or the relaxed conditions presented in the
previous sections hold; therefore, α exists. If the following condition also holds, a solution
for F e exists for a given α that perfectly realizes the target muscle forces:

rank(G) = rank
([G α]) (47)

where

G = 2

([
AT

t AT
n

]
S2

[
At

An

])−1

J T
e (48)

The solution of F e is obtained by

F e = G+α + (I − G+G)ψ, (49)

where ψ is a free vector parameter mapped onto the null space of G, defined by (I −G+G).
The parameter ψ can be chosen to tune the solution given by α.
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Proof From (43) and (46),

1

2

[
AT

t AT
n

]
S2

[
At

An

]
α = J T

e F e. (50)

If a motor task induces activities in a number of muscles greater than or equal to M , the
matrix [AT

t AT
n ] is full row rank. This assumption most likely holds for a whole-arm task

involving multiple joints. Therefore, the square matrix [AT
t AT

n ][ At

An

]
is invertible, which

yields

α = GF e (51)

Hence, the existence of F e can be checked by (47). Under this condition, F e is given by
(49). Note that this condition guarantees perfect realization of target muscle forces although
condition (47) is more restrictive than (35). �

Remark 1 (Reducing changes in non-target muscles) If (I − G+G) is a nonzero square
matrix, ψ can be chosen to reduce the changes in non-target muscles, e.g., ‖q tn − q0n‖ →
min. Roughly speaking, using an exoskeleton able to apply more joint torques is expected
to lead to a wider choice of ψ , resulting in smaller changes in non-target muscles. This
additional controllable DOF provided by such an exoskeleton can also be used to modify
the distribution between F and τ a . In some cases, where the rank of (I − G+G) is large
enough, the application of τ a using an exoskeleton may not be necessary; performing a task
by only exerting an end point force F using a manipulator arm would appropriately adjust
target muscles.

4.3 Relaxed individual muscle control with a nonideal exoskeleton

The rank condition (47) may not always hold. In other words, F e may not exist that perfectly
realizes a given α. It still is possible to obtain desired target muscle forces with a certain
range of error.

Remark 2 (Relaxing (47)) For simplicity, consider the unrelaxed criterion (14), a special
case of (35) where εt = 0 and λ0tu = 0. Assume that (14) holds but (47) does not hold. This
means that the individual muscle control problem has a solution with α. However, there is no
combination of F and τ a to realize α due to a limitation of the hardware. It is still possible
to induce changes in target muscles by using

F e = G+α (52)

This solution does not guarantee perfect realization of f td , but minimizes errors in the tar-
get muscles in the sense of least mean square. Note that this solution does not have any
redundancy, i.e., there is no free parameter than can be tuned to adjust nontarget muscles.

4.4 Simulation

First, the association between the controllability of target muscle forces and the number of
joints the exoskeleton can apply torques to is investigated by simulation.

Consider a static posture shown in Fig. 2 where the angle of the elbow joint angle is 90◦.
Similar to Sect. 3.2, the musculoskeletal system has a total of 9 joints (M = 9) from the
torso to wrist joint with 51 muscles (N = 51). The Crowninshield’s cost function (see
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Table 3 Target muscles and
desired ratios of change for
simulation

Muscle name Ratio

Biceps long (BIC) ×2.0

Flexor Carpi Ulnaris (FCU) ×0.25

Extensor Carpi Ulnaris (ECU) ×0.5

the Appendix) is applied for the optimization criterion. In the nominal task, a subject ex-
erts a tip-force of F = [Fx,Fy,0]T = [10,10,0]T [N] to a handle in the horizontal plane.
Among 51 muscles, 26 muscles are active and the remaining 25 muscles are inactive. The
Biceps Longus muscle (BIC), Flexor Carpi Ulnaris muscle (FCU), and Extensor Carpi Ul-
naris muscle (ECU) are selected as target muscles and controlled as shown in Table 3.

Five types of force/torque application shown in Fig. 5 are considered. In Type 1, a wear-
able device can apply torques to all 9 joints of the skeletal model. The mathematical for-
mulation presented in [20] assumed this ideal mechanism. In Type 2, the wearable robot
applies torques to a total of 7 joints from the shoulder to the wrist, excluding the torso and
neck joints. This type uses a manipulator that can apply 3-dimensional forces to the tip. In
Type 3, the wearable robot applies torques to a total of 4 joints from the elbow to the wrist
joint. The device used in the authors’ past research [6, 18–20] has the same actuator config-
uration. Type 4 applies torque to the elbow joint. In Type 5, wearable actuators are not used
but only a manipulator is used.

