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Abstract In the scope of this paper, a finite-element formulation for an axially moving
beam is presented. The beam element is based on the absolute nodal coordinate formula-
tion, where position and slope vectors are used as degrees of freedom instead of rotational
parameters. The equations of motion for an axially moving beam are derived from gener-
alized Lagrange equations in a Lagrange–Eulerian sense. This procedure yields equations
which can be implemented as a straightforward augmentation to the standard equations of
motion for a Bernoulli–Euler beam. Moreover, a contact model for frictional contact be-
tween an axially moving strip and rotating rolls is presented. To show the efficiency of the
method, simulations of a belt drive are presented.

Keywords Absolute nodal coordinate formulation · Axially moving beam · Arbitrary
Lagrange Eulerian

1 Introduction

The present paper deals with the simulation of an axially moving strip using beam finite
elements with a constant superimposed axial velocity. In contrast to conventional, straight-
forward computations involving axially transported strips, the considered beam finite ele-
ments do not move along the strip axis during the simulation, but keep a fixed undeformed
configuration in time. To account for the inertia forces stemming from the transport of mass
through the beam element, according terms are added to the standard equations of motion.
With this technique, stationary solutions in the pre-critical velocity range can be computed
by a quasi-static computation, which is much less time-consuming than a corresponding
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transient simulation using a time integration scheme. To include dynamic effects such as
vibrations or flutter of the strip, a time-dependent scheme is used. Additionally, a contact
formulation for modeling the frictional contact between an axially moving strip and rotating
rolls is presented. As a major benefit, in contact computations the elements do not move
along the strip but keep a fixed reference configuration. The definition of contact surfaces is
alleviated greatly, also in the dynamic case contact surfaces can be assumed fixed through-
out the computation, and can easily be resolved by a finer finite-element discretization of
the strip.

The finite element developed in this work is based on the absolute nodal coordinate for-
mulation (ANCF) introduced by Shabana [8], which is suitable for large deformation ele-
ments. Elements based on the ANCF are characterized by the usage of slope vectors instead
of rotational parameters as degrees of freedom. This fact allows the exact representation of
inertia of a rigid body. As a major advantage of ANCF elements, their constant mass matrix
is often cited. The thickness of the strip under consideration is much smaller than its length,
thus Bernoulli–Euler beam theory is applicable. Berzeri and Shabana [3] presented a third
order Bernoulli–Euler ANCF beam finite element. Gerstmayr and Irschik [5] modified the
equations of virtual work for this element such that it is consistent with the classical the-
ory of extensible Euler elastica. The axially moving element developed in the present paper
is based on the element given in the latter reference. For the third order ANCF element,
nodal positions and slope vectors are used as degrees of freedom. This ensures continuous
differentiability of the beam axis across element borders, which is feasible in applications
involving sliding contact.

There exists a vast literature on axially moving continua. A fundamental study was pre-
sented by Wickert and Mote [14]. Based on the shear deformable beam by Simo and Vu-
Quoc [9], Vu-Quoc and Li [13] derived equations of motion for an axially moving beam.
They considered the “sliding spaghetti problem” as a model problem, where a cantilever
beam is retrieved into a clamped opening. Behdinan et al. [1, 2] present a related the-
ory under the assumptions of Bernoulli–Euler theory. A formulation for an axially moving
Bernoulli–Euler beam transported over a free span is provided by Humer and Irschik [6]. In
their setting, the length of the reference configuration is not known in advance. Spelsberg-
Korspeter, Kirillov and Hagedorn [11] treat a contact problem of an axially moving beam,
which is sliding through rigid brake pads.

