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Abstract In the present paper, a three-module vibration-driven system moving on a rough
horizontal plane is modeled to investigate the relation among the system’s steady-state mo-
tion, external Coulomb’s dry friction force and internal excitations. Each module of the
system represents a vibration-driven system composed of a rigid body and a movable inter-
nal mass. Major attention is focused on the primary resonance situation that the excitation
frequency is close to the first-order natural frequency of the system. In the case that the ex-
ternal friction is low, the internal excitation is weak and the stick–slip motion is negligible,
both methods of averaging and modal superposition are employed to study the steady-state
motion of the system. Through a set of algebraic equations, an approximate value of the sys-
tem’s average steady-state velocity is obtained. Several numerical examples are calculated
to verify the validity of the analytical results both qualitatively and quantitatively. It is seen
that big quantitative errors will appear if stick–slip motions occur. Then, two mechanisms
for the possible stick–slip motions are put forward, which explain the errors on the aver-
age steady-state velocity. Numerical simulations verify our analysis on the stick–slip effects
and their mechanisms. Finally, to maximize the average steady-state velocity of the system,
optimal control problem is studied. It is shown that, in addition to modifying the friction
coefficients, the improvement of the system’s efficiency can be provided by changing the
initial phase shifts among the three internal excitations.

Keywords Vibration-driven system · Non-symmetric dry friction · Steady-state motion ·
Stick–slip motion · Optimal control

1 Introduction

Currently, legged or wheeled robots are gradually out of style in the field of micro-robots.
The difficulty on further minimization, the restriction on working environment as well as
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the possible harm to the contact surface are the great faults of legged and wheeled robots.
Rather, the research focus in recent years has inclined more and more to legless locomotion
system inspired by the motions of snakes and worms [1–3]. The application fields of such
system are widespread, including the diagnosis in engineering pipeline system, inspection
in human cardiovascular system and the rescue of survivors in disasters (like earthquakes).
These expected applications lead to extensive studies on feasible models of legless locomo-
tion systems.

One possible model is based on such an idea that the snake-like or worm-like system
is combined with discrete distributions. Some mechanical components, such as linear or
nonlinear springs, viscous dampers and kinematic constraints, are used to connect each two
distributions. One or more distributions act as actuators, which drive the whole system mov-
ing forward. In general, some kinds of friction exist at the contact surface between the sys-
tem and the environment. The physical properties of both the system and the environment
may affect the characters of the friction. Typically, the friction may be anisotropic, i.e., the
friction coefficients depend on the orientation of the relative velocity. The reason for this
anisotropism may lie in two folds: one is the non-symmetric Coulomb’s dry friction prop-
erty of the contact surface; and the other is the scales or bristles fixed on the outer edge of
the system, which can prevent system’s backward motions. A number of micro-robot models
are put forward in use of the above ideas [4–7]. The current experimental studies on legless
locomotion systems have mainly focused on single-module and two-module systems [6–8].

Vibration-driven system is a kind of dynamic model of the actuator mentioned above and
has attracted great attention from researchers. It can move in various environments without
propelling components (such as wheels, legs, oars, jets, screws and other outward devices).
The propulsion of this system is provided due to the vibrations of internal masses and the in-
teraction of the system with the resistive media. Such systems have a number of advantages
over conventional systems, they are simple in design and can be fabricated into very small
size, and thus can serve as the dynamic models of certain micro-robots and bionic robots.

System with movable internal mass is a typical vibration-driven system. F.L. Chernousko
is the precursor for studying the rectilinear motion of a rigid body with a controlled internal
mass [9–12]. When a designated excitation force is applied to the internal mass, the reaction
force exerts on the rigid body and changes its velocity. Due to the anisotropism of the resis-
tance force between the body and rough medium, the system can thus move forward under
control. Mechanisms based on this principle do not require complicated gear case and can
be made hermetic and smooth, i.e., without external moving parts. Possible applications of
these mechanisms include the manufacture of capsule-type micro-robots, which have a wide
applicability in restricted places and vulnerable media, for example, robots for inspection in
narrow tubes and self-propelled endoscopes in human vessels [14].

The issue of optimal control of the rectilinear motion of a rigid body with one inter-
nal mass along a rough horizontal plane was considered in [9, 10]. Anisotropic Coulomb’s
dry friction was assumed to act between the body and the plane. The internal mass was al-
lowed to move within a fixed limit along a line parallel to the line of motion of the rigid
body. Two novel control modes of the internal mass, namely, velocity-controlled mode and
acceleration-controlled mode were constructed to realize a steady-state motion (velocity-
periodic motion) of the rigid body. Close attention was paid to the average velocity of the
steady-state motion of the system as a whole. For both control modes, optimal parameters
were obtained to maximize the average velocity of the steady-state motion. In [11, 12], for
velocity-controlled mode, the resistance force between the system and the environment was
extended to piecewise-linear and quadratic-law resistances. Work [13] obtained the optimal
and practical values of control parameters when acceleration-controlled mode is applied
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to the internal mass, and non-symmetric viscous (piecewise-linear) friction works. Some
experimental progress, including a pendulum-driven cart, a vibro-robot in a tube and a cap-
subot, was made by Li, Furuta and Chernousko [14–16].

