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Abstract This paper describes a new factorization of the inverse of the joint-space inertia
matrix M . In this factorization, M−1 is directly obtained as the product of a set of sparse ma-
trices wherein, for a serial chain, only the inversion of a block-tridiagonal matrix is needed.
In other words, this factorization reduces the inversion of a dense matrix to that of a block-
tridiagonal one. As a result, this factorization leads to both an optimal serial and an optimal
parallel algorithm, that is, a serial algorithm with a complexity of O(N) and a parallel algo-
rithm with a time complexity of O(logN) on a computer with O(N) processors. The novel
feature of this algorithm is that it first calculates the interbody forces. Once these forces are
known, the accelerations are easily calculated. We discuss the extension of the algorithm to
the task of calculating the forward dynamics of a kinematic tree consisting of a single main
chain plus any number of short side branches. We also show that this new factorization of
M−1 leads to a new factorization of the operational-space inverse inertia, Λ−1, in the form
of a product involving sparse matrices. We show that this factorization can be exploited for
optimal serial and parallel computation of Λ−1, that is, a serial algorithm with a complexity
of O(N) and a parallel algorithm with a time complexity of O(logN) on a computer with
O(N) processors.

Keywords Multibody dynamics, Robot dynamics, Mass matrix factorization, Parallel
computation

Nomenclature
n Total number of Degrees of Freedom (DOF) of the system
ni DOF of joint i

N Number of bodies in the system
m,a Cost of multiplication and addition
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Oi Reference point fixed in body i

Pi,j Matrix to shift reference point from Oj to Oi

Pi Shorthand for Pi+1,i

P ∈ �6N×6N Global mapping from joint forces to body forces, or from body
accelerations to joint accelerations (PT)

Qi 3 × 3 rotational coordinate transform matrix from the frame located at
Oi+1 to the frame located at Oi

R i =
[

Qi 0
0 Qi

]
6 × 6 rotational coordinate transform constructed from Qi

mi Mass of body i

si Location of center of mass of body i relative to Oi

Ji Second moment of mass of body i about its center of mass
I i ∈ �6×6 Spatial inertia of body i referred to point Oi

I = diag{I i} Global matrix of body inertias (I ∈ �6N×6N )
M ∈ �n×n Joint-space inertia matrix
q̈ i ∈ �ni Acceleration variables of joint i

q̈ = col{q̈ i} ∈ �n Global vector of joint acceleration variables
τ i ∈ �ni Force variables of joint i

τ = col{τ i} ∈ �n Global vector of joint force variables
ωi , ω̇i ∈ �3 Angular velocity and acceleration of body i

vi , v̇i ∈ �3 Linear velocity and acceleration of body i (point Oi)
V̇i = [ ω̇i

v̇i

] ∈ �6 Spatial acceleration of body i (assuming zero velocity)

V̇ = col{V̇i} ∈ �6N Global vector of body accelerations
f i ∈ �3 Force applied from body i − 1 to body i at Oi

ni ∈ �3 Moment applied from body i − 1 to body i about Oi

Fi = [ ni

fi

] ∈ �6 Spatial force transmitted from body i − 1 to body i

F = col{Fi} ∈ �6N Global vector of interbody forces
H i ∈ �6×ni Matrix describing the motion freedom of joint i (maps q̈ i to spatial

acceleration of joint i, assuming zero velocity)
H = diag{H i} Global matrix of joint motion freedoms (H ∈ �6N×n)
Wi ∈ �6×(6−ni ) Matrix describing the constraint force space of joint i

W ai ∈ �6×ni Matrix that maps τ i to a spatial force at joint i

W = diag{Wi} Global constraint force matrix (W ∈ �6N×(6N−n))
Wa = diag{W ai} Global mapping from τ to joint spatial forces (Wa ∈ �6N×n)

1 Introduction

This paper describes a new algorithm for calculating the forward dynamics of a kinematic
tree (a rigid-body system having tree topology). It is applicable to any kinematic tree, but is
best suited to a tree consisting of a single main chain with short side branches. However, as
this algorithm employs inverse inertias in its calculations, it does require that every body in
the system have a nonsingular inertia matrix.

The algorithm is based on a new factorization of the inverse of the joint-space inertia
matrix M . In this factorization, M−1 is directly obtained as the product of a set of sparse
matrices wherein only the inversion of a block-tridiagonal matrix is needed. In other words,
this factorization reduces the inversion of the dense matrix M to that of a block-tridiagonal
one. As a result, this factorization leads to both an optimal serial and an optimal parallel
algorithm, that is, a serial algorithm with a complexity of O(N) and a parallel algorithm
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with a time complexity of O(logN) on O(N) processors, where N is the number of bodies.
These figures assume that none of the side branches contain more than O(logN) bodies.

The new algorithm resembles the Constraint Force Algorithm (CFA) [6, 10] in that the
key step involves solving a system of linear equations of size O(N), in which the coefficient
matrix is block-tridiagonal. On a serial computer, such a system can be solved in O(N)

operations using standard matrix methods. On a parallel computer having O(N) proces-
sors, such a system can be solved in O(logN) time using a technique called cyclic reduc-
tion [10, 11].

The CFA was the first algorithm to achieve O(logN) time complexity with O(N) pro-
cessors, which is the theoretical minimum parallel complexity for the forward-dynamics
problem. It was based on a new factorization of M−1, in the form of a Schur Complement.
The original CFA applied only to an unbranched chain, but was later extended in [6] to allow
short side branches. A few other algorithms have subsequently matched or slightly outper-
formed the CFA. These include: the divide-and-conquer algorithm [3, 4], the assembly-
disassembly algorithm [23], and a hybrid direct/iterative algorithm described in [1]. The
divide-and-conquer algorithm has subsequently been extended to nonrigid bodies in [17],
and to adaptive dynamics in [18], wherein the active subset of joints in an articulated body
is determined adaptively as a function of the applied forces and the desired level of real-
ism. The assembly-disassembly algorithm, as described in [23], is practically identical to
the divide-and-conquer algorithm.

