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Abstract This paper addresses some important issues for multibody dynamics; issues that
are basic and really not too difficult to solve, but rarely considered in the literature. The aim
of this paper is to contribute to the resolution and clarification of these topics in multibody
dynamics. There are many formulations for determining the equations of motion in con-
strained multibody systems. This paper will focus on three of the most important methods:
the Lagrange equations of the first kind, the null space method and the Maggi equations.
In all cases we consider singular inertia matrices and redundant constraint equations. We
assume that the inertia matrix is positive-semidefinite (symmetric) and that the constraint
equations may be redundant but always consistent. It is demonstrated that the aforemen-
tioned dynamic formulations lead to the same three mathematical conditions of existence
and uniqueness of solutions, conditions that have at the same time a clear physical meaning.
We conclude that the mathematical problem always has a solution if the physical problem is
well conditioned. This paper also addresses the problem of determining the constraint forces
in the case of redundant constraints. This problem is examined from a broad perspective. We
will present several examples and a simple method to find practical solutions in cases where
the forces of constraint are undetermined. The method is based on the weighted minimum
norm condition. A physical interpretation of this minimum norm condition is provided in
detail for all examples. In some cases a comparison with the results obtained by considering
flexibility is included.
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1 Introduction

This paper focuses on arguably the three most common classical methods (Laulusa and
Bauchau, [1]) to apply kinematic constraint equations: the Lagrange equations of the first
kind, the null space method and the Maggi equations. In this paper we only consider ideal
joints, without friction. We will start by considering the Lagrange equations of the first kind
completed with the acceleration constraint equations to give the following index-1 DAE
system:[

M ΦT
q

Φq 0

]{
q̈
λ

}
=

{
F(q, q̇)

c

}
, c ≡ −Φ̇qq̇ − Φ̇ t , M ∈ R

n×n, Φq ∈ R
m×n (1)

where F(q, q̇) ∈ R
n is the vector that contains the external and velocity dependent inertia

forces. The precise conditions for the existence and uniqueness of solutions for vectors q̈
and λ in (1) are not evident when the inertia matrix M is singular (positive-semidefinite)
and the Jacobian matrix Φq does not have full rank (rankΦq = r < m). This problem will
be addressed in this paper after the Introduction section. First of all, we wish to emphasize
the importance of this problem by describing some typical situations where these difficulties
arise.

1.1 Why and when redundant constraints arise

It is very common to find papers in the literature where, after setting the dynamic equations,
it is assumed that the constraint equations are independent and therefore the Jacobian matrix
has full rank. However, in many situations it is possible to get dynamic equations with
redundant constraints. In practice it is not very difficult to deal with such cases, as we will
try to show in this paper. Some examples leading to dynamic equations with redundant
constraints are:

1. As a way to carry out quick, easy, and simple implementations. For instance, it is well
known that the constraint of two vectors remaining aligned (null angle among them) can
be imposed by the cross product of vectors, but this product produces three equations
from which only two are independent. In a quick implementation it is always possible to
set the three equations and let the solver choose the appropriate independent ones.

Another common example, when using natural coordinates, is the condition of two
unit vectors being equal. This condition can be set by equaling the three components, but
again only two of these equations are independent. In these cases a careful implementa-
tion can avoid redundant constraints, but when the quickest and simplest implementation
is required, the use of redundant constraints is always a valid option.

2. A more important use of redundant constraints is the case of overdetermined multibody
systems, such as the numerous exceptions to the Grübler–Kutzbach criterion. A simple
case is the four element quadrilateral (one fixed element) with four revolute joints. The
Grübler–Kutzbach criterion predicts N = 6(4−1)−5 ·4 = −2 degrees of freedom. How-
ever, when the four revolute axes are parallel, the system has 1 degree of freedom. This
system leads to redundant constraints regardless of the type of coordinates used: relative,
Cartesian or natural. A common practice has been to replace two of the revolute joints by
a spherical and a Cardan joint. This solves the problem of the redundant constraints, but
at the expense of solving a different physical problem. The transformed system may be
equivalent for the kinematics, but it is clearly different for the calculation of constraint
forces. We assume that the user wants to maintain the physics of the problem and so we
will consider this source of redundant constraints as inevitable.
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3. Finally, singular positions in determined multibody systems lead to redundant constraints
at those positions, because the Jacobian matrix loses its rank without reducing its size,
and consequently redundant constraints appear. This is a very particular case of redundant
constraints that will not be further considered in this paper.

1.2 Why singular inertia matrices appear

Singular inertia matrices may appear when more than six coordinates are used to define the
position of a rigid body in R

3. When Euler parameters or natural coordinates are used this
is always the case.

With natural coordinates [2] the constant inertia matrix of a rigid body requires that
the body be defined with two points and two unit vectors (or a similar configuration, for
instance with four non-coplanar points). If this body has additional points and unit vectors,
the corresponding rows and columns of the inertia matrix have null values, making this
matrix positive-semidefinite.

In other occasions it is possible to assign null mass and inertia tensor to a body simply
because its inertia is very small. This assumption may or may not produce difficulties in the
existence and uniqueness of solutions. This is a point that will be clarified later on.

1.3 Constrained differential equations of motion

Using Cartesian dependent coordinates, the Lagrange equations of the first kind take the
form

M(q)q̈ + ΦT
q λ = F(q, q̇) (2)

where q is the vector of Cartesian coordinates that defines the system position, q̇ and q̈ are
its first and second order time derivatives, M is the inertia or mass matrix, F is a vector
that includes the external and velocity dependent inertia forces, Φq is the Jacobian matrix
of the kinematic constraint equations and λ the vector of Lagrange multipliers. The posi-
tion, velocity, and acceleration vectors in Eq. (2) must satisfy the corresponding constraint
equations,

Φ(q) = 0 (3)

Φqq̇ = b, b ≡ −Φ t , Φq ∈ R
m×n (rankΦq = r ≤ m) (4)

Φqq̈ = c, c ≡ −Φ̇qq̇ − Φ̇ t (5)

Equations (2)–(5) constitute a system of index-3 DAEs. If only Eqs. (2) and (5) are consid-
ered, the following index-1 DAE system—equivalent to an ODE system—is obtained:[

M ΦT
q

Φq 0

]{
q̈
λ

}
=

{
F
c

}
, A1 ≡

[
M ΦT

q

Φq 0

]
∈ R

(n+m)×(n+m) (6)

The matrix in these equations is known as the augmented matrix (Negrut, Serban and Po-
tra [3]), as a matrix with optimization structure (Serban, Negrut et al. [4], von Schwerin [5])
or as a saddle point system (Benzi, Golub and Liesen [6]). The system of differential equa-
tion (6) suffers from a constraint stabilization problem. As only the acceleration constraint
equations have been imposed, the positions and velocities provided by the integrator suffer
from the “drift” phenomenon. Two popular solutions to this problem are the Baumgarte sta-
bilization method (Baumgarte [7], Ascher, Chin et al. [8], Flores, Machado et al. [9]) and
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the mass-orthogonal projections of position and velocity vectors (Lubich [10], Bayo and
Ledesma [11]).

If the mass matrix is invertible and the constraint Jacobian matrix has full rank, it is
possible to find a closed form solution of Eq. (6):

λ = (
ΦqM−1ΦT

q

)−1(
ΦqM−1F − c

)
(7)

q̈ = M−1
(
F − ΦT

q λ
)

(8)

Sometimes, the aforementioned conditions for the existence of this closed-form solution
(7)–(8) are mistakenly taken as the conditions for the existence of solutions of Eq. (6). In
this paper we will try to deal more precisely with this problem, but first we will present
alternative or equivalent forms for the constrained differential equations of motion (6): the
null space method and the Maggi equations.

Another way to solve the constraint stabilization problem is to use velocity transforma-
tions, which map the dependent Cartesian velocities q̇ on a minimal set q̇i of f = n− r truly
independent velocities. Let matrix R ∈ R

n×f be the orthogonal complement of the Jacobian
matrix Φq, that is, an n × f matrix whose columns are a basis of the null space of Φq,

ΦqR = 0 (9)

Lagrange multipliers can be eliminated from Eqs. (6) by multiplying the first part of that
equation by RT , [

RT M
Φq

]
q̈ =

{
RT F

c

}
, A2 ≡

[
RT M
Φq

]
∈ R

(f +m)×n (10)

These equations constitute the so called null space method [1] for the dynamics of multibody
systems. Matrix A2 is square if there are no redundant constraints. The rank of this matrix
must be n for that system to be determined and to have a unique solution.