The rectilinear motions of chain of bodies connected to one another by means of some
types of mechanical component have been studied by a number of authors [1, 17–26]. Work
[17] devoted to the forward rectilinear motion of a system consisting of two rigid bod-
ies along a horizontal line. Dry friction force was assumed to act between the system and
the plane. The motion was controlled by internal forces of interaction between the bodies.
The optimum parameters of the system and a control law were found corresponding to the
maximum mean velocity of the system as a whole. The authors in work [18] considered a
one-dimensional motion of two mass points in a resistive medium. The mass points were in-
terconnected with a kinematic constraint or a linear spring. The friction force was described
as non-symmetric viscous friction. The average velocity of the steady-state motion of the
system as a whole was obtained through method of averaging. Reference [19] dealt with
a system composed of two identical modules with unbalanced vibration exciters. A spring
with linear characteristic was used to connect the two modules. The steady-state motion
was mainly considered and a nearly resonant excitation mode was investigated. Method of
averaging was adopted in the case that the friction is small and the stick–slip motion is neg-
ligible. It was shown that the steady-state motion can be controlled by changing the phase
shift between the two exciters and the sign of the resonant detuning. In [20, 21], under the
action of small non-symmetric Coulomb’s dry friction, the motion of a system that consists
of two equal mass points connected by a nonlinear spring with cubical nonlinearity was
considered. Small periodical force acted between the two mass points to drive the system.
Similarly, without considering the stick–slip effect, method of averaging was employed to
study the approximate steady-state motion of the system with a const “on the average” ve-
locity. The algebraic equation for this constant velocity was found. For different parameters
of the model, it was found that at most three regions of motion with a constant average
velocity exist, but only one or two of them are stable.

As for system composed of more than two modules (or mass points), only a little work
has been carried out by K. Zimmermann, I. Zeidis, etc. The motion of a straight chain
of three equal mass points interconnected with kinematical constraints was considered
in [8, 22]. The ground contact obeys the Coulomb’s dry friction law (discontinuous) or vis-
cous friction law (continuous). The controls were assumed in the form of periodic function
with zero average, shifted on a phase one concerning each other. It was shown that motion is
possible even in the case of isotropic coefficient of friction and constant normal force when
special control algorithms are used. The problem of the motion of a chain of n point masses
along a rough straight line in the case of synchronous control of the interaction between the
point masses and the problem of the undulatory motion of a chain of three point masses
were studied by K. Zimmermann, N. Bolotnik, etc. [1, 24–26]. In [6, 23], some theoreti-
cal and experimental investigations on worm-like system were presented. The system was
modeled in form of a straight chain of n mass points interconnected by springs, but only
the mass point at the center of the chain was excited. The ground contact was described by
non-symmetric dry friction.

Our research motivations come from the following two aspects. On one hand, by ob-
serving the real motions of worms, one knows that every part of a worm’s body plays a
significant role in the propulsion of motion. Hence, with the progress of the research on
worm-like systems and worm-like robots that take the earthworms as live prototypes, sys-
tem consisting of more than two modules (or two mass points) is the developing trend. Each
of the modules can serve as an actuator. However, the current studies on three-module and
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N-module systems have been subjected to several restriction. Either the connecting com-
ponents are kinematical constraints with specially designated control [8, 22], or only one
module works as an actuator [6, 23]. On the other hand, vibration-driven system (system
with movable internal mass) provide a better simulation of a worm’s rectilinear motion than
conventional actuators. Besides, it is more easily to be minimized, and hence, more easily
to be realized in practice. Based on the above two reasons, the study on a three-module
vibration-driven system, with each module modeled as a system with a movable internal
mass, is not only a breakthrough of the previous studies but also the demands for the devel-
opment of legless worm-like robots. Moreover, much of the existing research has assumed
that the dry friction force at the contact is low, and the possible stick–slip motion of the sys-
tem is absent or negligible. However, in the case that the system is fabricated into small size,
the friction force may be no longer a small value in comparing with other forces. Hence,
stick–slip effect can be a remarkable characteristic of such system with dry friction. Some
types of stick–slip motion can be even used to further optimize the system to obtain a higher
average steady-state velocity [29]. For these reasons, it is necessary for one to consider the
stick–slip motions in multi-module vibration-driven systems. The mechanisms of the stick–
slip effects can give hints for the design of worm-like robots, either avoiding or making use
of the stick–slip motions.

In this paper, the rectilinear motion of a three-module vibration-driven system on a rough
horizontal plane is considered. Each module as an actuator is a system with movable in-
ternal mass and is interconnected through linear springs. The relative motions of the in-
ternal masses are specified as sinusoidal periodic motions. Non-symmetric Coulomb’s dry
friction (piecewise constant) is assumed to act between the system and the environment.
Firstly, assuming that the friction is small, the excitation is weak and the stick–slip motion
is negligible, both methods of averaging and modal superposition are employed to study the
steady-state motion of the system as a whole. Major attention is given to the primary reso-
nance situation that the excitation frequency is close to the first-order natural frequency of
the system’s relative oscillation. An approximate value of the average steady-state velocity
of the system is obtained through a set of algebraic equations. By numerical simulations,
we will show that under our assumption, the analytical results are in acceptable agreement
with the numerical ones. However, for some values of parameters, big quantitative errors
exist. Putting the stick–slip effect into consideration, we will explain that the big errors are
induced by stick–slip motions. Then, the mechanisms of the stick–slip motions are analyzed
from the view point of mechanics, with numerical examples as verification. We will point
out that the phase shifts among the internal excitations play a significant role in the appear-
ance of stick–slip motions. Finally, in order to maximize the average steady-state velocity of
the system, two optimal strategies are raised. By applying these two strategies, the efficiency
of the system is much improved.

2 Dynamic model

2.1 Description of the dynamic system

The system under consideration consists of three identical modules interconnected by linear
springs. Each module is composed of a rigid body and a movable internal mass, and can
move along a same straight line on a rough horizontal plane. The internal masses also move
along a horizontal line parallel to the line of motions of the rigid bodies (see Fig. 1). All of
the three internal masses are assumed to perform sinusoidal oscillations, whose amplitudes
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Fig. 1 Three-module vibration-driven system

are limited so as to avoid collision with the rigid body. We assume that the three internal
masses vibrate with the same frequency and the same amplitude, but are shifted in phase.
The resistance force at the contact surface between the system and the rough horizontal
plane is described as non-symmetric Coulomb’s dry friction.