The point of departure between the CFA and the new algorithm presented here is that the
CFA calculates the constraint forces acting at the joints, whereas the new algorithm calcu-
lates the total forces acting at the joints—the sum of active and constraint forces. For this
reason, we call it the Total Force Algorithm (TFA). The theoretical advantage of calculating
the total force transmitted across each joint, rather than only the constraint forces, is that
the former are uniquely defined by the joint force variables and the dynamics of the tree,
whereas the latter depend on assumptions about how the joints are being driven (e.g., see
Example 3.2 in [5]). Having calculated the total force transmitted across each joint, it is a
trivial matter to calculate the net force on each body, followed by the acceleration of each
body, and then the acceleration at each joint. The TFA also differs from the CFA in the way
that the factorization of M−1 is obtained. In the TFA, a novel factorization of M−1 is ob-
tained in the form of a product involving sparse matrices wherein only the inversion of a
block-tridiagonal matrix is needed. This factorization is multiplicative in nature, and quite
different from any previously discovered factorization.

The TFA has two more points in common with the CFA. First, it assumes that the forces
due to gravity, Coriolis and centrifugal terms, and any other forces that do not depend on
accelerations, have already been calculated by means of an inverse dynamics algorithm. Sec-
ond, it delegates the processing of the short side branches to the articulated-body algorithm
in exactly the same manner as the improved CFA described in [6].

The TFA has been tested numerically on chains of up to 1,000 bodies, and the accuracy
compared with other dynamics algorithms. It has been found to have the same accuracy as
the CFA, slightly better accuracy than the divide-and-conquer algorithm (DCA), but worse
accuracy than the pivotted DCA, the articulated-body algorithm and the composite-rigid-
body algorithm.1

This paper is organized as follows. In Sect. 2, we present notation and preliminaries, as
well as a derivation of the equation of motion and a factorization of M by using compact

1These results are reported in an ANU M.Phil. thesis “Numerical Analysis of Robot Dynamics Algorithms”
by Mingxu Li, which is currently under examination.
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Fig. 1 Link frames, reference
points, and centers of mass; link
accelerations; and total force
across joint i

global notation. In Sect. 3, we present the derivation of the new factorization of M−1 as a
basis for the TFA. We also present yet another novel, though less efficient, factorization of
M−1. The serial and parallel computational complexities of the TFA are discussed in Sect. 4.
In Sect. 5, we discuss the extension of the TFA to systems with tree topology. We also show
that this new factorization of M−1 leads to a new factorization of the Operational-Space
Inverse Inertia, Λ−1, in a the form of a product involving sparse matrices. Finally, some
concluding remarks are made in Sect. 6.

2 Notation and preliminaries

Throughout this paper, we assume that the forces due to gravity and velocity-dependent
effects have already been calculated, using an inverse dynamics algorithm, and have been
subtracted from the vector of active joint forces (τ ). Thus, the equations below do not con-
tain any gravity or velocity-dependent terms. This tactic is originally due to Walker and
Orin [21]. Physically, such equations can be regarded as those of a rigid-body system in
a zero-gravity field, in which the velocities of the bodies happen to be zero at the current
instant. For computing the inverse dynamics, there are suitable O(N) serial algorithms [5,
7, 8] and O(logN) parallel algorithms [15, 16].

To facilitate the derivation of the TFA, we initially assume that all 3D vectors and ma-
trices are expressed in a single common Cartesian coordinate system. However, Sect. 4 will
introduce a set of link coordinate systems, and will derive the serial and parallel computa-
tional costs of the link-coordinates version of the TFA.

This paper uses the global notation (spatial operator algebra) of Rodriguez et al., which
is built upon a kind of spatial vector notation [19, 20]. The subsections below describe this
notation only to the minimum extent necessary to understand the TFA.

The notation in this paper adopts the following conventions: bold symbols denote vectors
and matrices; calligraphic letters denote global quantities; vectors are denoted by lower-case
letters, and matrices by upper-case letters. Two exceptions to the lower-case rule are that
spatial vectors and global vectors are denoted by upper-case letters. Individual symbols are
described in the nomenclature table, and some quantities are illustrated in Fig. 1.

2.1 Equation of motion

The equation of motion for a rigid-body system without any constraints on the joint accel-
eration variables can be expressed in the form

τ = Mq̈, (1)
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where q̈ is the vector of joint acceleration variables, M is the joint-space inertia matrix, and
τ is given by

τ = τ in − b, (2)

where τ in is the vector of input joint forces and b is the vector of forces due to gravity,
Coriolis and centrifugal effects, and any other forces that do not depend on acceleration. We
assume that b has already been calculated using an inverse dynamics algorithm, and that τ
is therefore already known. The objective of the TFA is to calculate q̈ from τ .