The matrix R can be computed very easily on the basis of a coordinate partition of vector
q̇ on dependent and independent velocities. The dependent velocities are those velocities
related to the columns of the pivots in the Gauss factorization of matrix Φq. It is assumed
that the independent velocities q̇i can be expressed as the projections of the full velocity
vector on the rows of a full rank (f × n) constant matrix B in the form (see Liang and
Lance [12]),

q̇i = Bq̇ (11)

Matrix B is chosen in such a way that its rows are linearly independent of the rows of the
Jacobian matrix Φq. Equations (4) and (11) can be expressed together in the form[

Φq

B

]
q̇ =

{
b
q̇i

}
, b ≡ −Φ t (12)

The condition for q̇ being uniquely determined by Eq. (12) is that matrix
[ Φq

B

]
has full

column rank, because then the left inverse exists. So, if the columns of this matrix are lin-
early independent there is only one way to express the r.h.s. vector as a linear combination
of those columns.

There are several methods to compute matrix B, which must remain constant until its
rows lose the condition of being linearly independent of those of Φq. Two possible methods
are the Singular Value Decomposition (Mani, Haug et al. [13]) and the QR factorization
(Kim and Vanderploeg [14]) of Φq. In this paper the simpler coordinate partitioning method
based on the Gaussian elimination with full pivoting will be considered. This is probably
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the simplest and cheapest procedure, which is stable enough for most applications. This
method was introduced in 1982 by Wehage and Haug [15], and used also in 1982 by Serna,
Avilés et al. [16] in the context of velocity transformation methods. In these methods matrix
B is chosen as a Boolean matrix that defines the independent velocities q̇i as a subset of
velocities q̇. In partitioned form Eq. (12) may be written as[

Φq

B

]
q̇ =

[
Φd

q Φ i
q

0f ×m If

]{
q̇d

q̇i

}
=

{
b
q̇i

}
(13)

Matrix Φd
q is non-singular because its columns contain the pivots of Φq. So, the full matrix

in Eq. (13) is invertible. Consider its inverse in partitioned form [S R],
[

Φq

B

][
Φq

B

]−1

=
[

Φq

B

][
S R

] =
[

Φd
q Φ i

q

0f ×m If

][
Sd Rd

Si Ri

]
=

[
Im 0m×f

0f ×m If

]
(14)

By identification of terms on the left and on the right-hand sides, it is concluded that matrices
S and R and its sub-matrices are given by

S =
[

Sd

Si

]
=

[
(Φd

q)
−1

0f ×m

]
, R =

[
Rd

Ri

]
=

[−(Φd
q)

−1Φ i
q

If

]
(15)

If there are redundant constraints the number of independent coordinates is still (n − r).
Matrix Φd

q is of size (m × r), with m > r . It is neither square nor invertible, but it has a
left-inverse and the previous expressions keep their meaning.

Consider again Eq. (14) when Φq has full row rank. This equation leads to the following
matrix relations:

ΦqR = 0m×f (16)

ΦqS = Im (17)

BS = 0f ×m (18)

BR = If (19)

It can be concluded that the columns of matrices R and S are, respectively, bases of the null
spaces of Φq and B. Similarly, matrices R and S are right-inverses of B and Φq, respectively.

The expressions (14) and (15) are used to define matrices S and R. By introducing the
result of Eq. (14) in Eq. (12), the following result is obtained for the velocity transformation:

q̇ =
[

Φq

B

]−1 {
b
q̇i

}
= [

S R
]{

b
q̇i

}
= Sb + Rq̇i (b ≡ −Φ t ) (20)

Normally matrix S in Eqs. (14) and (20) does not need to be computed as such, only the
product (Sb) needs to be known. According to Eq. (20), this product is given by the depen-
dent velocities q̇ computed with null independent velocities (q̇i = 0). It can be computed
from Eq. (13).

For accelerations it is possible to express together the acceleration Eq. (5) and the time
derivative of Eq. (11). The following equation is obtained:[

Φq

B

]
q̈ =

{
c
q̈i

}
(c ≡ −Φ̇qq̇ − Φ̇ t ) (21)

From Eqs. (14) and (21),

q̈ =
[

Φq

B

]−1 {
c
q̈i

}
= [

S R
]{

c
q̈i

}
= Sc + Rq̈i (22)
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The product (Sc) can be computed from Eqs. (22) and (21) as the dependent accelerations q̈
computed with the true velocities q̇ and null independent accelerations (q̈i = 0).

Substituting expression (22) in the equations of motion (2), pre-multiplying by matrix RT

and taking into account that ΦqR = 0, the following expression is obtained for the dynamic
equations in independent coordinates:

RT MRq̈i = RT (F − MSc), A3 ≡ RT MR ∈ R
f ×f (23)

These equations form part of the group of Maggi equations or the embedding technique.
They constitute an ODE system that does not suffer from the difficulties of the DAEs in
Eq. (6) or (10). Equations (2) to (23) are classical in MBS formulations.

Observe that the Lagrange multipliers no longer appear in the null space (10) or Maggi
(23) formulations. However, when Φq has full rank the value of Lagrange multipliers can
be easily computed from Eq. (6) taking into account that, according to Eq. (17), matrix S is
a right inverse of Φq and so ST is a left inverse of ΦT

q . So,

λ = ST F(q, q̇) − ST M(q)q̈ (24)

The main aim of this paper is to establish the conditions for the existence and uniqueness of
solutions in Eqs. (6), (10) and (23), according to the properties of matrices A1, A2 and A3.
These equations are equivalent formulations for the dynamics of a multibody system, and
consequently also equivalent conditions are expected to be found for all of them. We will
start with a deeper analysis of the Lagrange equations of the first kind (6), which are the
base formulation.

1.4 The rank of the Jacobian matrix made visible

The lack of maximum rank in matrices M and Φq has a different effect on the solvability of
the system of linear equation (6). Matrix A1 can be invertible even if M is not, but never if
Φq has a rank lower than m (if it does not have full rank), because then the last m rows and
columns of matrix A1 in (6) are not independent. In the sequel the rank r of Φq will be made
visible, firstly by a simple LU factorization with column pivoting and row interchange, so
as to avoid divisions by zero. We can set

PLUΦq = Lm×m

[
Ur×n

0(m−r)×n

]
(25)

where PLU is a permutation matrix, Lm×m is a square, invertible, lower triangular matrix
with ones on the diagonal, and Ur×n is a rank r matrix with zeroes below the main diagonal.
There are m − r null rows below Ur×n. These null rows have been made visible explicitly
in Eq. (25).

As the permutation matrix PLU is orthogonal, Eq. (6) can be written in the following
equivalent form: [

M ΦT
q PT

LU

PLUΦq 0

]{
q̈

PLUλ

}
=

{
F

PLU c

}
(26)

The factorization (25) is now introduced in Eq. (26) so as to get⎡
⎣ M

[
UT

r×n 0T
(m−r)×n

]
LT

m×m

Lm×m

[
Ur×n

0(m−r)×n

]
0m×m

⎤
⎦

{
q̈

PLUλ

}
=

{
F

PLU c

}
(27)

As the square matrix Lm×m is invertible, we finally obtain the following system of equations,
fully equivalent to system (6) but with more information displayed:
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⎡
⎣ M

[
UT

r×n 0T
(m−r)×n

]
[

Ur×n

0(m−r)×n

]
0m×m

⎤
⎦

{
q̈
λ̄

}
=

{
F
c̄

}
, λ̄ = LT

m×mPLUλ, c̄ = L−1
m×mPLU c

(28)

Regardless of the characteristics of matrix M, two observations directly follow from this
equation:

1. As the acceleration constraint equations are assumed to be compatible, from the last
m − r equations in (28) it follows that

c̄r+1 = · · · = c̄m = 0 (29)

2. As the last m − r transformed Lagrange multipliers λ̄r+1, λ̄r+2, . . . , λ̄r+m are multiplied
by null columns they can take arbitrary values, carrying on them the indetermination
of vector λ̄. The original Lagrange multipliers λ can be recovered from the following
expression, which directly follows from (28):

λ = PT
LU L−T

m×mλ̄ (30)

The total constraint forces are given by the product ΦT
q λ that can be expressed as

ΦT
q λ = ΦT

q PT
LU L−T

m×mλ̄ = [
UT

r×n 0T
(m−r)×n

]
LT

m×mL−T
m×mλ̄ = UT

r×nλ̄1:r (31)

This result shows that, even if the Lagrange multipliers λ are undetermined, the constraint
forces ΦT

q λ are not, if the system of Eqs. (28) has a unique solution for vectors q̈ and λ̄1:r .