In what follows, for the sake of brevity, the three modules will be referred as module 1,
module 2 and module 3, respectively. The following notations are introduced: M is the mass
of each of the rigid bodies and m is the mass of each of the internal masses; c is the stiff-
ness coefficient of the linear spring; Ri (i = 1,2,3) is the external friction force acting on
module i. Let xi (i = 1,2,3) denote the absolute coordinates measuring the displacement of
module i relative to the plane, ξi (i = 1,2,3) denote the coordinate measuring the displace-
ment of each internal mass relative to its container body. Then the corresponding velocities
and accelerations of each body and internal mass can be expressed into the first-order deriva-
tives and second-order derivatives of xi and ξi (i = 1,2,3).

2.2 Equation of motion

The equations governing the motion of the system are

(M + m)ẍ1 = −mξ̈1 + c(x2 − x1) − R1,

(M + m)ẍ2 = −mξ̈2 + c(x3 − x2) − c(x2 − x1) − R2,

(M + m)ẍ3 = −mξ̈3 − c(x3 − x2) − R3.

(1)

Since the internal motions have the sinusoidal form

ξi = b sinϕi, i = 1,2,3,

we have

ξ̈i = −bω2 sinϕi, i = 1,2,3, (2)

where ϕi (i = 1,2,3) is the phase of internal motion and can be expressed as

ϕi = ωt + φi0, i = 1,2,3. (3)

In the above equations, ω is the excitation frequency, φi0 (i = 1,2,3) is the initial phase
(φi0 ∈ [0,2π]) of each internal mass. In this study, the initial phases φi0 (i = 1,2,3) are
assumed to be non-identical.

The non-symmetric Coulomb’s dry friction is defined as

Ri =

⎧
⎪⎨

⎪⎩

F+, if ẋi > 0,

F0, if ẋi = 0,

−F−, if ẋi < 0,

i = 1,2,3, (4)
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where

F+ = (M + m)f+g, F− = (M + m)f−g. (5)

Here, F0 is the friction force at the state of rest, g is the acceleration due to gravity, f+
and f− are the coefficients of dry friction at the motion in forward and backward directions,
respectively. Both f+ and f− are non-negative constants and are assumed to be different in
magnitudes. This difference implies the anisotropism of the interface or the non-symmetry
of the configuration of the container bodies. Without loss of generality, we assume

f+ < f−, (6)

which means that the friction for forward motion is lower than that for the backward motion.

2.3 A remark on F0 and stick–slip effect

Let us denote Fi (i = 1,2,3) the resultant of all forces applied to module i except the friction
force, i.e.,

F1 = −mξ̈1 + c(x2 − x1),

F2 = −mξ̈2 + c(x3 − x2) − c(x2 − x1),

F3 = −mξ̈3 − c(x3 − x2).

(7)

Then we have

F0 =

⎧
⎪⎨

⎪⎩

F+, if ẋi = 0 and Fi > (M + m)f+g,

Fi, if ẋi = 0 and − (M + m)f−g ≤ Fi ≤ (M + m)f+g,

−F−, if ẋi = 0 and Fi < −(M + m)f−g, i = 1,2,3.

(8)

Sticking (stick–slip motion) is a characteristic feature of dynamical systems with
Coulomb’s dry friction. It relates to the friction force of rest F0. As long as the magni-
tude of the resultant force Fi (i = 1,2,3) does not exceed the given maximal value of the
friction force at rest ((M + m)f+g or (M + m)f−g), module i will remain at a static state
(sticking). Such situation can arise not only at the beginning but also during the movement
as well as at the end. The sticking state will be destroyed only if the magnitude of the force
Fi (i = 1,2,3) outstrips one of the maximal values of the friction force at rest. A large series
of publication were devoted to the problem of contact and collision with friction [27, 28] as
well as the stick–slip motion under the action of Coulomb’s dry friction [29–33].

In this paper, assuming that the stick–slip effect is negligible, we will firstly try to use
method of averaging to investigate the steady-state motion of the system (see Sect. 3). An
average steady-state velocity of the system can be obtained. However, the adopted assump-
tion does not mean that the system cannot undergo a steady-state motion when the stick–slip
effect exists, but that such steady-state motions cannot be acquired by first-order approxi-
mation of method of averaging. Therefore, the reason why method of averaging does not
work everywhere will be given, and the mechanisms of the possible stick–slip motions will
be explained (see Sects. 4 and 5).
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2.4 Non-dimensionalization

Introduce the following dimensionless parameters (labeled by asterisk):

x∗
i = xi

L
, t∗ = t

√
c

M + m
, ε = f−(M + m)g

cL

Ω = ω

√
M + m

c
, β = mcb

(M + m)2gf−
, r∗(ẋ∗

i

) = Ri

(M + m)f−g
,

(9)

where L is a unit of length for non-dimensionalization and can be set arbitrarily.
Proceeded to the dimensionless variables in (1) and then omit the asterisks, to obtain the

dimensionless governing equations

ẍ1 = εβΩ2 sinϕ1 + (x2 − x1) − εr(ẋ1),

ẍ2 = εβΩ2 sinϕ2 + (x3 − x2) − (x2 − x1) − εr(ẋ2),

ẍ3 = εβΩ2 sinϕ3 − (x3 − x2) − εr(ẋ3).

(10)

Here,

r(ẋi) =

⎧
⎪⎨

⎪⎩

k, if ẋi > 0,

r0, if ẋi = 0,

−1, if ẋi < 0,

i = 1,2,3, (11)

in which, k = f+
f− ∈ [0,1] and r0 ∈ [−1, k]. The expression for the dimensionless parameter

r0 is

r0 =

⎧
⎪⎨

⎪⎩

k, if ẋi = 0 and Fi > εk,
Fi

ε
, if ẋi = 0 and − ε ≤ Fi ≤ εk,

−1, if ẋi = 0 and Fi < −ε,

i = 1,2,3. (12)

The resultant forces Fi (i = 1,2,3) in expression (12) have been transformed into dimen-
sionless form, which give

F1 = εβΩ2 sinϕ1 + (x2 − x1),

F2 = εβΩ2 sinϕ2 + (x3 − x2) − (x2 − x1),

F3 = εβΩ2 sinϕ3 − (x3 − x2).