2.2 Spatial vectors

We use spatial vectors in the format shown in the nomenclature table (i.e., angular compo-
nent above linear). Descriptions of spatial vectors can be found in [5, 8]. Referring to Fig. 1,
acceleration and force vectors can be shifted from one reference point to another using the
following formulae:

V̇i+1 = PiV̇i , (3)

Fi = P T
i Fi+1, (4)

where V̇i and Fi here stand for any acceleration and force vector referred to point Oi , and
V̇i+1 and Fi+1 are the same vectors referred to point Oi+1. The matrix Pi is given by

Pi = Pi+1,i =
[

U 0
−p̃i+1,i U

]
, (5)

where 0 and U stand for zero and identity matrices of appropriate size (which is 3×3 in this
case), and pi+1,i is a 3D vector giving the position of Oi+1 relative to Oi . For any vector v,
a 3 × 3 skew-symmetric matrix ṽ is defined as

ṽ =
[ 0 −vz vy

vz 0 −vx

−vy vx 0

]
.

p̃i+1,i is the 3 × 3 skew-symmetric matrix associated to the vector pi+1,i . The P matrices
have the following properties:

Pi,k = Pi,jPj,k and P −1
i,j = Pj,i , (6)

where i, j and k denote link numbers. The spatial inertia and inverse inertia of link i are

I i =
[

U s̃i

0 U

][
Ji 0
0 miU

][
U 0

−s̃i U

]

=
[

Ji + mi s̃i s̃
T
i ms̃i

mi s̃
T
i miU

]
(7)

and

I−1
i =

[
U 0
s̃i U

][
J −1

i 0
0 1

mi
U

][
U −s̃i

0 U

]

=
[

J−1
i J−1

i s̃T
i

s̃iJ
−1
i s̃iJ

−1
i s̃T

i + 1
mi

U

]
, (8)

where Ji is the rotational inertia of the link about its center of mass, mi is its mass, and si

locates the center of mass relative to Oi . Equation (7) is an expression of the parallel-axes
theorem. We will also make use of the identity

I−1
i−1,i = Pi−1I

−1
i−1P

T
i−1 (9)

which is the inverse inertia of link i − 1 expressed at Oi .
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2.3 System model

We consider a rigid-body system consisting of N bodies connected together to form an
unbranched chain. One end of the chain is connected to a fixed base, and the other end
(the tip) is free. The bodies are numbered 1 to N from base to tip, and the base is regarded
as body number 0. The joints are numbered such that joint i connects from body i − 1 to
body i. Joints can have any number of degrees of freedom (DOF) from 1 to 6. If joint 1
allows 6 DOF, then the system is a floating structure. We define ni to be the DOF of joint
i, and n = ∑N

i=1 ni to be the DOF of the whole system. A point Oi is fixed in each body i,
and is used as the reference point for all spatial quantities pertaining to body i and joint i.
We assume that the bodies are all at rest at the current instant, and that there are no forces
acting on the system other than the joint force variables τ i .

The equation of motion for body i can now be written

Fi − P T
i Fi+1 = I iV̇i (FN+1 = 0), (10)

where Fi is the force transmitted from body i − 1 to body i across joint i, Fi+1 is likewise
the force transmitted from body i to body i + 1 across joint i + 1, I i and V̇i are the inertia
and acceleration of body i, and P T

i maps Fi+1 from Oi+1 to Oi (cf. Eq. (4)) so that every
quantity in this equation is referred to Oi .

Joint i is characterized by a 6 × ni matrix H i , which maps the vector of joint-i ac-
celeration variables (q̈ i ) to the spatial acceleration across the joint. With this matrix, the
relationship between body accelerations and joint accelerations can be written

V̇i − Pi−1 V̇i−1 = H i q̈ i (V̇0 = 0). (11)

Joint i is further characterized by a 6 × ni matrix Wa i and a 6 × (6 − ni) matrix Wi . The
former maps the vector of active joint forces (τ i ) to a spatial vector, and the latter spans the
space of constraint forces at joint i. More details on this kind of joint model can be found in
[6, 8, 10]). These matrices satisfy

H T
i Wa i = U and H T

i Wi = 0 (12)

and they allow the force across joint i to be expressed as the sum of an active force and a
constraint force:

Fi = Wa iτ i + Wiλi , (13)

where λi is a vector of constraint force variables. (If ni = 6, then we define Wi λi to be zero.)
Three equations that follow immediately from Eqs. (12), (13), and (11) are

τ i = H T
i Fi , (14)

q̈ i = WT
a i (V̇i − Pi−1V̇i−1), (15)

and

WT
i (V̇i − Pi−1V̇i−1) = 0. (16)

2.4 Global notation

It is possible to collect together all of the equations of motion given by Eq. (10) into a single
“global” equation of the form

PF = IV̇, (17)
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where V̇ = col{V̇i}, F = col{Fi}, and I = diag{I i}, for i = 1 · · ·N , and

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

U −P T
1 0 · · · 0 0

0 U −P T
2 · · · 0 0

0 0 U · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · U −P T
N−1

0 0 0 · · · 0 U

⎤
⎥⎥⎥⎥⎥⎥⎦

. (18)

Likewise, it is possible to collect all of Eqs. (11), (13), (14), (15), and (16) into five global
equations

PTV̇ = Hq̈, (19)

F = Waτ + Wλ, (20)

τ = HTF , (21)

q̈ = WT
a PTV̇ (22)

and

WTPTV̇ = 0, (23)

where

H = diag{H i} ∈ �6N×n, (24)

Wa = diag{Wa i} ∈ �6N×n, (25)

W = diag{Wi} ∈ �6N×(6N−n). (26)

Note that these matrices satisfy

HTWa = U and HTW = 0 (27)

which represents the global version of Eq. (12). Note, also, that P is invertible, and that its
inverse is the upper-triangular matrix

P−1 =

⎡
⎢⎢⎢⎢⎢⎣

U P T
2,1 P T

3,1 · · · P T
N,1

0 U P T
3,2 · · · P T

N,2

0 0 U · · · P T
N,3

...
...

...
. . .

...

0 0 0 · · · U

⎤
⎥⎥⎥⎥⎥⎦

. (28)

Physically, P is the matrix that transforms the global vector of inter-body forces to the
global vector of net forces acting on the bodies, while PT transforms the global vector
of body accelerations to the global vector of accelerations across the joints (i.e., interbody
accelerations).