It is also possible to use the QR factorization of ΦT
q and the Singular Value Decomposition

of Φq to arrive at similar results.
The transformed Lagrange equations of motion (28) are fully equivalent to the original

Eq. (6), but they show more clearly the effects of redundant constraints.

2 Existence and uniqueness of solutions

2.1 Index 1 Lagrange equations

Let us consider again the system of Eqs. (6)[
M ΦT

q

Φq 0

]{
q̈
λ

}
=

{
F
c

}
(32)

We want to consider the conditions for the existence and uniqueness of solutions. The start-
ing hypotheses are as follows:

1. The inertia matrix M is positive semidefinite.
2. The acceleration constraint equations Φqq̈ = c, given by Eq. (5), are compatible, al-

though they may include redundant constraints. So, we shall assume that matrix Φq does
not have full rank.

This problem is rarely addressed in the literature concerning multibody systems. Haug’s
book [17] is perhaps the only example of the classical books that deal with the existence
and uniqueness of a solution of the system (32). Haug demonstrated that this system has
a unique solution if the matrix Φq has maximum rank and matrix M is positive definite.
These conditions are sufficient but not necessary. Sometimes, the applicability conditions of
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the closed-form solution given by Eqs. (7)–(8) are used instead. However, these conditions
(positive definite M and full rank Φq) are too restrictive. One of the few examples of work
dealing with these conditions is that of Udwadia and Phohomsiri [18]. It shows that a unique
solution for vector q̈ exists if and only if rank([M ΦT

q ]) = n, but the proof, based on the
Moore–Penrose generalized inverse, is unnecessarily long and complex.

A large family of mathematical problems that includes Eq. (32) has been addressed from
outside the multibody systems community. A very interesting review comes from Benzi,
Golub et al. [6], but these authors, coming from the general Linear Algebra field, do not ap-
propriately tackle the redundant constraint problem. They suggest simply dropping redun-
dant equations, but in multibody dynamics this means changing the physics of the problem,
as correctly pointed out by Wojtyra and Frączek [26].

Considering that in Eq. (32) the force vector F ∈ R
n (external plus velocity dependent

inertia forces) may contain arbitrary values, the condition for the system of equations,

[
M ΦT

q

]{
q̈
λ

}
= F (33)

has at least one solution, which, in accordance with the Rouché–Capelli theorem, is the
following one:

rank
([

M ΦT
q

]) = n (34)

This is the quoted condition of Udwadia and Phohomsiri [18]. This condition also guarantees
a unique solution for the accelerations, given the independent term, in the following system
of equations: [

M
Φq

]
q̈ =

{
F − ΦT

q λ

c

}
(35)

It still needs to be demonstrated that the term ΦT
q λ in the r.h.s. of Eq. (35) is unequivocally

determined even if matrix Φq does not have maximum rank and so the Lagrange multipliers
λ are not determined. This condition will be considered later on. Now a new condition, fully
equivalent to condition (34), will be found.

If the matrix in the system of Eqs. (35) has full rank n, the following homogeneous
system has the null vector as its only solution:[

M
Φq

]
q̈ =

{
0
0

}
⇒ q̈ = 0 (36)

and this means that the only vector that belongs simultaneously to the null spaces of M and
Φq is the null vector, that is,

ker M ∩ kerΦq = 0 (37)

This condition, fully equivalent to condition (34), is very important because it has a simpler
physical interpretation that will be presented later on.

2.2 Null space method

Let us consider the matrix R ∈ R
n×f obtained in Eq. (15) as a matrix whose columns are a

basis of the null space of Φq and the null space method defined by the system of differential
equations (10), [

RT M
Φq

]
q̈ =

{
RT F

c

}
(38)
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For this system to have a unique solution, taking into account that the acceleration con-
straints are compatible, it is necessary that

rank

([
RT M
Φq

])
= n (39)

A condition equivalent to this is that the corresponding homogeneous system of equations
has the null vector as the only solution:[

RT M
Φq

]
x =

{
0
0

}
⇒ x = 0 (40)

From the lower part of Eq. (40) it can be concluded that x ∈ kerΦq, and so this vector can
be expressed as a linear combination of the columns of matrix R of Eq. (15) in the form

x = Rz, z ∈ R
f ×1 (41)

By substituting this result in the upper part of Eq. (40) we arrive at,

RT MRz = 0 (42)

It must be remembered that, by hypothesis, matrix M is positive semidefinite. The linear
algebra theory for positive semidefinite matrices (see for instance Strang [19]) establishes
that there is a (non-unique) matrix P of the same rank as M such that

M = PT P (43)

being,

rank(P) = rank(M), ker P = ker M (44)

Equation (42) can be written as

RT MRz = RT PT PRz = (PR)T PRz = 0 (45)

From this it follows that

PRz = 0 ⇒ Rz ∈ ker P ⇔ x ∈ ker M (46)

So Eq. (40) implies that x = 0 if and only if,

ker M ∩ kerΦq = 0 (47)

which is again condition (37). Indirectly we have also shown that

rank

([
RT

Φq

])
= rank

([
RT M
Φq

])
= rank

([
M
Φq

])
= n (48)

Now we can conclude the reasoning about the uniqueness of the solution of Eq. (35) for the
vector of accelerations q̈. Any vector q̈ that is solution of (35) also satisfies equation (38).
Since the solution of (38) is unique if condition (47) or (37) are fulfilled, also the solution
of (35) must be unique, implying that the product ΦT

q λ is determined:

ΦT
q λ = F − Mq̈ (49)

However, the vector of Lagrange multipliers λ is not determined if matrix Φq does not have
maximum rank, that is, when there are redundant constraint equations.
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2.3 Maggi formulation

Let us consider finally Eqs. (23) corresponding to the Maggi formulation:

RT MRq̈i = RT F − RT MSc (50)

For this system of equations to have a unique solution, it is necessary that the symmetric ma-
trix RT MR be invertible, and for this, given that M is positive semidefinite, matrix RT MR
must be positive definite. It is possible to write

zT RT MRz = zT RT PT PRz = (PRz)T PRz = ‖PRz‖2
2 > 0 (51)

and this implies that Rz /∈ ker P, that is, x /∈ ker M. We arrive once again at,

ker M ∩ kerΦq = 0 (52)

which is the same condition obtained in Eqs. (37) and (47).
In physical terms, condition (52) implies that any physically possible movement (i.e.,

which satisfies the constraint equations) cannot be associated with zero kinetic energy. Any
possible velocity q̇ = Rq̇i is associated with a positive kinetic energy,

T = 1

2
q̇T Mq̇ = 1

2
q̇iT RT MRq̇i > 0 ∀q̇i 
= 0 (53)

In other words, the dynamic equations of motion (50) have a unique solution for the accel-
eration vector if and only if all possible velocities lead to a positive kinetic energy.

The differential equations of motion of a multibody system are a well-conditioned math-
ematical problem and have a solution because the corresponding physical problem is also
well-conditioned. It has been shown that a mathematical solution exists if the physical sys-
tem has only possible motions that involve kinetic energy, which is the only valid option in
the real world.

3 Redundant constraints and constraint forces

3.1 A badly conditioned physical problem

The case is completely different for the determination of constraint forces in overconstrained
multibody systems. In our opinion this is a badly conditioned physical problem and this fact
is reflected in the mathematical models used to determine the constraint forces. In recent
years, there has been a renewed interest in this subject in the literature largely due to the
work of Frączek and Wojtyra [20–26]. These constraint forces are influenced by a large
variety of factors difficult to know or to estimate. Probably the most important factors are
the following ones:

1. Joint flexibilities
2. Link or body flexibilities
3. Manufacturing errors regarding distances and angles.

As some of these factors are difficult to know exactly, it is probably meaningless to talk
about the “real solution”. It is very likely that the constraint forces measured on a series
of theoretically identical real overconstrained multibody systems be different in practice.
It is also foreseeable that the constraint forces vary throughout the life of the system, due
for instance to greater wear in the most loaded joints. As real solutions are very difficult



Multibody dynamics with redundant constraints and singular mass 321

or unattainable, it is necessary to concentrate on “engineering solutions” that are sufficient
for the design of real systems. Engineering solutions shall be approximate, cheap and safe.
For different applications, these conditions can be translated into different mathematical
models. For instance, sometimes the consideration of flexibility or manufacturing errors
shall be mandatory, sometimes not.