(13)

3 Analysis on steady-state motion

In this section, under the assumption that the stick–slip effect is absent or the portion of the
excitation period during which sticking may occur on at least one module is negligible small
[34], the steady-state motion in the vicinity of the resonance will be studied. For the sake
of brevity, only the primary resonance situation that the excitation frequency is close to the
first-order natural frequency of the relative oscillation will be considered. The second-order
resonance situation can be analyzed similarly and is omitted in this paper due to limited
space. In the case that both the excitation forces and the friction forces are lower compared
with the maximal elastic forces developed in the springs, the steady-state solutions of the
system will be analytically investigated through method of averaging.
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3.1 Modal coordinate equations

Subtracting the first equation of (10) from its second equation, and the second equation of
(10) from its third equation, the relative oscillations of the system’s bodies can be expressed
as

(
1 0
0 1

)(
η̈1

η̈2

)

+
(

2 −1
−1 2

)(
η1

η2

)

= ε

(
βΩ2(sinϕ2 − sinϕ1) − (r(ẋ2) − r(ẋ1))

βΩ2(sinϕ3 − sinϕ2) − (r(ẋ3) − r(ẋ2))

)

,

(14)
where η1 = x2 − x1 and η2 = x3 − x2. Through a modal transformation

(
η1

η2

)

= Ψ

(
y1

y2

)

, (15)

(14) can be transformed into mass-normalized modal coordinate equations
(

ÿ1

ÿ2

)

+
(

1 0
0 3

)(
y1

y2

)

= ε√
2

(
G1 − F1

G2 − F2

)

. (16)

Here, y1 and y2 are modal coordinates, G1, G2 and F1, F2 can be written as

G1 = βΩ2(sinϕ3 − sinϕ1), F1 = r(ẋ3) − r(ẋ1),

G2 = βΩ2(2 sinϕ2 − sinϕ1 − sinϕ3), F2 = 2r(ẋ2) − r(ẋ1) − r(ẋ3).

The transformation matrix Ψ in (15) is the matrix of mass-normalized modal shape, which
gives

Ψ = 1√
2

(
1 1
1 −1

)

. (17)

The natural oscillations are governed by the modal coordinate equation (16) with zero
right-hand side, corresponding to the relative oscillations of the system’s bodies in the ab-
sence of friction and excitation (i.e., ε = 0 in (16)). The first- and second-order natural
frequencies are

ω10 = 1, ω20 = √
3. (18)

The general solutions of the natural oscillations have the form

y1n = a1 sin(ω10t + θ1),

y2n = a2 sin(ω20t + θ2),
(19)

where a1, a2 and θ1, θ2 are the amplitudes and initial phases of the natural oscillations,
respectively, and are all arbitrary constants.

For the purpose of estimating the order of magnitudes of the quantities y1 and y2, we
will ignore the dry friction terms F1 and F2 in (16) and construct the partial solutions of the
resulting linear nonhomogeneous equation that correspond to the forced oscillations. For
Ω �= ω10 and Ω �= ω20, the solutions yield

y10 = 1√
2(Ω2 − 1)

[
εβΩ2(sinϕ1 − sinϕ3)

]
,

y20 = 1√
2(Ω2 − 3)

[
εβΩ2(sinϕ1 + sinϕ3 − 2 sinϕ2)

]
.

(20)
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In the resonance cases where Ω = ω10 or Ω = ω20, bounded solutions of (16) with F1 = 0
and F2 = 0 do not exist.

3.2 Outline of the analysis through method of averaging

According to the theory of vibration mechanics [35], we know that in a linear multi-degree-
of freedom (MDOF) system, all modes of the system are independent of each other. If a
harmonic external excitation of frequency Ω acts on a linear MDOF system with positive
damping, the system will oscillate with the excitation frequency after the system enter into
the steady state, if, none of the natural frequency is equal or close to the excitation frequency.
The general solution of the natural oscillation will soon dissipate because of the damping.
When the excitation frequency equals or approaches to one of the natural frequencies of
the system, resonance may occur. In the present study, the nonlinearity of the system is
contained in the friction terms, which have piecewise constant forms. Except the discontin-
uous points at ẋi = 0 (i = 1,2,3), the friction terms are linear. Thus, unless the stick–slip
phenomena induced by discontinuous points appear, the studied system behaves as a linear
system.

In view of the above analysis, it is essential for us to consider how the steady-state solu-
tions of the system (14) are constructed. On one hand, since the excitation frequency is close
to the first-order natural frequency, in the case of no stick–slip motion, the general solution
corresponding to the second mode of the natural oscillations (i.e., y2n in (19)) will soon dis-
sipate on account of the friction, but the partial solution (i.e., y20 in (20)) will still work. On
the other hand, the first mode will behave in the neighborhood of the primary resonance. Its
solution should be obtained via method of averaging. Consequently, two parts play a vital
role in the solutions of η1 and η2: one is the solution of the first-order modal equation corre-
sponding to the primary resonance, which should be obtained through method of averaging;
the other is the partial solution of the second-order modal equation (i.e., y20).