The axially moving ANCF element presented in this work is based on a Lagrange–
Eulerian approach, also known as arbitrary Lagrangian–Eulerian (ALE) technique. Here,
the given constant axial velocity is treated in an Eulerian context, where mass is going
through the finite element. While the according Lagrangian reference configuration is mov-
ing through the strip in negative direction at the given velocity, the corresponding Eulerian
“intermediate configuration” is fixed in space. This notion of intermediate configuration
was already mentioned by Vu-Quoc and Li [13] and Behdinan et al. [1]. In their works, the
equations of motion were first deduced with respect to the time-dependent Lagrangian ref-
erence configuration, and then transformed to the Lagrange–Eulerian case. On the contrary,
in the present paper an extended form of Lagrange’s equations, which was introduced by
Irschik and Holl [7], is used for the derivation of the equations of motion. A similar proce-
dure was suggested by Stangl, Gerstmayr and Irschik [12] for pipe elements, where fluid is
transported through the beam element in axial direction. The proposed Lagrange–Eulerian
approach leads to a structurally different, but equivalent formulation for a Bernoulli–Euler
beam as given in [1]. The presented equations can easily be implemented within the frame-
work of the chosen ANCF finite elements. For the fixed Eulerian configuration, also the
computation of the work of elastic forces is greatly simplified.
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In applications, contact between the axially moving strip and fixed, moving or rotating
bodies may arise. In case of frictional contact, the contact conditions have to be rewritten
to account for superimposed relative movements of strip and objects. A contribution in this
field from Spelsberg-Korspeter, Kirillov and Hagedorn [11] treats a frictional contact prob-
lem of an axially moving beam, which is sliding through rigid brake pads. In the current
paper, contact between strip and rolls is considered. The application of Coulomb’s law of
contact leads to special friction conditions for this case. Since the strip elements do not
move according to the axial velocity, but have a fixed Eulerian reference configuration, the
definition of contact surfaces is alleviated greatly. The finite-element mesh can be defined
adaptively, using a fine discretization in contact areas, and coarser elements in the free-span
regions between the rolls. In a comparable fully Lagrangian dynamic formulation, the con-
tact surfaces change rapidly in time, and small elements have to be used for the whole belt
geometry, which leads to higher computational effort and simulation times.

As an application, the simulation of a belt drive is considered. A dynamic setup is chosen
for the computation. Two different simulations are compared: one using standard ANCF
Bernoulli–Euler elements, and one employing the proposed elements with prescribed axial
velocity. When using the new technique, the elements discretizing the belt keep a fixed
configuration in time, which alleviates the definition of contact surface, and allows for an
adaptive discretization of the strip. Thus, the computational effort of the simulation can be
reduced greatly, while the accuracy of the solution is maintained.

The present paper is an extension of a work presented by the authors at the Seventh
International Conference on Engineering Computational Technology, [10].

2 A beam element with prescribed axial velocity based on the absolute nodal
coordinate formulation

In the following, a Bernoulli–Euler beam finite element with prescribed, constant axial ve-
locity is presented. It is derived from the third-order planar ANCF beam finite element in-
troduced by Gerstmayr and Irschik [5]. Throughout the following, the length of the beam
element in undeformed configuration is denoted by L, while H is the thickness in vertical
direction, and W is the width in direction orthogonal to the xy-plane. The element will be
presented in detail in the following, see Fig. 2 for a sketch. For a rectangular cross sec-
tion, the area of the cross section is given by A = H · W and the second moment of area is
I = W H 3

12 .
The Lagrangian reference configuration of the finite element is moving through the strip

opposite to the local ξ axis at the prescribed velocity v0, see Fig. 1. However, for the sake
of simplicity of elastic forces, inertia terms and contact conditions are computed with re-
spect to an “intermediate configuration”, which is fixed in space. This concept of a spatially
fixed reference system was also used in [1, 13]. In the following, x̄ ∈ [−L/2,L/2] shall
denote the position on the undeformed beam axis in the spatially fixed intermediate con-
figuration, while ξ corresponds to the axial position with respect to the moving Lagrangian
reference configuration. In Fig. 1, both the moving Lagrangian reference configuration with
axial coordinate ξ and the spatially fixed intermediate configuration with axial coordinate x̄

are displayed. At time t , these two coordinates are related via a shift of length v0t ,

x̄ = x̄(ξ, t) = ξ + v0t. (1)