The purpose of this paper is to present the possibilities and the physical meaning of sim-
ple mathematical solutions for overconstrained multibody systems with substantially rigid
bodies and joints, and small manufacturing errors.

3.2 Some general considerations

It has previously been shown that if a multibody system is overconstrained, but meets any of
conditions (34), (37) or (53), the accelerations and the resultant constraint forces ΦT

q λ are
determined, but the vector λ that contains the amplitudes of individual constraint forces, is
not. In order to find meaningful solutions for the redundant constraint forces, it is necessary
to take into account the following considerations:

1. For overconstrained multibody systems mathematical indetermination is a consequence
of physical indetermination. Consider for instance that if a real overconstrained system
has manufacturing errors it shall be necessary to deform some of its links and/or joints to
carry out the system assembly. As a consequence, the system may have self-equilibrating
constraint forces even at rest. Not surprisingly, the mathematical model also has an inde-
termination which will not be solved until the physical indetermination is clarified.

2. Changing or modifying the physical system so as to remove the redundant constraints
cannot be considered as a general solution, because the model actually analyzed does
not correspond with the real one. For instance, a common practice to analyze 3-D four
bar systems with revolute joints is to replace two revolute joints by a spherical joint and
a universal joint, respectively. This leaves the system unaltered for the kinematics and
for the forward dynamics, but drastically changes the determination of constraint forces.
Another possible way to eliminate redundancy is to introduce flexibility in a subset or in
all bodies. Changes in the model introduced only to solve the redundancy problem shall
be appropriately justified, and shall always keep, as far as possible, the model features of
symmetry and consistency.

3. In mathematics a common solution to the problem of redundant linear equations is sim-
ply to detect and remove them [6]. This cannot be considered as a general solution for
redundant constraint forces determination, because in practice the elimination of equa-
tions coincides with the modification of the mathematical model of the physical system,
as has been pointed out by Wojtyra and Frączek [26]. Thus, a correct way to proceed
in many other applications (for instance, in the determination of the Jacobian null space
basis according to Eqs. (15)) ceases to be so for the application which is being considered
in this section.

4. In an ideal system (with no friction) with redundant constraints, under some very easy to
fulfill assumptions, the resultant constraint forces are:

ΦT
q λ = F(q, q̇) − Mq̈ (54)

These constraint forces are determined, although the individual Lagrange multipliers λ

are not, because the rank of ΦT
q is lower than its number of columns. Mathematically,

system (54) has infinite solutions, but in Linear Algebra there is a solution that is con-
sidered as a preferred one: the minimum Euclidean norm solution. This is the solution
provided by the pseudo-inverse, although in this case (Eqs. (54) are compatible) there are
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Fig. 1 Graphical representation
of the simplest undetermined
linear system

simpler and more efficient ways to compute this minimum norm solution. This minimum
norm solution also has an interesting physical meaning.

5. The penalty method and the augmented Lagrangian formulation have been used to com-
pute constraint forces in redundantly constrained systems (see references [27–29]), but
they do not solve the indetermination of the Lagrange multipliers. For instance, two gen-
eral and typical expressions of the augmented Lagrangian used to iterate in each integra-
tion step are given below,

Mq̈ + ΦT
q α

(
Φ̈ + 2ΩμΦ̇ + Ω2Φ

) + ΦT
q λ∗ = Q (55)

λ∗
i+1 = λ∗

i + α
(
Φ̈ + 2ΩμΦ̇ + Ω2Φ

)
i

(56)

These equations show that the Lagrange multipliers and the penalty terms always appear
multiplied by ΦT

q . As dim kerΦT
q ≥ 1, the Lagrange multipliers λ are undetermined with

respect to their component in kerΦT
q , which depends on its value in the initial approxi-

mation or even on the accumulated numerical errors.
6. The flexibility of the solids cannot be considered the only correct and general solution.

Sometimes this solution has been called “exact solution”, but it is still a limited assump-
tion, albeit more sophisticated. Nor can one ignore the flexibility of the joints, which is
often much more important than the flexibility of the links. Finally it must be noted that
we should not forget the poorly known and potential manufacturing errors in the lengths
of the elements or in the angles between axes of rotation.

3.3 Minimum norm solution of compatible undetermined systems of linear equations

The point here is that it is not necessary to change the model, either by adding flexible de-
grees of freedom or by reducing constraints in the joints. It is enough to apply well known
methods of linear algebra. Figure 1 shows the simplest undetermined linear system of equa-
tions:

a11x1 + a12x2 = b1 (Ax = b) (57)

This equation has infinite solutions. The general solution may be expressed as

x = xp + αu (58)

where xp is a particular solution, u is a vector in the null space of A and α is the real
parameter that allows all the solutions to be obtained.

We introduce two observations, regarding this undetermined system of linear equations:

1. Two solutions, as xp and x, always differ by a vector in the null space of A (ker(A)).
2. The minimum norm solution x0 belongs to the orthogonal complement of the null space

of A, which is the row space of A, that is, Im(AT ).
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3.4 Self-equilibrating constraint forces

The previous results can be easily applied to the compatible and undetermined system (54).
Assuming that the rank on Φq is r < m and that the columns of matrix N ∈ R

m×(m−r) are a
basis of the null space of ΦT

q , the whole set of solutions of Eq. (54) may be expressed in the
form

λ = λ0 + Nα, α ∈ R
m−r (59)

where λ0 is the minimum norm solution and Nα is a vector in the null space of ΦT
q :

ΦT
q Nα = 0 (60)

The important point of Eq. (60) is that ΦT
q Nα is a set of self-equilibrating constraint forces.

They do not appear in the dynamic equations (1) nor produce virtual work or virtual power,
but they are not individually null. All the solutions for constraint forces in Eq. (54) differ on
a set of self-equilibrating forces. It is very important to understand the physical meaning of
these forces, rarely emphasized in the literature. Some examples will clarify this point.

Equation (60) also provides a physical way to find the subset of constraint forces that are
determined, a question that has been outlined by Wojtyra [22] and Frączek and Wojtyra [23].
Here an alternative view is presented. Effectively, in the linear combination of vectors ΦT

q N
given by Eq. (60), the columns of ΦT

q that are multiplied by null rows of N represent con-
straint forces that are not affected by the self-equilibrating constraint forces. A possible
MATLAB® instruction to determine these constraint forces may be the following:

in = find(sum(abs(N),2)<=1e-10); (61)

In other words, a constraint force is determined if it does not appear in any possible set of
self-equilibrating forces. The examples that follow will clarify this point.

3.4.1 Example 1: 3-D four bar with parallel axes

Figure 2 shows a four bar, four revolute joint, mechanism contained in the plane Y –Z, with
the revolute joint axes perpendicular to this plane. It is known that this system has 1 degree
of freedom, but the Grübler–Kutzbach criterion predicts 6 × 3 − 4 × 5 = −2 degrees of
freedom. Only because the four revolute joints axes are parallel, this system can move. It
is a system with three redundant constraints. It is obvious that if there are manufacturing
errors in the direction of the joint axes the system cannot be assembled unless the bodies
are deformed by some external forces. If after the assembly process these external forces
are removed, the system will reach an equilibrium state with non-null, self-equilibrating
constraint forces that belongs to the null space of ΦT

q , which in this case has dimension 3.
Figures 3, 4 and 5 show three independent sets of self-equilibrating forces. This system

has been modeled with reference point or Cartesian coordinates (using Euler parameters for
positions). So, joint constraint equations have been used. The product ΦT

q λ provides the
constraint forces translated to the reference point (the center of gravity). In order to display
them, these constraint forces have been moved back to the corresponding joint.