Therefore, we will use method of averaging to deal with the first-order modal equation.
To that end, we assume

ε � 1, βΩ2 ∼ O(1), y1 ∼ O(1). (21)

The relation y2 ∼ O(1) is not required, for the reason that in the second mode, only the
partial solution of the resulting linear nonhomogeneous equation that corresponds to the
forced oscillation works. According to the definitions in (9), the first two relations of (21)
can be rewritten as

f−(M + m)g

cL
� 1,

mcbΩ2

(M + m)2gf−
∼ O(1). (22)

The estimation on the order of magnitude of the quantity y1 can be given by the maximum
of the absolute value of y10, which is given by

|y10|max =
√

2

|Ω2 − 1|εβΩ2

∣
∣
∣
∣sin

φ10 − φ30

2

∣
∣
∣
∣. (23)

Substituting the expressions (9) for ε, β and Ω into (23) yields

|y10|max =
√

2

|(M + m)ω2 − c|
mbω2

L

∣
∣
∣
∣sin

φ10 − φ30

2

∣
∣
∣
∣. (24)
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To provide the relation |y10| ∼ O(1) in the dimensionless unit, we will choose the length
scale L such that |y10|max = 1, i.e.,

L =
√

2mbω2

|(M + m)ω2 − c|
∣
∣
∣
∣sin

φ10 − φ30

2

∣
∣
∣
∣. (25)

Hence, the conditions (22) that ε � 1 and βΩ2 ∼ O(1) become

f−(M + m)g|(M + m)ω2 − c|√
2mcbω2| sin φ10−φ30

2 | � 1,
mbω2

(M + m)gf−
∼ O(1). (26)

To analyze the response of the system near the primary resonance, we assume that the
difference of the excitation frequency Ω from the first-order natural frequency ω10 has an
order of magnitude ε, i.e.,

Ω2 = ω2
10(1 + εσ), (27)

where σ is a const and σ ∼ O(1). Then the first-order modal coordinate equation can be
transformed into

ÿ1 + Ω2y1 = ε

[
1√
2
(G1 − F1) + σy1

]

. (28)

When ε �= 0, we assume that the solution of y1 still has the form as y1n in (19), which yields

y1 = a1 sin(Ωt + θ1),

ẏ1 = a1Ω cos(Ωt + θ1),
(29)

where a1 and θ1 are functions of t . Then with respect to the analysis on the construction of
the solutions as well as the modal transformation (15), the steady-state solutions of η1 and
η2 can be written as

η1 = 1√
2

[
a1 sin(Ωt + θ1) + y20

]
,

η2 = 1√
2

[
a1 sin(Ωt + θ1) − y20

]
.

(30)

The following changes of variables are introduced:

x1 = X − 1

3
(2η1 + η2), x2 = X + 1

3
(η1 − η2), x3 = X + 1

3
(η1 + 2η2),

ẋ1 = V − 1

3
(2η̇1 + η̇2), ẋ2 = V + 1

3
(η̇1 − η̇2), ẋ3 = V + 1

3
(η̇1 + 2η̇2),

V = Ẋ, X = x1 + x2 + x3

3
,

(31)

where X and V are the absolute displacement and velocity of the center of mass of the three
rigid bodies, respectively.

Adding the three equations of (10) together, the equation for the absolute velocity of the
center of mass yields

V̇ = εβΩ2

3
(sinϕ1 + sinϕ2 + sinϕ3) − ε

3

(
r(ẋ1) + r(ẋ2) + r(ẋ3)

)
. (32)
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Differentiating the first equation of (29) with respect to t , one can eliminate the second
equation of (29) and obtain

ȧ1 sin(Ωt + θ1) + θ̇1a1 cos(Ωt + θ1) = 0. (33)

Differentiating the second equation of (29) and substituting the result into (28) yields

ȧ1 cos(Ωt + θ1) − a1θ̇1 sin(Ωt + θ1) = ε

Ω

[
1√
2
(G1 − F1) + σy1

]

. (34)

Solving (33) and (34), one obtain

ȧ1 = ε

2
√

2Ω

[
2 cos(Ωt + θ1)

(
r(ẋ1) − r(ẋ3)

)

+ βΩ2
(
sin(φ30 − θ1) − sin(φ10 − θ1)

)

+ βΩ2
(
sin(2Ωt + φ30 + θ1) − sin(2Ωt + φ10 + θ1)

)

+ √
2a1σ1 sin(2Ωt + 2θ1)

]
,

θ̇1 = ε

2
√

2a1Ω

[−2 sin(Ωt + θ1)
(
r(ẋ1) − r(ẋ3)

)

− βΩ2
(
cos(φ30 − θ1) − cos(φ10 − θ1)

)

+ βΩ2
(
cos(2Ωt + φ30 + θ1) − cos(2Ωt + φ10 + θ1)

)

+ √
2a1σ1 cos(2Ωt + 2θ1) − √

2a1σ1

]
.

(35)

Keeping only the slowly varying parts in (32) and (35), we obtain a series of standard form
equations in terms of the method of averaging

ȧ1 = εfa = ε

2
√

2Ω

[
2 cos(Ωt + θ1)

(
r(ẋ1) − r(ẋ3)

)

+ βΩ2
(
sin(φ30 − θ1) − sin(φ10 − θ1)

)]
,

θ̇1 = εfθ = ε

2
√

2a1Ω

[−2 sin(Ωt + θ1)
(
r(ẋ1) − r(ẋ3)

)

− βΩ2
(
cos(φ30 − θ1) − cos(φ10 − θ1)

) − √
2a1σ1

]
,

V̇ = εfV = ε

3

[
βΩ2(sinϕ1 + sinϕ2 + sinϕ3)

− (
r(ẋ1) + r(ẋ2) + r(ẋ3)

)]
.

(36)

Average the right-hand side of system (36) with respect to the fast variable t from 0 to
2π
Ω

to obtain

ȧ = εf a, θ̇ = εf θ , V̇ = εf V , (37)
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where f a, f θ and f V are the averages of fa, fθ and fV in a period of 2π
Ω

, respectively, i.e.,

f a = Ω

2π

∫ 2π
Ω

0
fa(t)dt,

f θ = Ω

2π

∫ 2π
Ω

0
fθ (t)dt,

f V = Ω

2π

∫ 2π
Ω

0
fV (t)dt.

(38)

Special attention should be paid that the integrations need to be performed piecewise be-
cause of the existence of non-smooth factor in the friction terms r(ẋi), i = 1,2,3.