Let r = [rx ry]T denote the position vector of the beam center line, see Fig. 2. The position
vector will be regarded as a function of the spatial axial coordinate x̄ and time t , i.e. r =
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Fig. 1 While the Lagrangian
reference configuration is moving
in negative direction relative to
the local ξ axis at the given
velocity, the intermediate
configuration is fixed in space

Fig. 2 Axially moving ANCF element: Eulerian (intermediate) reference configuration and deformed ele-
ment. Degrees of freedom are position and slope vectors of the beam axis in the end points

r(x̄, t). Let r′ and ṙ be the derivatives with respect to the spatial coordinate x̄ and time t ,
respectively

r′ = ∂r
∂x̄

and ṙ = ∂r
∂t

. (2)

In the framework of Bernoulli–Euler theory it is assumed that the cross section of the beam
is rigid and normal to the beam axis. Thus, a point at distance ȳ ∈ [−H/2,H/2] from the
beam axis in the undeformed configuration has the position vector

p(x̄, ȳ) = r(x̄) + ȳn(x̄). (3)

Here n denotes the (normalized) normal to the beam axis, while t is the (normalized) tan-
gential vector

t(x̄) = 1

|r′|

[
r ′
x

r ′
y

]
and n(x̄) = t(x̄)⊥ = 1

|r′|

[−r ′
y

r ′
x

]
. (4)

Here and in the following, a⊥ is the rotation of a vector a by 90◦ according to the implicit
definition in Eq. (4).

Due to the relationship (1), the position vector can also be given as function of the mate-
rial (Lagrangian) axial coordinate ξ and time t , r(ξ, t) = r(x̄(ξ, t), t). The velocity v(x̄, t)

of a point on the beam axis is given by the time derivative of the position vector defined in
the Lagrangian reference configuration,

v(x̄, t) = ∂

∂t

(
r
(
x̄(ξ, t), t

))
. (5)
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Due to the chain rule, one obtains

v(x̄, t) = ∂r
∂x̄

(x̄, t)
∂x̄

∂t
(ξ, t) + ∂r

∂t
(x̄, t) = v0r′(x̄, t) + ṙ(x̄, t). (6)

Therefore, the velocity vector v does not only depend on ṙ, but also on the spatial deriva-
tive r′. In the quasi-static case, when the time derivative ṙ vanishes, the velocity vector
becomes

v = v0r′ = v0|r′|t. (7)

Thus, the axial velocity v depends on the given axial velocity v0 as well as on the axial stretch
|r′|. For an unstretched element with |r′| = 1, the total axial velocity equals the prescribed
velocity v0 in tangent direction.

The proposed beam finite element is derived from Bernoulli–Euler elements based on
the absolute nodal coordinate formulation (ANCF) [3, 5]. The considered ANCF element is
depicted in Fig. 2. The degrees of freedom for this element are the positions and slopes of
the beam center line at the two nodes of the beam element. This ensures the continuity of
gradients along the center line, which is advantageous in applications with sliding contact.

In the considered beam finite element, the position vector r is interpolated by third or-
der polynomials. For the shape function matrix S and the element coordinate vector q, the
position vector is given by the relationship

r = Sq. (8)

Degrees of freedom of the element are the positions and slopes of the beam center line in the
nodal end points. Thus, each node Nj is associated to four generalized coordinates, which
are given by

q(j) =
[

r|Nj

r′|Nj

]
. (9)

For an element with nodes Nj1 and Nj2 , the generalized element coordinates are

q =
[

q(j1)

q(j2)

]
. (10)

The shape function matrix S is of the form

S = [S1I S2I S3I S4I], (11)

where I denotes the 2 × 2 unit matrix, and the shape functions Si are given by

S1(x̄) = 1

2
− 3x̄

2L
+ 2x̄3

L3
, S2(x̄) = L

8
− x̄

4
− x̄2

2L
+ x̄3

L2
, (12)