By executing the MATLAB code (61) (in = find(sum(abs(N),2)<=1e-10);) it is obtained
the result that the constraint forces that can be determined unequivocally are the following
ones: 2, 3, 7, 8, 12, 13, 17, and 18. These constraints correspond with the Y and Z forces in
the four joints, that is, the joint reaction forces in the plane that contains the system. It can
be observed that these forces do not appear in the sets of self-equilibrating forces shown in
the following Figs. 3–5.
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Fig. 2 3-D four bar with parallel
axes

Fig. 3 Set 1 of self-equilibrating
forces

Fig. 4 Set 2 of self-equilibrating
forces

Fig. 5 Set 3 of self-equilibrating
forces

3.5 Minimum norm solution independent of the units used

It has been emphasized by Wojtyra and Frączek [26] that the minimum norm solution of
the linear system of Eqs. (54) does not remain invariant under a change in units. This is-
sue can be addressed if the constraint equations Φ and the Jacobian matrix Φq meet some
conditions.
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A change in units in the vector of constraint equations would require multiplying by a
diagonal matrix H1,

Φ̃ = H1Φ = 0 (62)

where Φ̃ is the vector of constraint equations in the new units.
The values of the diagonal of matrix H1 depend on the type of constraint equations. Let

f be a factor representing the required change of length units. Then if the coordinates are
expressed in meters, a change to centimeters will imply that f has a value of 100. Similarly,
a change to millimeters means that f has a value of 1000.

In the case where natural coordinates are used, element i of the diagonal of matrix H1 is
equal to f 2 if equation i is a constant distance equation, it is equal to f when equation i is
a constant angle equation between a unit vector and a distance vector between two points,
and it is equal to 1 if equation i is a constant angle equation between two unit vectors or a
constant norm equation of a unit vector.

Similarly, the change in length units in the vector of generalized positions, velocities and
accelerations is represented by a diagonal matrix G1,

q̃ = G1q, ˜̇q = G1q̇, ˜̈q = G1q̈ (63)

For instance, when natural coordinates are used, the elements of the diagonal of G1 are
equal to f for the coordinates of points and equal to 1 for the components of unit vectors.
According to this, a change in units modifies the Jacobian matrix as follows:

Φ̃q = H1ΦqG−1
1 (64)

On the other hand, changing the units of length involves that the vector of external and
inertia forces needs to be multiplied by a diagonal matrix G2. Element i of the diagonal of
matrix G2 is equal to f when it corresponds to a force and equal to f 2 when it corresponds
to a torque.

A relationship between matrices G1 and G2 can be easily established because the prod-
uct between forces and velocities has units of power, so the product of G1and G2 may be
expressed as

G1G2 = f 2I (65)

G2 = G−1
1 f 2 (66)

Therefore when units are changed, Eq. (54) can be written as follows:(
G−1

1 ΦT
q H1

)
λ̃ = G2

(
F(q, q̇) − Mq̈

)
(67)

where λ̃ represents the new value of Lagrange multipliers after the change of units. By
considering Eq. (66) and eliminating G−1

1 f 2 in both sides, Eq. (67) can be modified as
follows:

ΦT
q f −2H1λ̃ = F(q, q̇) − Mq̈ (68)

By comparing this equation with Eq. (54) we conclude that

λ = f −2H1λ̃ (69)

Next let us consider the conditions for invariance in the minimum norm solution. The min-
imum norm solution of Eq. (54) can be obtained by taking into account the additional con-
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dition of λ belonging to the orthogonal complement of kerΦT
q :[

ΦT
q

NT

]
λ =

{
F(q, q̇) − Mq̈

0

}
(70)

where the columns of matrix N ∈ R
m×(m−r) are a basis of the null space of ΦT

q . By introduc-

ing expression (69) in (70) we obtain the original minimum norm equation in terms of λ̃,[
ΦT

q H1

NT H1

]
f −2λ̃ =

{
F(q, q̇) − Mq̈

0

}
(71)

On the other hand, after the change in units, the minimum norm solution of Eq. (68) is given
by the following equation: [

ΦT
q H1

NT H−1
1

]
f −2λ̃ =

{
F(q, q̇) − Mq̈

0

}
(72)

where the columns of matrix NT H−1
1 ∈ R

m×(m−r) are a basis of the null space of G−1
1 ΦT

q H1.
In order to obtain the same minimum norm solution with both Eqs. (71) and (72), the

following condition shall be met:

Im
(
H−1

1 N
) = Im(H1N) (73)

Left multiplication by a diagonal matrix destroys the column space of matrix N unless
the diagonal matrix is the identity matrix times a scalar value, that is,

H1 = βI, β ∈ R, β 
= 0 (74)

Therefore, it is possible to obtain a minimum norm solution independent of units if the
constraint equations are modified such that the matrix H1 needed to introduce the change in
units in the constraint equations meets Eq. (74), that is, all the constraint equations have the
same length dimension (or are non-dimensional).

In order to meet condition (74), the constraint equations can be modified by pre-
multiplying them by a weighting matrix W. However, there are many possible weighting
matrices that satisfy condition (74) and each one may lead to a different set of constraint
equations, and consequently to a different minimum norm solution that is independent of
units. Nevertheless, as will be shown in the following section with a couple of examples,
this freedom to choose the weighting matrix W may be used to obtain a solution that takes
into account the elements’ flexibility. At the end, by using that appropriate weighting ma-
trix W, we can obtain a unit-independent minimum norm solution that coincides with the
solution of the model with flexible bodies. The following section discusses further possibil-
ities of this mathematical minimum norm solution.

3.6 Weighted minimum norm solution

The use of the weighted minimum norm solution can sometimes provide an easy alter-
native to the use of flexible bodies for the determination of redundant constraint forces.
This purely numerical technique is similar to the relationship introduced by González
and Kövecses [29] between penalty factors and physical stiffness. The stiffness of some
bodies can be accounted for by multiplying the constraint equations by a set of weight-
ing factors which depend on the stiffness properties. Let us introduce a diagonal weight
matrix W(q) whose elements are related to the stiffness distribution of the system. The



Multibody dynamics with redundant constraints and singular mass 327

Fig. 6 Self-equilibrating internal
forces coming from an assembly
problem

weighted constraints are W(q)Φ(q) = 0. The constraint forces are obtained from the equa-
tions

(
ΦT

q W
)
λ = F(q, q̇) − Mq̈ (75)

The minimum norm solution of system (75) should coincide with the solution with flex-
ible behavior. The values of the diagonal matrix W(q) depend on the Jacobian matrix of
constraint equations ΦT

q and on the stiffness properties of the system. The following exam-
ples will help to clarify this point.

3.6.1 Example 2: Planar five-link mechanism

Let us consider as the second example the redundant 2-D mechanism in Fig. 6, taken from
Blajer [27]. It is a five bar system with two parallel couplers 3–4 and 5–6.

The constraint equations for this system are particularly simple when 2-D natural coor-
dinates are used. Only constant distance conditions and vector proportionality constraints
are needed. There are eight Cartesian coordinates related by the following eight constraint
equations:

(x3 − x1)
2 + (y3 − y1)

2 − L2
1 = 0 (76)

(x4 − x2)
2 + (y4 − y2)

2 − L2
1 = 0 (77)

(x5 − x1) − k(x3 − x1) = 0 (78)

(y5 − y1) − k(y3 − y1) = 0 (79)

(x6 − x2) − k(x4 − x2) = 0 (80)

(y6 − y2) − k(y4 − y2) = 0 (81)

(x4 − x3)
2 + (y4 − y3)

2 − L2
2 = 0 (82)

(x6 − x5)
2 + (y6 − y5)

2 − L2
2 = 0 (83)

where k, L1 and L2 are constants. The vector of dependent coordinates is (points 1 and 2
are fixed):

qT ≡ {
x3 y3 x4 y4 x5 y5 x6 y6

}
(84)
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The constraint equations’ Jacobian is particularly simple:

Φq ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(x3 − x1) 2(y3 − y1) 0 0
0 0 2(x4 − x2) 2(y4 − y2)

−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2

2(x3 − x4) 2(y3 − y4) 2(x4 − x3) 2(y4 − y3)

0 0 0 0

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

2(x5 − x6) 2(y5 − y6) 2(x6 − x5) 2(y6 − y5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(85)

The null space of the transpose of this matrix is given by

ΦT
q N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(x3 − x1) 0 −2 0 0 0 2(x3 − x4) 0
2(y3 − y1) 0 0 −2 0 0 2(y3 − y4) 0

0 2(x4 − x2) 0 0 −2 0 2(x4 − x3) 0
0 2(y4 − y2) 0 0 0 −2 2(y4 − y3) 0
0 0 1 0 0 0 0 2(x5 − x6)

0 0 0 1 0 0 0 2(y5 − y6)

0 0 0 0 1 0 0 2(x6 − x5)

0 0 0 0 0 1 0 2(y6 − y5)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1

N2

N3

N4

N5

N6

N7

N8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1

N2

N3

N4

N5

N6

N7

N8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
1
0

−1
0

− 1
(x4−x3)

1
2(x6−x5)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(86)

The constraint forces represented by the columns of ΦT
q multiplied by the values of vector N

are the self-equilibrating forces represented in the right part of Fig. 6. Each constraint force
is represented in the same color of the body that receives it. How may these self-equilibrating
forces arise?