Table 4 shows computed tip-forces and assist-torques for types 1 to 5. Only types 1 and 2
satisfied (47), realizing perfect individual muscle control. Equation (52) for relaxed muscle
control was used for types 3 to 5. As can be observed in the results, Types 1 and 2 had
no error in desired target muscle forces. Type 3 could not accomplish perfect control, but
it still achieved the target muscle forces at a maximum error of 25 %, recorded form the
Biceps muscle. The forces for the Flexor Carpi Ulnaris muscle and Extensor Carpi Ulnaris
muscle were still accurate. The table also shows average errors in 23 nontarget muscles.
Errors in the target muscles and changes in nontarget muscles tend to increase as the number
of controllable joints decreases toward Type 5. Type 5 particularly exhibited large errors.
This implies that the sole exertion of a tip-force is insufficient to induce a desired muscle
activation pattern, justifying the use of a wearable exoskeleton that can apply joint torques.
This result also indicates that an ideal exoskeleton with a capability of applying all the joints
is not always necessary. An exoskeleton with a reduced number of controllable joints would
suffice for muscle control tasks with a certain allowable error range.

4.5 Experiments

Two experiments were conducted to confirm the efficacy of an exoskeleton with a reduced
set of controllable joints. These experiments made use of a manipulator arm equipped with
a force sensor to apply an end point force to the human’s arm.

4.5.1 Exoskeleton joints and changes in non-target muscles

A nominal task applies an external downward force of 30 [N] (i.e., [Fx,Fy,Fz] =
[0,0,−30]). The Biceps Longus muscle (BIC) was selected as a target muscle and the
desired change was given as ×0.7. Both cases satisfied (47); therefore, ψ in (49) can reduce
changes in nontarget muscles.
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Fig. 5 Exoskeleton configurations

Two configurations shown in Fig. 6 were considered. The system shown in Fig. 6(a),
named Type 4h, uses an exoskeleton that applies torque to the elbow joint and a manipulator
that applies 3-dimensional forces to the tip, totaling 4 controllable DOF. The device shown
in Fig. 6(b), named Type 5h, only uses a manipulator, totaling 3 controllable DOF. The
device types 4h and 5h correspond to types 4 and 5 in Fig. 5, respectively. It is expected that
a configuration with more controllable DOF has a higher capability of controlling nontarget
muscles than a mechanism with a fewer controllable DOF. Table 5 shows the computed
assist torques and tip forces for types 4h and 5h.

Electromygraphic signals (EMG) during tasks were processed in the same manner as
[20]. The results are shown in Fig. 7 for 8 healthy subjects. Each subject performed five trials
of the assigned task. White bars show desired changes in the two target muscles and gray
bars show means of collected EMG signals with error bars indicating standard deviations
(SD). As shown in Fig. 7(b), the expected/simulated average change in the non-target muscle
activations increased from 21 % to 24 % as the number of controllable DOF of the system
decreased from 4 to 3. In the experiment, the average change increased from 12 to 15 %.

4.5.2 Individual muscle control using solely a manipulator

If the objective of a motor task is primarily to adjust target muscles, with less emphasis on
changes of nontarget muscles, one might argue that the sole use of a manipulator would
suffice. Such a system would, in practice, be advantageous in terms of reduced complexity
of operation. It is likely that the condition (47) holds if the number of target muscles is not
very large, for example, 1 or 2. Hence, motor tasks can be planned by using (49).

In the second experiment, the tasks shown in Table 6 with the manipulator in Fig. 6(b)
are considered. The nominal task applied an external downward force of 30 N (i.e.,
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Table 4 Simulation results

Exoskeleton type

1 2 3 4 5

Tip-force Fx [N] – 10.19 7.69 8.02 3.48

Fy [N] – 10.07 10.68 9.92 9.83

Fz [N] – 0.39 –0.02 –0.01 3.72

Torso τ1 [Nm] –0.05 – – – –

Neck τ2 [Nm] 0.04 – – – –

Shoulder τ3 [Nm] –0.83 –0.98 – – –

τ4 [Nm] –1.99 –1.97 – – –

τ5 [Nm] –0.82 –0.80 – – –

Elbow τ6 [Nm] 0.66 0.77 0.66 –1.66 –

Wrist τ7 [Nm] 0.15 0.15 0.15 – –

τ8 [Nm] 0.14 0.15 0.14 – –

τ9 [Nm] 0.31 0.32 0.34 – –

Target muscle changes BIC ×2.00 ×2.00 ×2.51 ×3.68 ×2.75

FCU ×0.25 ×0.25 ×0.25 ×1.02 ×1.02

ECU ×0.50 ×0.50 ×0.50 ×0.74 ×0.66

Nontarget muscle average changes ×0.85 ×0.85 ×0.82 ×1.04 ×1.20

Perfect control condition (47) Pass Pass Fail Fail Fail

Table 5 End-effector force and applied joint torque for experiment 1: Biceps (BIC) × 0.7