S3(x̄) = 1

2
+ 3x̄

2L
− 2x̄3

L3
, S4(x̄) = −L

8
− x̄

4
+ x̄2

2L
+ x̄3

L2
. (13)

The ith column of S, which corresponds to the shape function for the coordinate qi , shall be
denoted by Si . This implies that

r =
8∑

i=1

Siqi and
∂r
∂qi

= ∂ ṙ
∂q̇i

= Si . (14)
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3 Kinetic energy of the axially moving beam element

In [7], Irschik and Holl introduced the Lagrange equations of motion for systems containing
non-material volumes, which read in the general case of a volume V

d

dt

∂T

∂q̇i

− ∂T

∂qi

+
∫

S

da · (v0 − w0)
∂T ′

∂q̇i

−
∫

S

da · ∂(v0 − w0)

∂q̇i

T ′ = ∂WI

∂qi

+ ∂WE

∂qi

. (15)

Therein, v0 denotes the impressed velocity of the non-material volume, while w0 is the
velocity of the material volume. Moreover, T denotes the total kinetic energy of the system,
and T ′ is the kinetic energy per unit volume,

T = 1

2

∫
V

ρvT vdV, (16)

T ′ = 1

2
ρAvT v. (17)

Additionally, WI is the strain energy due to internal elastic forces, while WE is the energy
corresponding to external forces. The surface of V where mass enters and exits the system
is denoted by S. For this surface, let a be the oriented surface normal vector, while da
represents an oriented surface element on S.

In the following, the equations of motion (15) are evaluated for V being the intermedi-
ate reference configuration of the axially moving ANCF element. Here, the velocity of the
material volume w0 vanishes, since the intermediate configuration of the element is fixed
in time, while the velocity vector of the non-material volume v0 is of absolute value v0 and
points in tangent direction,

v0 = v0t and w0 = 0. (18)

The surfaces S where mass enters and exits the system are the cross sections at the nodal
end points of the beam element. Using representation (6) of the velocity vector v, the total
kinetic energy T and kinetic energy per unit volume T ′ transform to

T = 1

2

∫ L/2

−L/2
ρA

(
v0r′ + ṙ

)T (
v0r′ + ṙ

)
dx̄, (19)

T ′ = 1

2
ρA

(
v0r′ + ṙ

)T (
v0r′ + ṙ

)
. (20)

All terms in the equations of motion (15) are evaluated separately in Sect. 3.1. In Sect. 3.2
formulae for the quasi-static case are provided, where the time derivative ṙ disappears.

3.1 Equations of motion in the dynamic case

Examining the first term in the Lagrange equations of motion (15) d
dt

∂T
∂q̇i

leads to

d

dt

∂T

∂q̇i

= d

dt

∫ L/2

−L/2
ρA

(
v0r′ + ṙ

)T ∂(v0r′ + ṙ)
∂q̇i

dx̄ (21)

= d

dt

∫ L/2

−L/2
ρA

(
v0r′ + ṙ

)T
Si dx̄ (22)
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=
∫ L/2

−L/2
ρA

(
v0ṙ′ + r̈

)T
Si dx̄. (23)

The relations ∂ ṙ/∂q̇i = Si and ∂r′/∂q̇i = 0 have been applied in Eq. (21).
The partial derivative of the kinetic energy with respect to qi yields

∂T

∂qi

=
∫ L/2

−L/2
ρA

(
v0r′ + ṙ

)T ∂(v0r′ + ṙ)
∂qi

dx̄ (24)

=
∫ L/2

−L/2
ρAv0

(
v0r′ + ṙ

)T
S′

i dx̄. (25)

Next, the surface integrals from Eq. (15) are evaluated. To this end, the partial deriva-
tive of the kinetic energy per unit length with respect to the ith generalized velocity q̇i is
computed,

∂T ′

∂q̇i

= ρA
(
v0r′ + ṙ

)T ∂(v0r′ + ṙ)
∂q̇i

= ρA
(
v0r′ + ṙ

)T
Si . (26)