If the dimensions of the elements are not exactly the correct ones, element distortion and
the appearance of internal reactions are unavoidable during the assembly process. For exam-
ple, if the bar 5–6 is shorter than it should, in order to attach it to the other bars, it would be
necessary to stretch it as shown in the left of Fig. 6. When the bar has the appropriate length
it is assembled and the external forces disappear. The system will reach an equilibrium con-
figuration with some internal reactions, as shown in the right of Fig. 6 (each force is shown
with the same color as the element to which it is applied). The forces that appear in this
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figure are a system of self-equilibrating internal forces, which can exist even in the absence
of external and inertia forces. The point is that these internal self-equilibrating forces can-
not be determined unless the exact dimensions of all bodies are known, with manufacturing
and assembly errors. This is a simple example of a physical indetermination that leads to a
mathematical indetermination.

What can be done in this case, without precise information on manufacturing errors? In
practice the only reasonable thing that can be done is to assume that the mechanism is built
without errors and that these self-equilibrating forces are zero. But this hypothesis about
the physical system can also be transferred to the mathematical model, by choosing one of
the infinite solutions that exist. The most reasonable choice of mathematical solution for the
constraint forces is one in which the self-equilibrating component is zero, which is to say
that there are no manufacturing errors, and that assembly can be done without “distorting”
the system.

It should be noted that the self-equilibrating forces of Fig. 6 keep in equilibrium each
body and each joint. They do not produce virtual work nor appear in the dynamic equations.
The Lagrange multipliers corresponding to these forces belong to the null space of ΦT

q and
they do not contribute to the term ΦT

q λ, which is determined, though vector λ is not.
According to Eq. (86), the Lagrange multipliers λ1, λ2, λ4 and λ6 are determined, since

they correlate with null values in the basis vector of the null space of ΦT
q . In order to obtain

the remaining undetermined Lagrange multipliers, a displacement compatibility equation
can be added to system (54). This compatibility equation can be expressed as follows:

ϕ1L1 − ϕ2L1 − 2�L3−4 + �L5−6 = 0 (87)

where ϕ1 is the angular displacement between bars 1–3 and 3–5, ϕ2 is the angular displace-
ment between bars 2–4 and 4–6, �L3−4 is the elongation of bar 3–4 and �L5−6 is the
elongation of bar 5–6.

Assuming linear stiffness relating forces and spring elongations, Eq. (87) can be ex-
pressed in terms of the Lagrange multipliers as follows:(

1

krot1
L1λ3

)
L1 −

(
1

krot2
L1λ5

)
L1 − 2

(
2(x4 − x3)

k1
λ7

)
+

(
2(x6 − x5)

k2
λ8

)
= 0 (88)

where krot1 and krot2 are the stiffness of the torsion springs that represent the bending stiffness
of bodies 1–3–5 and 2–4–6, respectively, and k1 and k2 represent the axial stiffness of bars
3–4 and 5–6, respectively.

However, from a mathematical point of view, the minimum norm solution is obtained by
adding a new equation to the system of Eqs. (54) to impose that λ belongs to the orthogonal
complement of the null space of ΦT

q :

λ3 − λ5 − 1

(x4 − x3)
λ7 + 1

2(x6 − x5)
λ8 = 0 (89)

The compatibility equation (88) and the equation imposed to obtain the minimum norm
solution (89) are not equivalent. In order to make both equations coincide, constraint equa-
tions can be multiplied by a weight matrix W which reflects the stiffness distribution of the
system. After multiplying the constraint equations by matrix W, Eqs. (88) and (89) become

w3

krot1
L2

1λ3 − w5

krot2
L2

1λ5 − 4(x4 − x3)w7

k1
λ7 + 2(x6 − x5)w8

k2
λ8 = 0 (90)

λ3

w3
− λ5

w5
− 1

(x4 − x3)w7
λ7 + 1

2(x6 − x5)w8
λ8 = 0 (91)
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Fig. 7 Initial position, velocity
and torque

where,

W =

⎡
⎢⎢⎢⎣

w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...

0 0 · · · w8

⎤
⎥⎥⎥⎦ (92)

Comparing Eqs. (90) and (91), the following relationships between the stiffness of the phys-
ical solution and the weights of the mathematical solution are obtained:

krot1 = w2
3L

2
1, krot2 = w2

5L
2
1, k1 = 4(x4 − x3)

2w2
7, k2 = 4(x6 − x5)

2w2
8 (93)

The values in the diagonal of the weight matrix can be obtained from Eqs. (93):

w3 = 1

L1

√
krot1, w5 = 1

L1

√
krot2, w7 = 1

2(x4 − x3)

√
k1, w8 = 1

2(x6 − x5)

√
k2

(94)

Therefore, Eqs. (78), (80), (82), and (83) must be multiplied by the factors of Eq. (94) so
that the minimum norm solution reflects the structural properties of the system. That is to
say, if constraint equations are weighted with the factors in Eq. (94), the compatibility equa-
tion of the system and the equation that imposes that the Lagrange multipliers belong to the
orthogonal complement of the null space of ΦT

q are equivalent. The remaining constraint
equations do not need to be multiplied by any factor, since the associated Lagrange multi-
pliers are perfectly determined. For this reason, in this example, elements w1, w2, w4 and
w6 of matrix W can be equal to one.

The dynamics of the five-bar, double quadrilateral mechanism in Fig. 6 has been studied
using several techniques. Distances 1–3, 3–4, 1–2, 3–5, 5–6, 2–4 and 4–6 are 1 m each.
Bodies 1–3–5 and 2–4–6 have a uniformly distributed mass of 16 kg each, while elements
3–4 and 5–6 are considered to be zero-mass elements. The dynamic simulation starts at the
position shown in Fig. 7 with an initial angular velocity of 2 rad/s. A constant clockwise
torque of 200 N m is applied from the start. From the initial position, angle ϕ increases
from 90° to 96.7° and then, it decreases to −330.97° going through two singular positions
at ϕ = 0◦ and ϕ = −180◦. The simulation time is 1.8 s and all the simulations have been
performed with the numerical ODE integrators of MATLAB. In the rigid bodies case the best
results have been obtained with the ode113 function (Adams–Bashforth–Moulton). When
springs are introduced the equations become stiff and the ode23t function (trapezoidal rule)
is far more efficient.

First, the minimum norm solution has been computed and the constraint forces for bars
3–4 and 5–6 are shown in Fig. 8. An invariant minimum norm solution has also been found
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Fig. 8 Minimum norm solution

Fig. 9 Normalized minimum
norm solution

and is shown in Fig. 9. This solution has been obtained by making each constraint equation
non-dimensional, that is, the constant distance equations (76) and (77) have been divided by
L2

1, Eqs. (78)–(81) have been divided by kL1 and Eqs. (82) and (83) by L2
2. This may be

considered as a “reference” solution in the absence of stiffness data.
Then the simple flexible model shown in Fig. 10 has been considered. This model takes

into account the axial flexibility and damping of rods 3–4 and 5–6, but it includes also
two torsion springs that represent the bending flexibility of bodies 1–3–5 and 2–4–6. Be-
fore looking more closely at the results, an in-depth study of the physics of the problem is
required.

Special care should be taken in dynamic simulations which study the constraint forces
in the zero-mass bars 3–4 and 5–6. It is of interest to gain an insight into the physics of
this dynamic simulation. The mechanism in Fig. 7 consists of two identical bodies 1–3–
5 and 2–4–6 that are kept parallel by the zero-mass bars 3–4 and 5–6. Both bodies have
the same mass and the same velocities, so they have the same kinetic energy. However,
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Fig. 10 Simple flexible model

the external torque is only applied on body 1–3–5. The effect of this torque is transmitted to
body 2–4–6 by the horizontal bars 3–4 and 5–6, which transmit only horizontal forces. At the
beginning, ϕ > 0, bars 3–4 and 5–6 push body 2–4–6, so they are subjected to compression
constraint forces. As angle ϕ is approaching zero, the forces in bars 3–4 and 5–6 have to
increase so that the torque about point 2 is maintained. When the system is very close to the
singular position ϕ = 0◦, these forces approach an infinite negative value, as shown in Fig. 8.
After the singular position, bars 3–4 and 5–6 are pulling body 2–4–6 in order to maintain
its clockwise (negative) angular acceleration. Immediately after the singular position the
constraint forces on the bars have an infinite positive value, as may be seen on Fig. 8. These
results are repeated, with reversed sign, at the singularity at ϕ = −180◦.