The global notation of Rodriguez et al. is not the only notation based on collections of
6D vectors and 6 × 6 matrices. In particular, a similar notation can be found in [22], and
many of the equations in this section can be found in that paper. They can also be found in
[10] and elsewhere. The novel contributions of our paper begin in Sect. 3.
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2.5 Mass matrix factorization

To illustrate the use of global notation, we derive here the simplest factorization of the joint-
space inertia matrix, which is known as the Newton–Euler factorization [19, 20]. Starting
with Eq. (21), and applying Eqs. (17) and (19), we get

τ = HTF
= HTP−1IV̇
= HTP−1IP−THq̈. (29)

On comparing this with Eq. (1), and taking into account the fact that both equations hold for
all values of τ and q̈ , we get

M = HTP−1IP−TH. (30)

As the expression PTI−1P will appear later on, let us define

G = PTI−1P (31)

so that

M = HTG−1H. (32)

The physical significance of G is that it maps the global vector of joint forces to the global
vector of joint accelerations. In comparison, I−1 maps the global vector of body forces to
the global vector of body accelerations. The computational significance of G is that it is
block-tridiagonal.

3 The new algorithm

3.1 Derivation

Starting with Eq. (10), the first step is to substitute for V̇i using Eq. (11), resulting in

Fi = I iPi−1V̇i−1 + I iH i q̈ i + P T
i Fi+1. (33)

Substituting this equation into Eq. (14) gives

τ i = H T
i I iPi−1V̇i−1 + H T

i I iH i q̈ i + H T
i P

T
i Fi+1 (34)

from which q̈ i can be calculated as

q̈ i = (
H T

i I iH i

)−1(
τ i − H T

i I iPi−1V̇i−1 − H T
i P

T
i Fi+1

)
. (35)

Note that, as shown in Appendix A, the matrix H T
i I iH i is positive definite, and hence

invertible. Replacing q̈ i in Eq. (11) with the expression in Eq. (35), we get

V̇i − (U − CiI i )Pi−1V̇i−1 = −CiP
T
i Fi+1 + B iτ i , (36)

where

Ci = H i

(
H T

i I iH i

)−1
H T

i and B i = H i

(
H T

i I iH i

)−1
. (37)

This equation can be written in global form as

KV̇ = −LF + Bτ , (38)
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where

B = H
(
HTIH

)−1 = diag{B i}, (39)

C = H
(
HTIH

)−1HT = diag{Ci}, (40)

L = C(U − P), (41)

K = PT + CI
(
U − PT

)
. (42)

L is an upper bidiagonal matrix having the form

L =

⎡
⎢⎢⎢⎢⎣

0 C1P
T
1 0 · · · 0

0 0 C2P
T
2 · · · 0

...
...

...
. . .

...

0 0 0 · · · CN−1P
T
N−1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦

and K is a lower bidiagonal matrix having the form

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

U 0 0 · · · 0 0
K21 U 0 · · · 0 0

0 K32 U · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · U 0
0 0 0 · · · KN,N−1 U

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

Ki,i−1 = (CiI i − U)Pi−1.

We now substitute for V̇ in Eq. (38) using Eq. (17). This gives

KI−1PF = −LF + Bτ (43)

which can be expressed as

AF = Bτ , (44)

where

A = KI−1P + L

= (
PT + CI

(
U − PT

))
I−1P + C(U − P)

= (U − CI)PTI−1P + C

= (U − CI)G + C . (45)

Appendix A proves that A is nonsingular. The special property of Eq. (44) that makes it
interesting for dynamics calculations is that the coefficient matrix, A, is block tridiagonal.
Thus, it can be used as the basis for an O(N) serial algorithm for calculating F , and also
a parallel algorithm having O(logN) time complexity on a parallel computer with O(N)

processors.
The nonzero block elements of A are given as follows:
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A11 = I−1
1 , (46)

A i,i = I−1
i + (U − CiI i )Pi−1I

−1
i−1P

T
i−1

= I−1
i + (U − CiI i )I

−1
i−1,i , (47)

A i,i−1 = (CiI i − U)Pi−1I
−1
i−1, (48)

A i,i+1 = (
Ci − I−1

i

)
P T

i . (49)

The second step in Eq. (47) follows from Eq. (9).
The final step is to obtain an expression for q̈ in terms of τ . We accomplish this by

applying Eqs. (17), (31), and (44) to Eq. (22) as follows:

q̈ = WT
a PTV̇

= WT
a PTI−1PF

= WT
a GF

= WT
a GA−1Bτ . (50)

On comparing Eq. (50) with Eq. (1), it can be seen that we have obtained a new factorization
of the inverse of the joint-space inertia matrix:

M−1 = WT
a GA−1B. (51)

The correctness of this factorization can be proved simply by showing that it is the inverse
of the factorization in Eq. (30). This is shown in Appendix B.

Equation (50) is the basis of the TFA. It supports both the optimal serial O(N) and
optimal parallel O(logN) computation of q̈ . This optimal efficiency for both serial and
parallel computation results from the fact that Eq. (51) represents a new direct factorization
of the inverse of the dense matrix M in terms of products of sparse matrices wherein only
the inversion of a block-tridiagonal matrix A is required.

From Eq. (50), the computational steps of the new algorithm can be summarized as:

• Step 1. Calculate V̇ ′ from

V̇ ′ = H
(
HTIH

)−1
τ (52)

V̇ ′ is just an intermediate variable: the output of Step 1 and the input to Step 2. It’s
physical interpretation is given below in Sect. 3.2.

• Step 2. Calculate F from

AF = V̇ ′ (53)

• Step 3. Calculate q̈ from

q̈ = WT
a GF . (54)

As can be seen, in Step 2 of the computation, the total force F is calculated; hence the
designation of the algorithm as TFA.