Thus, the first surface integral in Eq. (15) evaluates to∫
S

da · v0t
∂T ′

∂q̇i

=
∫

S

da · tρAv0

(
v0r′ + ṙ

)T
Si (27)

= (a · t)ρAv0

(
v0r′ + ṙ

)T
Si

∣∣
x̄=± L

2
. (28)

In the considered beam element, the scalar product of the oriented surface vector a and the
tangent vector t yields either minus or plus one, depending whether S is an in- or outflow
surface, respectively. On the inflow surface x̄ = −L/2, we have a · t = −1, on the outflow
surface x̄ = L/2, we have a · t = 1. At interfaces where two axially moving beam elements
meet, these surface integrals cancel out, since all quantities are continuous across element
interfaces.

In the current setup, the given axial velocity vector v0t does not depend on the generalized
velocities q̇i . Thus, ∂(v0t)

∂q̇i
= 0, and the second surface integral vanishes.

Summing up the representations of the various terms in the generalized Lagrange equa-
tions (15), one obtains the following system of equations:∫ L/2

−L/2
ρA

(
v0ṙ′ + r̈

)T
Si dx̄ −

∫ L/2

−L/2
ρAv0

(
v0r′ + ṙ

)T
S′

i dx̄

+ ρAv0
(
v0r′ + ṙ

)T
Si

∣∣L/2

−L/2
= ∂WI

∂qi

+ ∂WE

∂qi

. (29)

The authors note that Eq. (29) can be transformed to the set of equations derived by
Behdinan and co-workers [1]. To this end, an integration by parts for the second integral in
Eq. (29) has to be carried out, which leads to canceling of the surface terms. After regrouping
the remaining terms, the system from Eq. (29) reads∫ L/2

−L/2
ρA

(
2v0ṙ′ + r̈ + v2

0r′′)T
Si dx̄ = ∂WI

∂qi

+ ∂WE

∂qi

. (30)

This is a variational formulation for [1, Eqs. (62)–(63)] in the case of v0 being constant in
time.
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3.2 Equations of motion in the quasi-static case

Additionally, the stationary case is considered, in which the time derivative ṙ vanishes. In
this case, ṙ′ and r̈ and also the generalized velocities q̇i disappear. The generalized Lagrange
equations evaluated for the dynamic case Eq. (29) reduce to

−
∫ L/2

−L/2
ρAv2

0

(
r′)T

S′
i dx̄ + ρAv2

0

(
r′)T

Si

∣∣L/2

−L/2
= ∂WI

∂qi

+ ∂WE

∂qi

. (31)

4 Generalized elastic forces

The definition of generalized elastic forces is done along the theory presented in [5], where
an ANCF Bernoulli–Euler beam element is treated. There, it is proposed to use the nominal
or Biot strain tensor, which is defined by

EBiot = (∇rT ∇r
)1/2 − I. (32)

For a Bernoulli–Euler beam, all components but the xx-component εxx of the Biot strain
tensor EBiot vanish,

EBiot = εxxex ⊗ ex . (33)

Biot’s strain can be split additively into axial strain εax and the bending strain −yK ,

εxx = εax − yK. (34)

The axial strain εax is defined as the absolute change of length of the beam axis,

εax =
√

rT r − 1. (35)

The bending strain is defined as the negative first moment of Biot’s strain, and is related to
the material measure of curvature K ,

K = r′ × r′′

|r′|2 . (36)

The material measure of curvature differs from the geometrical curvature κ by a factor |r′|,
K = ∣∣r′∣∣κ. (37)

The above definitions lead to the strain energy WI proposed by [5], which reads

WI = 1

2

∫ L/2

−L/2

(
EAε2

ax + EIK2
)
dx. (38)

Here, EA is the axial stiffness, while EI is the bending stiffness including the second mo-
ment of area. The generalized forces follow from differentiation of Eq. (38) with respect to
the coordinates qi ,

∂WI

∂qi

=
∫ L/2

−L/2

(
EAεax

∂εax

∂qi

+ EIK
∂K

∂qi

)
dx̄. (39)
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5 Contact model for the axially moving beam

In many applications, the simulation of an axially moving beam being in contact with other
moving or fixed parts of the geometry is of interest. Spelsberg-Korspeter et al. [11] consid-
ered the case of an axially moving beam sliding through two brake pads. In the paper at
hand, frictional contact of the axially moving strip and rigid rolls shall be regarded.