Since any unsteady process approaches to a steady state after the transient state is over,
in what follows, the steady-state motion of the system as a whole will be of our interest.
The variable V will be used to characterize the velocity of the system as a whole. In the
steady state, the velocity is constant “on the average” with periodic oscillation imposed on.
We define the system carry out a steady-state motion if V = const, a = const and θ = const,
i.e., V̇ = 0, ȧ = 0 and θ̇ = 0. Thus, the analysis of the steady-state motion is reduced to
studying the solutions of the algebraic equations:

f a = 0, f θ = 0, f V = 0. (39)

3.3 More details of the analysis

In (36), r(ẋi) (i = 1,2,3) have piecewise constant forms. In order to find out the discontin-
uous points, the following transformations are performed in accordance with (31):

ẋ1 = V −
√

2

6
d1 cos(Ωt − ψ1),

ẋ2 = V −
√

2

6
d2 cos(Ωt − ψ2),

ẋ3 = V −
√

2

6
d3 cos(Ωt − ψ3).

(40)

In the above transformations,

ψ1 = arctan
−d12

d11
, ψ2 = arctan

−d22

d21
, ψ3 = arctan

−d32

d31
,

d1 =
√

d2
11 + d2

12, d2 =
√

d2
21 + d2

22, d3 =
√

d2
31 + d2

32,
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Table 1 The eight possible ranges of u

Situation No. Range of u (u > 0) Situation No. Range of u (u > 0)

I u > max{d1, d2, d3} V u ≤ d1, u > d3, u ≤ d2

II u ≤ d1, u ≤ d3, u > d2 VI u > d1, u ≤ d3, u > d2

III u > d1, u > d3, u ≤ d2 VII u ≤ d1, u > d3, u > d2

IV u > d1, u ≤ d3, u ≤ d2 VIII u ≤ min{d1, d2, d3}

and

d11 = 3a1Ω cos θ1 + εβΩ2

√
2(Ω2 − 3)

(cosφ10 + cosφ30 − 2 cosφ20),

−d12 = 3a1Ω sin θ1 + εβΩ2

√
2(Ω2 − 3)

(sinφ10 + sinφ30 − 2 sinφ20),

d21 =
√

2εβΩ2

Ω2 − 3
(cosφ10 + cosφ30 − 2 cosφ20),

−d22 =
√

2εβΩ2

Ω2 − 3
(sinφ10 + sinφ30 − 2 sinφ20),

d31 = 3a1Ω cos θ1 − εβΩ2

√
2(Ω2 − 3)

(cosφ10 + cosφ30 − 2 cosφ20),

−d32 = 3a1Ω sin θ1 − εβΩ2

√
2(Ω2 − 3)

(sinφ10 + sinφ30 − 2 sinφ20).

According to relations (21) and noting that Ω is far away from the second-order natural fre-

quency ω20 = √
3, the terms εβΩ2

Ω2−3
(cosφ10 +cosφ30 −2 cosφ20) and εβΩ2

Ω2−3
(sinφ10 +sinφ30 −

2 sinφ20) are on the order of ε, while the terms a1Ω sin θ1 and a1Ω cos θ1 are on the order
of O(1). Hence, it follows that

d1 	 d2, d3 	 d2, d1 ≈ d3. (41)

In this study, requiring that the velocity of the steady-state motion is positive, only the
situation that V > 0 will be considered. Letting

u = V√
2/6

, (42)

we have u > 0. Based on whether the value of u is greater than di (i = 1,2,3), eight possi-
ble ranges of u can be given, which are listed in Table 1. Then, on the basis of the definition
of non-symmetric Coulomb’s dry friction ((11) and (12)), the integrations (38) will be per-
formed for the eight different situations, respectively.
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In situation (I), ẋi (i = 1,2,3) is always positive and the average results (38) yield

f a = βΩ

2
√

2

(
sin(φ30 − θ1) − sin(φ10 − θ1)

)
,

f θ = βΩ

2
√

2a1

(
cos(φ30 − θ1) − cos(φ10 − θ1)

) − σ

2Ω
,

f V = −k.

(43)

Noting that f V = −k is always negative, we know that the steady-state motion cannot be
realized in this situation.

In situation (II), u ≤ d1, u ≤ d3 and u > d2. The average results give

f a = 1

2
√

2πΩ

[

πβΩ2
(
sin(φ30 − θ1) − sin(φ10 − θ1)

)

− 2

(
√

1 −
(

u

d1

)2

k cos(θ1 + ψ1) +
√

1 −
(

u

d3

)2

cos(θ1 + ψ3)

)

+ k

(

sin

(

θ1 − arccos

(
u

d3

)

+ ψ3

)

− sin

(

θ1 + arccos

(
u

d3

)

+ ψ3

))

−
(

cos

(

θ1 + arcsin

(
u

d1

)

+ ψ1

)

+ sin

(

θ1 + arccos

(
u

d1

)

+ ψ1

))]

,

f θ = 1

2
√

2aπΩ

[

πβΩ2
(
cos(φ10 − θ1) − cos(φ30 − θ1)

) − √
2aπθ

+ 2

(
√

1 −
(

u

d1

)2

k sin(θ1 + ψ1) +
√

1 −
(

u

d3

)2

sin(θ1 + ψ3)

)

+ k

(

cos

(

θ1 − arccos

(
u

d3

)

+ ψ3

)

− cos

(

θ1 + arccos

(
u

d3

)

+ ψ3

))

−
(

cos

(

θ1 + arccos

(
u

d1

)

+ ψ1

)

− cos

(

θ1 − arccos

(
u

d1

)

+ ψ1

))]

,

f V = 1

3π

[

−3kπ + (1 + k)

(

arccos

(
u

d1

)

+ arccos

(
u

d3

))]

.

(44)

From the equation f V = 0, the derivative dk
du

< 0 can be derived. According to relations (41),
when u = d2, the maximal value of k equals approximately 1

2 , and when u = d1 ≈ d3, the
minimal value of k equals 0. Therefore, the steady-state motion can be realized in this situ-
ation only if k locates inside the range (0, 1

2 ).
One should be noted that in situation (III), the conditions u > d1, u > d3 and u ≤ d2

contradict with relations (41) (i.e., d1 	 d2, d3 	 d2). Being similarly with situation (III),
in situations (IV) and (V), the ranges of u are inconsistent with relations (41) either. As a
result, situations (III–V) are leaved out from consideration.