It should be noted that a different (and to our knowledge new) factorization of M−1 can
be derived as follows. By substituting F from Eq. (17) into Eq. (38), we get

(
K + LP−1I

)
V̇ = Bτ ; (55)

and by substituting into Eq. (22), we then get

q̈ = WT
a PT(

K + LP−1I
)−1Bτ . (56)
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On comparing Eq. (56) with Eq. (1), it can be seen that we have obtained yet another new
factorization of the inverse of the joint-space inertia matrix as

M−1 = WT
a PT

(
K + LP−1I

)−1B. (57)

From the structure of matrix P−1 in Eq. (28), it can be seen that the matrix (K+LP−1I)

is an upper-Hessenberg matrix. (A matrix is upper-Hessenberg if aij = 0 for i > j + 1 [11].)
Therefore, Eq. (57) represents a factorization of the inverse of the dense matrix M in terms
of sparse factors wherein the inversion of an upper-Hessenberg matrix is needed. This leads
to a serial computational complexity of O(N2), and hence less efficiency, of the algorithm
based on Eq. (57).

It is rather interesting to note that the better efficiency of the TFA, which is based on
Eq. (51), compared with an algorithm based on Eq. (57), results from the different sequence
of intermediate variables in each case. In the TFA, first one calculates V̇ ′, then the total
force, F , and then the total acceleration, V̇ (buried inside Step 3—see Step 3.2 in Sect. 4.1).
In contrast, an algorithm based on Eq. (57) never calculates the total force, but proceeds to
calculate the total acceleration, V̇ , via an alternative sequence of intermediate variables.

3.2 Physical interpretation

The physical interpretation of our new factorization of the inverse of the joint-space inertia
matrix can be better described by considering the three steps in its implementation given
by Eqs. (52), (53), and (54). In Step 1, the acceleration vector V̇ ′, given by Eq. (52), can
be interpreted as the acceleration response of a hypothetical rigid-body system obtained by
dismantling the given system and connecting every body directly to the fixed base through
its inboard joint. In Step 2, A can be regarded as the matrix that maps the acceleration of the
hypothetical system to the total joint forces of the given system. The physical interpretation
of Step 3 is straightforward since, given the global force F , it first calculates the global link
accelerations and then joint accelerations (see also Sect. 4.1 for more details).

A more detailed interpretation of Eq. (44) can be obtained by multiplying both sides by
the square, nonsingular matrix [IH W]T (see Appendix A). This operation is equivalent
to a change of basis (i.e., a coordinate transform) as defined in [6]. The result, after some
algebraic simplification, is

[
HT

WTG

]
F =

[
τ

0

]
. (58)

The top row of this equation is clearly just a copy of Eq. (21), and the bottom row is a
combination of Eq. (23) and Eq. (17), which has been simplified using Eq. (31). The physical
interpretation can now be stated as follows: the solution to Eq. (44) is the unique force F
that satisfies the n force constraints in Eq. (21), and that produces an acceleration (via the
equation of motion Eq. (17)) that satisfies the 6N − n acceleration constraints in Eq. (23).

3.3 Symmetry of the factorizations

One obvious peculiarity of Eq. (51) is that the expression for M−1 does not look symmetric.
In fact, the middle portion of this expression really is asymmetric, but the asymmetry is
eliminated when we premultiply by WT

a and post-multiply by B. Starting from the equations
in Appendix A, it is possible to show that

GA−1 = HM−1HTI + GW
(
WTGW

)−1WT. (59)
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Thus, GA−1 is not a symmetric matrix. However, it becomes symmetric under the action of
WT

a and B:

WT
a GA−1B = WT

a

(
HM−1HTI + GW

(
WTGW

)−1WT
)
B

= WT
a

(
HM−1

)

= M−1.

3.4 Comparison with CFA factorization of mass matrix

It is rather instructive to compare this new factorization of the inverse of the mass matrix,
given by Eq. (51), with that of the CFA [6, 10]. The factorization in the CFA is in the form
of a Schur complement, and is given as

M−1 = M3 − MT
2 M−1

1 M2 (60)

wherein, according to our notation, M1 = WTGW , M2 = WTGWa, and M3 = WT
a GWa.

For a serial chain system, the matrices M1, M2, and M3 are block-tridiagonal and, further-
more, M1 and M3 are symmetric positive-definite.

As can be seen from Eq. (51) and Eq. (60), both TFA and CFA are based on the derivation
of explicit factorizations of the inverse of the mass matrix, M−1, though in two quite differ-
ent forms. Furthermore, both factorizations reduce the inversion of the dense mass matrix
to that of block tridiagonal matrices. In fact, the key to the optimal serial and particularly
parallel efficiency of both algorithms result from this reduction.

4 Serial and parallel computational complexity analysis

In this section, we evaluate the serial and parallel computational complexity of the algorithm.
To do so, and starting from the three steps of the algorithm given in Sect. 3.1, we first give a
more detailed description of the computation of the algorithm, and then consider the serial
and parallel implementations.

This section is chiefly concerned with floating-point operation counts. It is well known
that such counts do not give a precise indication of execution time on specific computer
hardware because they do not take into account special properties of the hardware, such as
vector processing capability, or the efficiencies of available libraries implementing opera-
tions such as basic matrix arithmetic. Nevertheless, operation counts have been published
for many dynamics algorithms, and they are an accepted standard measure for comparing
algorithms.

4.1 A step-by-step description of the algorithm

The computational steps involved in the implementation of the algorithm can be further
broken up as follows.

Step 1. Calculate V̇ ′ from V̇ ′ = H(HTIH)−1τ

• Step 1.1. Calculate Θ i = (H T
i I iH i ) for i = 1, . . . ,N

• Step 1.2. Calculate Φ i = Θ−1
i τ i for i = 1, . . . ,N

• Step 1.3. Calculate V̇ ′
i = H iΦ i for i = 1, . . . ,N .