The rolls are modeled as rigid bodies with fixed center point. The frictional contact force
is defined via the relative velocity of roll and strip. In case of a quasi-static computation,
it is assumed that the constant roll velocity is prescribed, while for dynamic computations
the roll velocity is explicitly computed in the time-dependent scheme. In both cases, the
velocities at the roll surface and at the beam element surface are used for the computation
of the relative contact velocity, and thereby for the evaluation of contact forces. For quasi-
static computations, the rotation of the roll is given explicitly via the prescribed roll velocity.
Thus, it is no degree of freedom of the system, but included in the contact formulation.

In the sequel, frictional contact between a single roll and the axially moving strip shall
be considered. The roll is characterized by its center point m, its radius r and its angular
velocity ω. The tangential contact is governed by Coulomb’s law of friction, with the friction
coefficient denoted by μ. For each element, two contact points are chosen on the contact
surface. These contact points are defined at axial coordinates x̄ = −L/4 and x̄ = L/4. The
contact conditions will be checked in these points, and contact forces will be applied there.

For the sake of simplicity, the following roll setup is chosen: The roll rotates counter-
clockwise in positive direction. Thus, angular velocity ω of the roll is always positive. The
strip lies below the roll, and runs from the left to the right hand side. Thus, the contact
points of an element are chosen at the local coordinates (x̄c,1, ȳc,1) = (−L/4,H/2) and
(x̄c,2, ȳc,2) = (L/4,H/2). The setup is displayed in Fig. 3.

5.1 Contact normal force

Modeling the normal contact of roll and axially moving strip can be done in a straightfor-
ward manner, the definition of the contact normal force does not differ from well-known
contact formulations for finite elements without prescribed axial velocities. In the current
approach, a linear contact model with contact stiffness cc is used, where the contact normal
force is proportional to the depth of penetration.

Fig. 3 Setup for the contact between rotating roll and axially moving strip. The roll is rotating in positive
direction, the strip is running from left to right. In contact points, contact forces FN and FT are applied to
the strip, negative reaction forces to the roll
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Let (x̄c, ȳc) be the local coordinates of the considered contact point. Its global position is
given by

pc = p(x̄c, ȳc) = r(x̄c) + ȳcn(x̄c). (40)

Then, the gap between this contact point and roll is computed as

g = |pc − m| − r. (41)

The contact normal force is applied in radial direction of the roll nroll given by

nroll := 1

|pc − m| (pc − m). (42)

For a positive gap, no contact between roll and strip occurs, thus no contact force is imposed.
In case of the gap g being negative, a contact force fN is applied in radial direction of the
roll,

fN =
{

−cc · gnroll if g < 0,

0 else.
(43)

The corresponding contact normal force FN is determined by multiplying the contact pres-
sure with the contact area Ac ,

FN = AcfN with Ac = WL

2
. (44)

The corresponding negative contact force −FN is applied to the roll.