In situation (VI), the average f V gives

f V = 1

3π

[

−3kπ + (1 + k) arccos

(
u

d3

)]

. (45)
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The derivative dk
du

< 0 can also be obtained from f V = 0. Considering the conditions d1 ≈
d3 	 d2 from relations (41) and u > d1, u ≤ d3, u > d2 in this situation, one obtains that
both the minimal and maximal values of k equal approximately to 0, i.e., situation (VI) can
only be valid when k = 0. Hence, it will not be considered.

Similarly, the average f v of situation (VII) is

f V = 1

3π

[

−3kπ + (1 + k) arccos

(
u

d1

)]

. (46)

Through the same analysis as in situation (VI), we need not to take it into consideration
either.

The average results for situation (VIII) yield

f a = 1

2
√

2πΩ

[

πβΩ2
(
sin(φ30 − θ1) − sin(φ10 − θ1)

)

− 2

(
√

1 −
(

u

d1

)2

k cos(θ1 + ψ1) +
√

1 −
(

u

d3

)2

cos(θ1 + ψ3)

)

+ k

(

sin

(

θ1 − arccos

(
u

d3

)

+ ψ3

)

− sin

(

θ1 + arccos

(
u

d3

)

+ ψ3

))

−
(

cos

(

θ1 + arcsin

(
u

d1

)

+ ψ1

)

+ sin

(

θ1 + arccos

(
u

d1

)

+ ψ1

))]

,

f θ = 1

2
√

2aπΩ

[

πβΩ2
(
cos(φ10 − θ1) − cos(φ30 − θ1)

) − √
2aπθ

+ 2

(
√

1 −
(

u

d1

)2

k sin(θ1 + ψ1) +
√

1 −
(

u

d3

)2

sin(θ1 + ψ3)

)

+ k

(

cos

(

θ1 − arccos

(
u

d3

)

+ ψ3

)

− cos

(

θ1 + arccos

(
u

d3

)

+ ψ3

))

−
(

cos

(

θ1 + arccos

(
u

d1

)

+ ψ1

)

− cos

(

θ1 − arccos

(
u

d1

)

+ ψ1

))]

,

f V = 1

3π

[

−3kπ + (1 + k)

(

arccos

(
u

d1

)

+ arccos

(
u

d2

)

+ arccos

(
u

d3

))]

.

(47)

By similar procedure as in situation (II), we can also obtain the range of k for the steady-state
motion in this situation. The result is k ∈ ( 1

2 ,1).
We then list the results of the averaging procedure in Table 2. From Table 2, one may

find that the steady-state motion can only be realized in two situations of the eight, i.e.,
situations (II) and (VIII). Moreover, for situations (II) and (VIII), the ranges of k for the
steady-state motion are also listed in Table 2.

Therefore, in the later discussion, when k ∈ (0, 1
2 ), the algebraic equations (44) will be

used to study the steady-state motion, and when k ∈ ( 1
2 ,1], algebraic equations (47) will be

used. By numerically solving the three steady-state values of a, θ and u from (44) or (47),
one may obtain the approximate average steady-state velocity Vs of the system as a whole
by relation (42). Besides, the solutions η1 and η2 can be expressed also by substituting the
steady-state values as and θs into (30).
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Table 2 The average results for the eight different situations

Situation No. Average results Range of k for steady-state motion
(s-s motion), k ∈ (0,1]

I Equations (43) s-s motion is impossible

II Equations (44) s-s motion occurs when
k ∈ (0, 1

2 )

III No result, contradicting with relation (41) s-s motion is impossible

IV No result, contradicting with relation (41) s-s motion is impossible

V No result, contradicting with relation (41) s-s motion is impossible

VI Equation (45) s-s motion is impossible

VII Equation (46) s-s motion is impossible

VIII Equations (47) s-s motion occurs when
k ∈ ( 1

2 ,1]

4 Numerical simulation

In order to verify the correctness on the construction of the solutions η1 and η2 as well
as the approximate results based on method of averaging, several numerical examples are
calculated in this section. Although the values of parameters taken in this section do not have
relations with practice, they all locate inside feasible regions, and hence, they are meaningful
in guiding experiments on three-module vibration-driven systems. The fourth-order Runge–
Kutta method will be employed in this and the following sections. If an appropriate time
step is chosen (in this paper, the time step is specialized to be 0.01), the applied method
will be able to capture both the fast and slow motion efficiently, and the results will be of
acceptable accuracy.

4.1 Numerical examples for k ∈ (0, 1
2 )

With reference to the experiment in [19], the following parameters are firstly taken:

M = 1.0 kg, m = 0.3 kg, c = 130 N/m, b = 1 m. (48)

Corresponding to the dimensionless natural frequencies (18), the dimensional first-order and
second-order natural frequencies of this system are

ω10 = 10 rad/s, ω20 = 17.32 rad/s. (49)

The excitation frequency of the internal masses is given as

ω = 11 rad/s. (50)

The friction coefficients are given as follows:

f+ = 0.1, f− = 0.4. (51)

Then the dimensionless value k equals 0.25 and locates inside the interval (0, 1
2 ). Therefore,

to study the steady-state motion, (44) will be employed here.
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Fig. 2 The dimensionless average stead-state velocity Vs resulting from numerical simulation (dots) of the
exact equation (10) and the approximate solution (solid curve) for k = 0.25: (a) φ20 = 0, φ30 = 3, φ10 varies
from 0 to 2π ; (b) φ10 = 2, φ20 = 0, φ30 varies from 0 to 2π

The length scale L and the dimensionless parameters ε,β in (9) yield

L = 1.88

∣
∣
∣
∣sin

φ10 − φ30

2

∣
∣
∣
∣ m, ε = 0.0213

| sin φ10−φ30
2 | , β = 5.77. (52)

With reference to (27),

σ =
Ω2

ω2
10

− 1

ε
= 9.86

∣
∣
∣
∣sin

φ10 − φ30

2

∣
∣
∣
∣. (53)

In order to use the method of averaging, we will verify whether the three conditions in
expression (21) can be fulfilled. The value of βΩ2 equals 6.98, which satisfies the condition
βΩ2 ∼ O(1) in (21). However, according to expressions (23) and (26), when the quantity
| sin φ10−φ30

2 | takes small values, the conditions y1 ∼ O(1) and ε � 1 will be violated, and
hence, method of averaging will lose efficacy. Moreover, such situation corresponds to some
kinds of stick–slip motion, which will be discussed in detail in Sect. 5.