Task Fx [N] Fy [N] Fz [N] τ6 [Nm] (Elbow)

Nominal (A) 0.00 0.00 −30.00

Type 4h 0.92 −25.94 −3.36 0.96

Type 5h −0.41 −18.13 −10.84 –

[Fx,Fy,Fz] = [0,0,−30]). The Anterior Deltoid and Biceps Longus muscles were chosen
as the target muscles. The tasks satisfied (47). The results are shown in Fig. 8. Each subject
performed five trials. White bars show desired changes in the two target muscles and gray
bars show means of collected EMG signals with error bars indicating standard deviations
(SD). The observed tendencies to increase or decrease EMG signals, with respect to desired
changes, were as expected overall. For example, a larger change in the Anterior Deltoid
muscle was observed than that in the Biceps muscle where the Anterior Deltoid muscle was
controlled to be ×2.0 while maintaining (i.e., ×1.0) the nominal force of the Biceps muscle.
Similarly, both of the two target muscle forces increased in task D where desired changes
greater than 1.0 were given to the both muscles. Note that we cannot rule out the possibility
that the magnitude of EMG signals may not be strictly proportional to corresponding muscle
force. Needle EMG signals will be used for further evaluation in the future.

5 Conclusion

Prior work has developed a method by which the forces of human muscles can be controlled
via an exoskeleton. However, the previous method relied on several limiting assumptions and
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Fig. 6 Experimental setup for
individual muscle control

Fig. 7 Experimental result of individual muscle force control using a manipulator and exoskeleton: Biceps
(BIC) ×0.7

requirements which simplified the mathematical formulation, but restricted its applicability.
A relaxed method which removed several of these was presented. It reframed the problem
from one attempting to exactly achieve a target muscle pattern to one in which the solution
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Table 6 Motor tasks using a robot manipulator

Task Anterior Deltoid (DEL) Biceps Long (BIC) Fx [N] Fy [N] Fz [N]

Nominal (A) – – 0.00 0.00 −30.00

B ×2.0 ×1.0 −38.87 1.47 −32.99

C ×1.0 ×1.5 19.87 −0.73 −48.17

D ×2.0 ×1.5 −18.95 1.70 −51.33

E ×0.5 ×1.0 19.35 −2.56 −28.18

F ×1.0 ×0.5 −19.92 −0.30 −11.64

G ×0.5 ×0.5 −0.54 −2.34 −9.92

Fig. 8 Experimental result of individual muscle force control using only a manipulator

was optimized to minimize the error from a target pattern. This allowed patterns that were
previously infeasible to be realized. The enhanced method was demonstrated using computer
models and the improvement in feasibility region was shown. The efficacy was confirmed
by simulation and experiments.

There are many situations in which such a method could be applied. Exoskeleton robot
development is increasing, and this method would allow such a robot to apply torques to
human joints to achieve some desired muscle pattern. This could be useful for exercise de-
vices attempting to build muscle strength or for rehabilitation devices attempting to recover
lost muscle abilities. This is due to the pinpointed nature of the method, targeting only the
muscles that are desired and minimizing the changes in all others. In addition, it can be
used for diagnosing muscle related disorders. Since the expected muscle pattern due to the
applied load is known, any deviation from the expected pattern would indicate a problem in
a person’s muscle control abilities. The relaxed method proposed here allows a much wider
range of the applications than the previous method.

Acknowledgements This work was supported in part by the National Science Foundation (NSF) under
Grant: IIS 1142438 and Japan Science and Technology Agency (JST)—National Science Foundation (NSF)
Strategic International Cooperative Program. The authors would like to thank Ellenor Brown for reading the
manuscript and for her helpful suggestions.



98 W. Gallagher et al.

Appendix: Crowninshield’s Static Optimization

Crowninshield’s method [14] is a special case presented in (3) that predicts human muscle
forces by minimizing a physiologically based criterion u(f ):

u(f ) =
N∑

j=1

(
fj

PCSAj

)r

→ min

subject to

{
τ h = Af

fminj
≤ fj ≤ fmaxj

(j = 1, . . . ,N)
(53)

where PCSAj is the physiological cross sectional area (PCSA), and fmaxj = ε · PCSAj is
the maximum muscle force of the j -th muscle. In this paper, ε = 0.7 × 106 [N/m2] is given
according to [7]. PCSAj ’s are given according to [10]. fminj = 0,∀j and r = 2 are used. See
[14] for the choice of r .
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