5.2 Frictional contact forces

The case of frictional contact with a roll is considered in the sequel. In case of quasi-static
computations, the angular velocity of the roll is assumed to be of a given, fixed value. For
dynamic simulations, the angular velocity of the roll is available in a time stepping scheme.
Coulomb’s law of friction is applied, which states that the tangential contact force FT is
bounded by the coefficient of friction μ times the absolute value of the contact normal force
FN ,

|FT | ≤ μ|FN |. (45)

The tangential contact force FT opposes the relative velocity of roll and strip (v − vroll),

FT = −α(v − vroll) with α ≥ 0. (46)

The velocity of the roll vroll is determined by the angular velocity ω, the radius r , and the
roll tangent troll = n⊥

roll,

vroll = rωtroll. (47)

In analogy to Eq. (6), the velocity of the strip in the contact point is given by

vc = ṗc + v0p′
c. (48)

The quantities ṗc and p′
c denote the derivative of the position of the contact point with respect

to t and x̄, respectively. For the tangential, frictional contact model the cases of sticking and
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slipping contact have to be distinguished. For both cases, the tangential contact force FT

will be applied in direction of the relative velocity of strip and roll (vroll − vc).
To model the contact force in sticking points, a tangential creep velocity factor ccT is

used. Then, the contact force FT is proportional to the relative velocity of strip and roll
(vroll − vc). This case applies as long as the tangential contact force is strictly smaller than
the material friction coefficient μ times the absolute value of the contact normal force FN .
Otherwise, the surfaces slide relatively. The absolute value of the tangential contact force
reaches the bound μ|FN |, the tangential force vector points in direction of the relative ve-
locity (vroll − vc). In summary, the tangential contact force vector is given by the relation

FT =
{

ccT Ac(vroll − vc) if |FT | ≤ μ|FN |,
μ|FN | vroll−vc

|vroll−vc | else.
(49)

In both cases, the respective negative tangential contact force −FT is applied to the roll.

6 Computational results

As an example, a dynamic simulation of a belt drive is considered. Here, force is transmit-
ted from a driving pulley to a second, free rotating pulley. The simulations were done using
both standard ANCF Bernoulli–Euler beam elements and the beam elements with prescribed
axial velocity proposed in this paper. With the new technique, the computational effort is re-
duced due to the fact that an adaptive discretization of the belt is possible, while the accuracy
of the simulation was maintained. All implementations were done in the framework of the
multibody dynamics simulation code HOTINT.1

6.1 Belt drive

As a model problem, a simulation of a belt drive is done using the proposed ANCF beam
elements with prescribed axial velocity. The chosen example is taken from [4]. It consists of
two pulleys and a flexible belt, which are modeled as rigid bodies and as ANCF Bernoulli–
Euler beam, respectively. The setup is sketched in Fig. 4. Here, the left pulley is driven at a
given angular velocity in positive direction. All data concerning the belt drive can be found
in Table 1. Both pulleys are of radius r = 0.09995 m, the belt is of thickness hb = 0.01 m
and width wb = 0.08 m. In initial, stress-free configuration the belt center line radius is
given by rb = r + hb

2 = 0.10495 m. The distance d between the two center points is set to
d = 0.1π m, thus the belt length in initial configuration is lb = 2rbπ + 0.2π = 0.4099π m.
For force transmission, an initial tension of the belt is necessary. To this end, the position
of the driving pulley is modified by a horizontal displacement ux = −0.0025 m, which is
applied linearly from beginning to time t0 = 0.05 s.

The belt is assumed to have a Young modulus E = 1 × 107 N/m2 and a density of ρ =
1036 kg/m3. The Young modulus is chosen this low in order to make the different angular
velocities of driven and driver pulley noticeable.

For the driving pulley, an angular velocity ω0 = 12 rad/s is prescribed, which is applied
linearly from time t0 = 0.05 s to time t1 = 0.6 s. The mass moment of inertia of the second
pulley is given as Ip = 0.25 kg m2.