Step 2. Calculate F from AF = V̇ ′
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• Step 2.1. Calculate matrix A from Eqs. (49)–(52).
• Step 2.2. Calculate F by solving AF = V̇ ′.

Step 3. Calculate q̈ from q̈ = WT
a PTI−1PF

• Step 3.1. Calculate Ψ i = Fi − P T
i Fi+1 for i = N, . . . ,1 with FN+1 = 0

• Step 3.2. Calculate V̇i = I−1
i Ψ i for i = N, . . . ,1

• Step 3.3. Calculate Υi = V̇i − Pi−1 V̇i−1 for i = 1, . . . ,N with V̇0 = 0
• Step 3.4. Calculate q̈ i = WT

a iΥi for i = 1, . . . ,N .

4.2 Serial computational complexity

Thus far, the computation procedure has been presented without explicit reference to any
coordinate frame. For the implementation, however, the vectors and tensors involved in the
computation need to be projected onto suitable reference frames. The choice of the appro-
priate frame and the way that the projection is performed can affect the efficiency of the
algorithm for both serial and parallel computation. The computation of the algorithm in-
volves spatial inertias and inverse inertias of the links. Our choice of coordinate frame is
then to optimize the efficiency in calculating such operations. Note that, according to our
notation, and as shown in Fig. 1, frame i + 1 is fixed in link i and, therefore, all the param-
eters of link i are constant in frame i + 1. Also, in evaluating the computational cost, we
assume joints with one revolute DOF. The computational cost of each step is then given as
follows.

Step 1. The cost of this step is mN obtained as follows. Note that, with 1 DOF joints, Θ i is
a scalar. Θ−1

i is calculated as

Θ−1
i = (i+1H T

i
i+1I i

i+1H i )
−1. (61)

According to our notation, the terms H i and I i are constant in frame i + 1 and can be
precomputed. Therefore, the term Θ−1

i is also constant and can be precomputed. The com-
putation of Φ i requires one scalar multiplication. The vector V̇ ′

i is calculated in frame i

as

iV̇ ′
i = iH iΦ i , (62)

which, given the sparse structure of iH i , does not require any operation but replacing the
only nonzero element of iH i by Φ i .

Step 2 The cost of this step is (1154m + 977a)N − (868m + 763a) obtained as follows.

• Step 2.1. The block elements of row i of matrix A are computed in frame i, as

A i,i = iI−1
i + (

U − iCi
iI i

)
iI−1

i−1,i , (63)

A i,i−1 = (
iCi

iI i − U
)
iPi−1

iI−1
i−1R

T
i−1, (64)

A i,i+1 = R i

(
i+1Ci − i+1I−1

i

)
i+1Pi . (65)

For the computation of Eqs. (63), (64), and (65), first the matrices iI i and iI−1
i are com-

puted by exploiting their special structure as shown in Eqs. (7) and (8). To this end, first
i+1Ji and i+1si (which are constant link parameters) and i+1J−1

i (which can be precom-
puted) are projected onto frame i. Then, Eqs. (7) and (8) are computed with all tensors
and vectors projected onto frame i, leading to the cost of computing iI i and iI−1

i as
(63m + 48a)N and (117m + 81a)N , respectively.
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For computation of Eq. (63), note that the term iI−1
i−1,i is constant in frame i, and

hence can be precomputed. Also, given the sparse structure of iH i , the matrix iCi is
highly sparse with actually only one nonzero element. As a consequence of this sparsity,
the evaluation of the term iCi

iI i reduces to forming a sparse matrix with only one non-
zero row (third row) of elements wherein this row is simply a scalar multiple of the third
row of iI i . Taking advantage of the sparse structure of the matrix (U − iCi

iI i ), the cost
of computing Eq. (63) is obtained as (42m + 66a)N − (42m + 66a).

For computation of Eq. (64), since both iPi−1 and iI−1
i−1 are constant and can be pre-

computed, therefore, the term iPi−1
iI−1

i−1 can be also precomputed. Taking advantage of
the sparse structure of matrices (U − iCi

iI i ) and R i−1, the cost of computing Eq. (64) is
then obtained as (144m + 102a)N − (144m + 102a).

For computation of Eq. (65), since the terms i+1Ci , i+1I−1
i , and i+1Pi are all constant,

therefore the matrix (i+1Ci − i+1I−1
i )i+1Pi can be precomputed. Taking advantage of

the sparse structure of matrix R i , the cost of computing Eq. (65) is then obtained as
(108m + 72a)N − (108m + 72a).

• Step 2.2. By using block LU decomposition algorithm, the cost of calculating F by solv-
ing AF = V̇ ′ is (680m + 608a)N − (574m + 523a).

Step 3. The cost of this step is (84m + 78a)N − (48m + 48a) which is obtained as follows.

• Step 3.1. The term Ψ i is computed in frame i as

iΨ i = iFi − R i
i+1P T

i
i+1Fi+1 (66)

with a cost of (24m + 24a)N − (24m + 24a).
• Step 3.2. The vector V̇i is computed in frame i as

iV̇i = iI−1
i

iΨ i (67)

with a cost of (36m + 30a)N .
• Step 3.3. The term Υi is computed in frame i as

iΥi = iV̇i − iPi−1R
T
i−1

i−1V̇i−1 (68)

with a cost of (24m + 24a)N − (24m + 24a).
• Step 3.4. Joint i acceleration is computed as

q̈ i = iW T
a i

iΥi (69)

which given the sparse structure of iWa i does not require any operation but a proper
selection of an element of iΥi .

The total computation cost of the algorithm is then obtained as (1239m + 1055a)N −
(916m + 811a). Note that, as can be seen from the costs of different steps, the most com-
putation intensive part of the algorithm is Step 2, that is, forming matrix A and solving
AF = V̇ ′.