Summing up, when going through singular positions, the constraint forces in bars 3–4
and 5–6 change suddenly from huge negative values to huge positive values, or vice versa.
In real physical problems, this is shown by elastic longitudinal waves in both bars.

A simulation with the flexible model shown in Fig. 10 has been performed. For the
longitudinal springs it has been considered a stiffness value of k = facRL · 2 × 105 N/m
and a damping of c = facRL · 1 × 103 N s/m. For the torsion springs, the values are krot =
facRT · 5 × 104 N m/rad and crot = facRT · 1 × 103 N m s/rad. facRL and facRT are constant
values that allow to weight differently the longitudinal and torsion springs, so as to make
more or less relatively stiff the bodies 1–3–5 and 2–4–6, or the rods 3–4 and 5–6. Figure 11
shows the simulation results with the flexible model when bodies 1–3–5 and 2–4–6 are much
stiffer than the rods. Figure 12 corresponds to the opposite case scenario. This simple flex-
ible model is unable to reflect accurately the complex process of going over the singularity,
but it represents an improvement with respect to the rigid body case.

The same problem has been studied with the weighted constraints, by using the weighting
factors related to the stiffness coefficients considered in Eqs. (92) and (94). Results shown
in Fig. 13 correspond to the flexible ones in Fig. 11, and those in Fig. 14 with the flexible
ones in Fig. 12. In conclusion, the minimum norm weighted constraint method does its best
because it accurately represents the redundant constraint forces out of the singular positions.

3.6.2 Example 3: 3-D parallelogram mechanism

This example, shown in Fig. 15, is taken from Frączek and Wojtyra [25]. By using natural
coordinates the constraint equations are very simple and can be written as

(r1 − rA)T (r1 − rA) − L2
1 = 0 (95)

(r2 − rC)T (r2 − rC) − L2
1 = 0 (96)

(r3 − rE)T (r3 − rE) − L2
1 = 0 (97)
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Fig. 11 Flexible solution
(KL = 1, KT = 1000)

Fig. 12 Flexible solution
(KL = 1000, KT = 1)

(r4 − rG)T (r4 − rG) − L2
1 = 0 (98)

(r5 − rK)T (r5 − rK) − L2
1 = 0 (99)

(r6 − rM)T (r6 − rM) − L2
1 = 0 (100)

(r1 − r2)
T (r1 − r2) − L2

2 = 0 (101)

(r3 − r2)
T (r3 − r2) − L2

2 = 0 (102)

(r3 − r1)
T (r3 − r1) − L2

2 = 0 (103)

r2 + r3 − 2r6 = 0 (104)

r1 − r2 + r3 − r4 = 0 (105)

2r1 − r2 + r3 − 2r5 = 0 (106)
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Fig. 13 Weighted solution
(KL = 1, KT = 1000)

Fig. 14 Weighted solution
(KL = 1000, KT = 1)

The Jacobian matrix is

Φq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rT
1 − rT

A 01×3 01×3 01×3 01×3 01×3

01×3 rT
2 − rT

C 01×3 01×3 01×3 01×3

01×3 01×3 rT
3 − rT

E 01×3 01×3 01×3

01×3 01×3 01×3 rT
4 − rT

G 01×3 01×3

01×3 01×3 01×3 01×3 rT
5 − rT

K 01×3

01×3 01×3 01×3 01×3 01×3 rT
6 − rT

M

rT
1 − rT

2 rT
2 − rT

1 01×3 01×3 01×3 01×3

01×3 rT
2 − rT

3 rT
3 − rT

2 01×3 01×3 01×3

rT
1 − rT

3 01×3 rT
3 − rT

1 01×3 01×3 01×3

03×3 I3 I3 03×3 03×3 −2I3

I3 −I3 I3 −I3 03×3 03×3

2I3 −I3 I3 03×3 −2I3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(107)
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The null space of ΦT
q is defined by the vector

N =
{ −1

L1A

1
L2C

−1
L3E

1
L4G

0 0 0 0 0 0 0 0

0 (y1−yA)

L1A

(z1−zA)

L1A
0 0 0

}T

(108)

where L1A is the distance between points 1 and A, and so on. Taking into account that
x1 = xA, x2 = xC , x3 = xG and x4 = xE , the system of self-equilibrating constraint forces is
defined by

ΦT
q N = −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1−xA

L1A
y1−yA

L1A

z1−zA

L1A

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0

x2−xC

L2C

y2−yC

L2C

z2−zC

L2C

0
0
0
0
0
0
0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0

x3−xE

L3E

y3−yE

L3E

z3−zE

L3E

0
0
0
0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0
0
0
0

x4−xG

L4G

y4−yG

L4G

z4−zG

L4G

0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
y1−yA

L1A

0
0

yA−y1
L1A

0
0

y1−yA

L1A

0
0

yA−y1
L1A

0
0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

z1−zA

L1A

0
0

zA−z1
L1A

0
0

z1−zA

L1A

0
0

zA−z1
L1A

0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(109)

where vectors 1 to 4 are forces on links A–1, C–2, E–3 and G–4, and vectors 5 and 6 are
forces on the plate. It should be noted that each body and each joint is in equilibrium.
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Fig. 15 Self-equilibrating
constraint forces (red) in 3-D
parallelogram mechanism

In Fig. 15 this system of self-equilibrating constraint forces acting on the bars is rep-
resented in red. The four links A–1, C–2, E–3 and G–4 are in equilibrium, and also the
plate 1–2–3–4 is in equilibrium. Note that the blue constraint forces acting on links M–6
and K–5 cannot appear in the vector of self-equilibrating constraint forces. The resultant of
the forces in red must be parallel to bar A–1, while the resultant of the forces in blue must
be parallel to bar K–5. It is impossible that one of these resultants equilibrates the other,
so both systems of constraint forces must have null resultant. This is possible for the four
forces in red, but not for the two forces in blue. It is concluded that in the self-equilibrating
set of constraint forces, the forces in bars K–5 and M–6 must be zero. In this regard, it
agrees with the important finding of Wojtyra [20] and Frączek and Wojtyra [21].

The physical meaning of the minimum norm solution is that it does not contain any self-
equilibrating constraint forces, because it is orthogonal to the null space of ΦT

q .
When can self-equilibrating constraint forces appear in real systems? These forces can

appear even when the multibody system is at rest. A physical reason for their presence
in the example of Fig. 15 can be different length in links A–1, C–2, E–3 and G–4, due
to manufacturing errors or thermal expansion. If these different lengths can exist but are
unknown, the most reasonable choice is to assume the self-equilibrating constraint forces as
null.

In this case Lagrange multipliers λ1, λ2, λ3, λ4, λ14 and λ15 are determined. In order to
obtain the remaining undetermined Lagrange multipliers, the following compatibility equa-
tion for the warping deformation of the plate applies:

−L1A

k1A

λ1 + L2C

k2C

λ2 − L3E

k3E

λ3 + L4G

k4G

λ4 + 4(y1 − yA)

kP L1A

λ14 + 4(z1 − zA)

kP L1A

λ15 = 0 (110)

where k1A, k2C , k3E and k4G are the axial stiffness of links 1–A, 2–C, 3–E and 4–G, respec-
tively, and kP is the warping stiffness of the plate.

On the other hand, the minimum norm solution of system (49) can be obtained by im-
posing the orthogonality condition to the null space of ΦT

q . For this example, the equation
that accounts for this condition is

− λ1

L1A

+ λ2

L2C

− λ3

L3E

+ λ4

L4G

+ (y1 − yA)

L1A

λ14 + (z1 − zA)

L1A

λ15 = 0 (111)
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In general, Eqs. (110) and (111) are not equivalent. However, if a diagonal weighting matrix
W is introduced with its values appropriately chosen, they can coincide. Let us consider a
weighted constraint equation WΦ(q) = 0, with a diagonal matrix W in the form

W =

⎡
⎢⎢⎢⎣

w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...