1www.hotint.org.

http://www.hotint.org
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Table 1 Data used in the
numerical simulation of the belt
drive

Parameter Symbol Value Unit

radius pulley r 0.09995 m

distance between pulleys d 0.1π m

belt thickness hb 0.01 m

belt width wb 0.08 m

belt length lb 0.4099π m

horizontal displacement ux −0.0025 m

Young’s modulus E 107 N/m2

density ρ 1036 kg/m3

angular velocity of driving pulley ω0 12 rad/s

acceleration start time t0 0.05 s

acceleration end time t1 0.60 s

moment of inertia of driven pulley Ip 0.25 kg/m2

coefficient of friction μ 1.2/0.5 –

contact stiffness cc 108 N/m3

tangential contact stiffness ccT 107 kg/m2 s

Fig. 4 Sketch of the belt drive. The left pulley is driven with given angular velocity ω0, an initial tension of
the band is achieved by the prescribed displacement u0 of the driving pulley

Computations for two different coefficients of friction μ = 1.2 and μ = 0.5 are per-
formed. The contact stiffness is chosen as cc = 108 N/m3 for the normal contact and
ccT = 107 kg/m2 s for the tangential contact. Note that these values are higher than the values
provided in [4] in order to obtain converged results.

Two computations were performed, where once standard ANCF Bernoulli–Euler ele-
ments from [5] were used, while for the second simulation elements with prescribed ax-
ial velocity were employed. The prescribed velocity is chosen as v0 = rbω0/|r0|, where
|r0| = (lb + 2|ux |)/ lb is the axial stretch of the belt when the horizontal displacement ux is
applied to the driving pulley. The prescribed axial velocity evaluates to v0 = 1.2546434 m/s.
With this axial velocity, the intermediate configuration of the belt is almost constant in time.
Thus, an adaptive discretization of the belt can be employed, using smaller elements in the
contact zones near the rolls, and larger elements in the free-span regions, see Fig. 5 for a
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Fig. 5 Sketch of the discretization using axially moving elements. The contact zone is indicated at the belt
surface

Fig. 6 Normal force as a
function of the undeformed band
length at end time tmax = 1 s for
discretization with standard
ANCF Bernoulli–Euler elements
and axially moving ANCF
elements for different friction
coefficients μ. Top: μ = 1.2,
bottom: μ = 0.5
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Fig. 7 Angular velocity of the
driven pulley from time 0 to
tmax = 1 s for discretization with
standard ANCF Bernoulli–Euler
elements and axially moving
ANCF elements for different
friction coefficients μ. Top:
μ = 1.2, bottom: μ = 0.5

sketch of the discretization and the contact zones. In case of standard Bernoulli–Euler el-
ements, the whole belt has to be discretized by fine elements, as the contact zones vary
in time. In the present example, in contact zones elements of approximate length 0.02 m
were used, while for the axially moving elements in non-contact free-span areas, elements
of length 0.1 m were used. This leads to a model consisting of 60 beam elements in the
standard case, while only 40 axially moving elements were necessary for the same compu-
tational accuracy. The computational time dropped from approximately 595 s for standard
elements to 350 s for axially moving elements. In Fig. 6, the normal force acting in the belt
at the end time tmax = 1 s is provided for both methods as a function of the undeformed beam
axis. Figure 7 shows the angular velocity of the driven pulley over time for both methods.
Note that during the first 0.1 s of the simulation a negative angular velocity of the driven
pulley occurs, which is due to a small rotation of the pulley under the onset of gravity acting
on the belt. The belt velocity over the undeformed belt length at end time is displayed in
Fig. 8.

Additionally, computations with the lower contact stiffnesses from [4] cc = 107 N/m3

and ccT = 105 kg/m2 s were performed for a friction coefficient μ = 1.2. In Fig. 9, the
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Fig. 8 Velocity as a function of
the undeformed band length at
end time tmax = 1 s for
discretization with standard
ANCF Bernoulli–Euler elements
and axially moving ANCF
elements for different friction
coefficients μ. Top: μ = 1.2,
bottom: μ = 0.5

Fig. 9 Angular velocity of the
driven pulley from time 0 to
tmax = 1 s for discretization with
standard ANCF Bernoulli–Euler
elements and axially moving
ANCF elements for a friction
coefficient μ = 1.2 and contact
stiffnesses as in Ref. [4]
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angular velocities of the pulleys over time are displayed. Although one notices significant
differences to the results from Fig. 7, the accordance with the results in [4] is good.
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