4.3 Parallel computational complexity

The optimal efficiency of the TFA for parallel computation can be easily assessed by exam-
ining the steps involved in its implementation. In fact, in terms of parallel implementation,
the TFA is very similar to the CFA, which is discussed in detail in [10]. Therefore, much
of the detailed analysis in [10] can be used for parallel implementation of the TFA. In par-
ticular, the detailed analysis in [10] concerning the connectivity of the processors, the data
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communication requirements, and the details of implementing the cyclic reduction algo-
rithm for Step 2.2, can all be carried over to the TFA. In the following, we briefly discuss
the parallel efficiency of the TFA.

We consider a parallel implementation by using N processors, denoted as PRi for
i = 1, . . . ,N . The computation for each link is assigned to a specific processor, i.e., the
computation of link i is assigned to PRi . The computations for each link in Step 1 are
fully decoupled and hence can be performed in parallel with a cost of O(1). For Step 2.1,
the computation of each row of matrix A can be performed in a fully decoupled fashion,
leading to a cost of O(1) for this step. For Step 2.2, by using the block cyclic reduction
algorithm [12] the block tridiagonal system can be solved with a cost of O(logN) + O(1).
The computations in Step 3 are either fully decoupled (Steps 3.2 and 3.4) or require a local
nearest neighbor communication (Steps 3.1 and 3.3), leading to a cost of O(1) for this step.

The parallel complexity of the TFA algorithm is therefore of O(logN) + O(1) by using
N processors, indicating an optimal parallel efficiency in terms of time and processors.
Note that, most of the computations of the TFA algorithm are fully decoupled and data
dependency only exists in the solution of the block tridiagonal system in Step 2.2, resulting
in the O(logN) complexity.

5 Extensions of the TFA

5.1 Extension to tree topology systems

Strictly speaking, the algorithm embodied in Eq. (50) will work for any tree-topology sys-
tem, not only an unbranched chain—the only quantity that needs to be modified is P . How-
ever, branches do spoil the tridiagonal structure of A, leading to a loss of efficiency and a
loss of O(N) complexity. An alternative method for dealing with branches, which was orig-
inally proposed as an extension to the constraint force algorithm, is to replace the original
set of N rigid bodies with a set of N articulated bodies [6]. This results in a system consist-
ing of a single main chain containing N rigid bodies, plus any number of side branches. The
idea is that the articulated-body algorithm can be used to process the side branches, while
the TFA processes the main chain. The complete algorithm works as follows:

1. Perform the inverse-dynamics calculation, as explained in Sect. 2.1.
2. Run the articulated-body algorithm on each articulated body, up to the end of the main

pass (i.e., up to the end of Pass 2 in Table 7.1 of [5], or the end of the second ‘for’ loop
in Table 2.8 of [8], or the end of Step 1 in [2, Chap. 6]).

3. Run the TFA, using the articulated-body inertia of articulated body number i in place of
the rigid-body inertia I i in Eq. (10).

4. Complete the execution of the articulated-body algorithm, so as to calculate the acceler-
ations of the bodies on the side branches.

The important point here is that the articulated bodies can all be processed in parallel. Thus,
if no articulated body contains more than O(logN) rigid bodies, then Step 2 above can be
performed in O(logN) time on a parallel computer with O(N) processors.

5.2 Computation of operational-space inverse inertia

The fact that our method is based on a new explicit factorization of M−1 can be exploited
to derive a new factorization for computation of the Operational-Space Inverse Inertia, Λ−1
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[13, 14], which is needed to control robots directly in task space. In [9], the Schur com-
plement factorization of M−1 in the CFA [10] was used to derive a Schur complement
factorization of Λ−1. In the following, we show that the new factorization of M−1 leads to
a new factorization of Λ−1 in the form of a product, resulting in optimal serial and parallel
algorithms.

The Operational-Space Inverse Inertia, Λ−1, is defined as

Λ−1 = JM−1J T (70)

where J ∈ �6×N is the Jacobian matrix. Note that, if Rank(J ) ≥ 6 then Λ−1 is nonsingular
and Λ can be obtained by inverting a 6 × 6 matrix with a flat cost. In the following, we
discuss the factorization of Λ−1.

Using our notation, and Eq. (19), the acceleration of the end-effector can be written as

V̇N+1 = ΔV̇ = ΔP−1Hq̈, (71)

where Δ = [0 0 · · · PN ] ∈ �6×6N . On comparing this with the definition of the Jacobian as
V̇N+1 = J q̈ , it can be seen that a factorization of the Jacobian is obtained as

J = ΔP−TH. (72)

Substituting the factorization of M−1, given by Eq. (51), and that of J , given by Eq. (72),
into Eq. (70), a factorization of Λ−1 is then obtained as

Λ−1 = ΔP−THWT
a GA−1BHTP−1ΔT. (73)

Note that, as can be seen from (28), P−1 and P−T are dense upper and lower triangular
matrices. A simpler and particularly more computationally efficient factorization of Λ−1

can be obtained by exploiting the sparse structure of Δ and is given as

Λ−1 = ΩGA−1Π, (74)

where

Ω = ΔP−THWT
a = row{Ω i} ∈ �6×6N, (75)

Π = BHTP−1ΔT = col{Πi} ∈ �6N×6 (76)

and

Ω i = PN+1,iH iW
T

a i , (77)

Πi = CiP
T
N+1,i . (78)

The factorization of Λ−1 given by Eq. (74) can be used for optimal serial O(N) and
parallel O(logN) computation. In the following, we briefly discuss these serial and parallel
complexities.

For both serial and parallel computation of Eq. (74), we only discuss the asymptotic
complexity. Furthermore, it can be easily shown that all the required projections for imple-
mentation of Eq. (74) as well as the computation of the elements of matrices Ω , G, A, and
Π can be done with a serial complexity of O(N) and a parallel complexity of O(logN).