0 0 · · · w18

⎤
⎥⎥⎥⎦ (112)

Then the geometric compatibility equation for elastic deformations and the null space or-
thogonality condition for obtaining the minimum norm solution change to,

− w1L1A

k1A

λ1 + w2L2C

k2C

λ2 − w3L3E

k3E

λ3 + w4L4G

k4G

λ4 + 4w14(y1 − yA)

kP L1A

λ14

+ 4w15(z1 − zA)

kP L1A

λ15 = 0 (113)

− λ1

w1L1A

+ λ2

w2L2C

− λ3

w3L3E

+ λ4

w4L4G

+ (y1 − yA)

w14L1A

λ14 + (z1 − zA)

w15L1A

λ15 = 0 (114)

Comparing Eqs. (113) and (114) we can conclude that the flexible solution and the mathe-
matical minimum norm solution are identical when the weighting matrix elements take the
following values:

w1 = 1

L1A

√
k1A, w2 = 1

L2C

√
k2C, w3 = 1

L3E

√
k3E, w4 = 1

L4G

√
k4G,

w14 = 1

2

√
kP , w15 = 1

2

√
kP

(115)

The remaining elements of matrix W do not have any influence, so they are assumed to have
a unit value.

This example has been modeled with rigid bodies and also with flexible rods and with
flexible joints (bushings). The following figures show the axial constraint forces for rods
A–1, C–2, E–3, and G–4. Figure 16 shows the minimum norm solution with rigid bod-
ies. Figure 17 also shows the minimum norm results with rigid bodies, but in this case
the constraint equations have been normalized so that the results are invariant with respect
to a change in units, for instance from meters to millimeters. Figure 18 shows the mini-
mum norm solution computed from weighted constraints determined in accordance with
Eq. (115). In this case, the axial stiffness of all the bars has been considered to be 17e06 N/m,
whereas the stiffness of the plate kP has been assumed to be 1e6 times greater. Figure 19
shows the axial constraint forces when the rods are considered flexible in the axial direction
(k = 17e06 N/m, c = 1e05 N s/m). It can be seen that the results are identical to those ob-
tained with rigid bodies and weighted constraints shown in the previous figure. In Fig. 20
the rod G–4 has been considered longer, with a length of 1.0001 times the length of the
other rods. It is worth noting that results change considerably. Figure 21 shows the results
with rigid bodies and flexible joints or bushings (with k = 1e6 N/m, c = 1e5 N s/m). In this
case the joints are assumed to be 100 times softer than the flexible rods in Fig. 19.

These figures show the similarities and differences in the constraint forces computed
with different hypotheses. It is likely that most of them are reasonable enough to support a
proper engineering design. As expected, the cost of the different solutions is rather different,
ranging from 2.7 seconds for the rigid bodies with minimum norm solution up to 40 seconds
in the case of the flexible rods or the 60 seconds for the system with bushings (all the
simulations carried out with MATLAB on an Intel Core i7 920 processor, at 2,67 GHz).
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Fig. 16 Minimum norm solution

Fig. 17 Invariant minimum
norm solution

4 Conclusions

In this paper we have first considered the conditions of existence and uniqueness of solutions
in three ways to formulate the differential equations of motion: the Lagrange equations of
the first kind, the null space method and the Maggi equations using independent coordinates.
In all cases the solution exists and is unique if any possible movement involves a positive
kinetic energy. This means that there is mathematical solution when the problem is well
defined physically.

In the second part of the paper the problem of determining the constraint forces in the
case of systems with redundant constraints has been considered. These forces are undeter-
mined and there are several alternatives to estimate meaningful values. Unlike what hap-
pened with the differential equations of motion, this problem is under-defined physically,
which translates into major difficulties when attempting to develop accurate models and
find mathematical solutions. The actual values of the constraint forces depend on several
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Fig. 18 Weighted minimum
norm solution

Fig. 19 Solution with flexible
rods

factors which in general, are not accurately known in the real world. Clearly, the flexibilities
of the bodies may play a very important role. However, so do the flexibility of joints (which
sometimes may be more important and more difficult to model) and other poorly known
factors like the manufacturing errors.

This paper presents a physical meaning (the concept of self-equilibrating constraint
forces) for indeterminate components of the constraint forces and describes a procedure
to remove them and obtain minimum norm solutions independent of the measurement units
used. Two simple examples of overdetermined systems have been presented and their con-
straint forces calculated using different modeling scenarios, including the product of the
constraint equations by a diagonal weighting matrix representing the effects of flexibility.
The results obtained have been compared and an attempt has been made to draw useful
conclusions from the point of view of engineering design.
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Fig. 20 Flexible rods with a
length error

Fig. 21 Solution with flexible
joints

Acknowledgements The authors acknowledge the support of the Ministry of Economy and Competitive-
ness of Spain under the Research Project TRA2009-14513-C02-01 (OPTIVIRTEST). The authors also thank
Profs. G. Sansigre and J. Martin for their help with some of the algebraic proofs.

References

1. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody
systems. J. Comput. Nonlinear Dyn. 3, 011004 (2008)

2. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multi-Body Systems—The Real-
Time Challenge. Springer, New York (1994)

3. Negrut, D., Serban, R., Potra, F.A.: A topology based approach for exploiting sparsity in multibody dy-
namics. Joint formulation. Mech. Struct. Mach. 25, 221–241 (1997). doi:10.1080/08905459708905288

4. Serban, R., Negrut, D., Haug, E.J., Potra, F.A.: A topology based approach for exploiting sparsity in
multibody dynamics in Cartesian formulation. Mech. Struct. Mach. 25, 379–396 (1997). doi:10.1080/
08905459708905295

http://dx.doi.org/10.1080/08905459708905288
http://dx.doi.org/10.1080/08905459708905295
http://dx.doi.org/10.1080/08905459708905295


Multibody dynamics with redundant constraints and singular mass 341

5. von Schwerin, R.: Multibody System Simulation: Numerical Methods, Algorithms and Software.
Springer, Berlin (1999)

6. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137
(2005). doi:10.1017/S0962492904000212

7. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Meth-
ods Appl. Mech. Eng. 1, 1–16 (1972). doi:10.1016/0045-7825(72)90018-7

8. Ascher, U.M., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67,
131–149 (1994)

9. Flores, P., Machado, M., Seabra, E., Tavares da Silva, M.: A parametric study on the Baumgarte stabi-
lization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6
(2011). doi:10.1115/1.4002338

10. Lubich, C.: Extrapolation integrators for constrained multibody systems. Impact Comput. Sci. Eng. 3,
213–234 (1991). doi:10.1016/0899-8248(91)90008-I

11. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection method for constrained
multibody dynamics. Nonlinear Dyn. 9, 113–130 (1996). doi:10.1007/BF01833296

12. Liang, C.G., Lance, G.M.: A differentiable null space method for constrained dynamic analysis. J. Mech.
Transm. Autom. Des. 109, 405–411 (1987)

13. Mani, N.K., Haug, E.J., Atkinson, K.E.: Application of singular value decomposition for analysis of
mechanical system dynamics. J. Mech. Transm. Autom. Des. 107, 82–87 (1984)

14. Kim, S.S., Vanderploeg, M.J.: QR decomposition for state space representation of constrained mechani-
cal dynamical systems. J. Mech. Transm. Autom. Des. 108, 183–188 (1986)

15. Wehage, R., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of con-
strained mechanical systems. J. Mech. Des. 104, 247–255 (1982)

16. Serna, M.A., Avilés, R., García de Jalón, J.: Dynamic analysis of plane mechanisms with lower pairs in
basic coordinates. Mech. Mach. Theory 17, 397–403 (1982). doi:10.1016/0094-114X(82)90032-5

17. Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon,
Boston (1989)

18. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with
singular mass matrices and applications to multibody dynamics. Proc. R. Soc. Lond. Ser. A 462, 2097–
2117 (2006). doi:10.1098/rspa.2006.1662

19. Strang, G.: Linear Algebra and Its Applications, 3rd edn. Harcourth Brace Jovanovich, San Diego (1988)
20. Wojtyra, M.: Joint reaction forces in multibody systems with redundant constraints. Multibody Syst.

Dyn. 14, 23–46 (2005). doi:10.1007/s11044-005-5967-0
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24. Frączek, J., Wojtyra, M.: On the unique solvability of a direct dynamics problem for mechanisms with

redundant constraints and Coulomb friction in joints. Mech. Mach. Theory 46, 312–334 (2011). doi:10.
1016/j.mechmachtheory.2010.11.003
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