For serial implementation, the computation of Γ = A−1Π, where Γ ∈ �6N×6, corre-
sponds to the solution of a block-tridiagonal linear system with six right-hand sides and can
be performed in O(N). Given the block-tridiagonal structure of matrix G, the computation
of Ξ = GΓ , where Ξ = col{Ξ i} ∈ �6N×6, can be performed in O(N). Finally, Λ−1 is com-
puted as Λ−1 = ΩΞ = ∑N

i=1 Ω iΞ i , with a cost of O(N). Note that each evaluation of the
products Ω iΞ i involves the multiplication of two 6 × 6 matrices.
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For parallel computation by using O(N) processors, the computation of Γ = A−1Π

can be performed in O(logN) by using the block cyclic reduction algorithm [12]. Given
the block-tridiagonal structure of matrix G, the computation of Ξ = GΓ can be performed
in O(logN). Finally, for computation of Λ−1 first all the products Ω iΞ i , for i = 1 · · ·N ,
can be computed in parallel in O(1) and then the summation of these products represent
a linear recurrence that can be computed in O(logN) [12]. Therefore, the complexity of
the parallel computation of Λ−1 is O(logN) by using N processors, indicating an optimal
parallel efficiency in terms of both time and processors.

6 Conclusion

In this paper, we presented a new explicit factorization of M−1 as a product of a set of sparse
matrices wherein only the inversion of a block-tridiagonal matrix is needed. Such a sparse
factorization led to an algorithm, which we called the TFA, for both optimal serial and opti-
mal parallel solution of the problem. We also showed that the TFA can be efficiently applied
for optimal serial and parallel computation of the forward dynamics of a kinematic tree con-
sisting of a single main chain plus any number of short side branches. We also presented
yet another novel, though less efficient, factorization of M−1 in terms of the product of a
set of sparse matrices wherein only the inversion of an upper-Hessenberg matrix is required.
We showed that, interestingly, the better efficiency of our first factorization over the second
one is a direct result of the choice of intermediate variables for the computation. That is,
while our first factorization calculates the total force and then the total acceleration, in the
second factorization the total acceleration is directly calculated without calculation of the
total force.

We also show that this new factorization of M−1 leads to a new factorization of the
operational-space inverse inertia, Λ−1, in the form of a product involving sparse matrices.
We show that this factorization can be exploited for optimal serial and parallel computation
of Λ−1, that is, a serial algorithm with a complexity of O(N) and a parallel algorithm with
a time complexity of O(logN) on a computer with O(N) processors.

It should be noted that the TFA is less efficient, in terms of total number of opera-
tions, than other known algorithms for serial computation, such as the articulated body al-
gorithm [2]. However, it achieves optimal parallel efficiency, with rather simple practical
parallel implementation requirements (particularly in terms of data communication pattern),
for both computation of M−1 and Λ−1. This is a definite advantage of the TFA for computa-
tion of very large serial chain systems or kinematic tree systems consisting of a large single
main chain plus any number of short side branches.

To our knowledge, the CFA and the TFA are the only known algorithms that are based
on explicit factorizations of M−1, involving sparse matrices and leading to similar explicit
factorizations of Λ−1. However, while in the CFA these factorizations are in the form of
Schur complements, in the TFA they are in the form of direct products of sparse matrices. An
interesting question is then whether there are other possible factorizations of M−1, resulting
in an even better efficiency for serial computation, in terms of actual number of operations.
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Appendix A: Nonsingularity of H T
i I iH i and A

If a matrix is positive definite, then it is nonsingular. According to Theorem 4.2.1 in [11],
if A ∈ �n×n is positive definite, and X ∈ �n×k has rank k, then the matrix B = XTAX is
positive definite. Now, I i is positive definite, and H i has full rank, so H T

i I iH i is positive
definite and, therefore, nonsingular.

To prove that A is nonsingular, we make use of the following result: if A ∈ �n×n is
positive definite, and if X ∈ �n×(n−k) and Y ∈ �n×k have full rank and satisfy Y TX = 0,
then B = [AX Y ] ∈ �n×n is nonsingular. The proof of this result is as follows. If B is
singular, then there must exist a linear dependency between the columns of AX and the
columns of Y . In other words, there must exist a vector z �= 0 that satisfies both z = AXx

and z = Yy for some vectors x and y. However, this implies that zTA−1z = yTY TXx = 0,
which is impossible because A is positive definite. Therefore, B must be nonsingular.

Consider the product ATB , where B = [IH W] ∈ �6N×6N . It evaluates to

AT[IH W] = (
G(U − IC) + C

)[IH W]
= [H GW].

Now, G is positive definite (for the same reason that H T
i I iH i is positive definite), and H

and W are full-rank matrices satisfying HTW = 0, so the right-hand side of this equation is
nonsingular, therefore, the left-hand side is also nonsingular, and so A must be nonsingular.

Appendix B: Correctness of symbolic factorization of M−1

The correctness of the factorization of M−1 given in Eq. (51) can be proved by showing that
M−1M = U, where M−1 is taken from Eq. (51) and M is taken from Eq. (32). The first step
is to simplify the expression in Eq. (51):

M−1 = WT
a GA−1B

= WT
a G

(
(U − CI)G + C

)−1B

= WT
a

(
A′)−1B,

where

A′ = U − CI + CG−1.

We now have

M−1M = WT
a

(
A′)−1BHTG−1H

= WT
a

(
A′)−1CG−1H

= WT
a

(
A′)−1(A′ + CI − U

)
H

= WT
a H + WT

a

(
A′)−1

(CIH − H)

= U + WT
a

(
A′)−1

(H − H)

= U.
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