In what follows, we assume | sin φ10−φ30
2 | = 1 for non-dimensionalization. Then the length

scale L = 1.88 m, and the dimensionless parameters ε = 0.0213, σ = 9.86.
Due to the periodicity of the excitation, we notice that instead of the absolute values of

the three initial phases, it is the relative values of every two initial phases that affect the
steady-state motion of the system. Without loss of generality, we assume φ20 equals zero.
To verify the correctness of our analysis through method of averaging, two examples are
calculated.

Example 1 k = 0.25, φ20 = 0, φ30 = 3, and let φ10 vary from 0 to 2π .

Example 2 k = 0.25, φ20 = 0, φ10 = 2, and let φ30 vary from 0 to 2π .

The approximate dimensionless average steady-state velocities for these two examples
are obtained and illustrated in Fig. 2(a) and (b) with solid lines, respectively. Meanwhile,
we simulate the exact equations of the system (i.e., (10)) with zero initial displacements
and zero initial velocities for all modules. The numerical average steady-state velocities are
shown in Fig. 2(a) and (b) with dots.
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Fig. 3 The phase diagrams and time histories of η1 and η2 resulting from numerical simulation (dots) and
the approximate solution (solid lines) for k = 0.25, φ10 = 1, φ20 = 0 and φ30 = 3: (a) phase diagram η1 − η̇1;
(b) time history of η1; (c) phase diagram η2 − η̇2; (d) time history of η2

It follows from Fig. 2 that the approximate average steady-state velocities based on
method of averaging are qualitatively in accordance with the numerical results for both
examples. Moreover, in quantitative, they are also in good agreement. Except the very small
regions A1 and A2 near φ10 = φ30, the relative errors for almost the whole range are small.
As explained above, the big relative errors near φ10 = φ30 come from the ineffectiveness of
method of averaging, which is induced by the violation of conditions y1 ∼ O(1) and ε � 1.
Besides, it is worthy mention that the big relative errors correspond to a kind of stick–slip
motion, whose mechanism will be discussed in Sect. 5.

Additionally, two groups of parameters are taken to verify the correctness of our con-
struction on solutions η1 and η2. In Example 1, φ10 = 1, φ20 = 0, φ30 = 3, and in Example 2,
φ10 = 2, φ20 = 0, φ30 = 4. For these two cases, the phase diagrams η1 − η̇1, η2 − η̇2 and
the time histories of η1 and η2 are shown in Figs. 3 and 4, respectively. The analytical solu-
tions obtained through method of averaging are indicated by solid lines, and the numerical
solutions are indicated by dot lines. It follows from Figs. 3 and 4 that the solutions we con-
structed in (30) are correct, and the method of averaging used here is effective and is of high
precision when the stick–slip motion is absent.

4.2 Numerical example for k ∈ ( 1
2 ,1)

The parameters in expressions (48)∼(50) remain unchanged here, while the friction coeffi-
cients are given as follows:

f+ = 0.3, f− = 0.4. (54)
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Fig. 4 The phase diagrams and time histories of η1 and η2 resulting from numerical simulation (dots) and
the approximate solution (solid lines) for k = 0.25, φ10 = 2, φ20 = 0 and φ30 = 4: (a) phase diagram η1 − η̇1;
(b) time history of η1; (c) phase diagram η2 − η̇2; (d) time history of η2

Then the dimensionless value k equals 0.75 and locates inside the interval ( 1
2 ,1). Equations

(47) will be adopted here to study the steady-state motion of the system.
The length scale L and the dimensionless parameters ε,β and σ keep the same as ex-

pressions (52) and (53). Similarly, we still assume | sin φ10−φ30
2 | = 1 here, and as in the case

k ∈ (0, 1
2 ), L = 1.88 m, ε = 0.0213 and σ = 9.86.

Likewise, two examples, namely, Examples 3 and 4, are calculated:

Example 3 k = 0.75, φ20 = 0, φ30 = 3, and let φ10 vary from 0 to 2π .

Example 4 k = 0.75, φ20 = 0, φ10 = 2, and let φ30 vary from 0 to 2π .

Comparisons between the analytical results and numerical results of the dimensionless
average steady-state velocity are shown in Fig. 5. Compared with Fig. 2, it can be seen that
the magnitudes of the average steady-state velocity have a remarkable decline. Although the
trends of the analytical results and numerical results on dimensionless average steady-state
velocity are coincident, big quantitative errors exist at the regions B1, B2 (near φ10 = φ30)
and region C (near |φ30 − φ10| = π ). In reigns B1 and B2, one knows that it is the violation
of conditions y1 ∼ O(1) and ε � 1 that leads to the invalidation of method of averaging.
While in region C, the error is due to the appearance of another kind of stick–slip motion.
The detail mechanisms of this stick–slip motion will also be explained in Sect. 5.
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Fig. 5 The dimensionless average stead-state velocity Vs resulting from numerical simulation (dots) of the
exact equation (10) and the approximate solution (solid curve) for k = 0.75: (a) φ20 = 0, φ30 = 3, φ10 varies
from 0 to 2π ; (b) φ10 = 2, φ20 = 0, φ30 varies from 0 to 2π

5 Stick–slip effect

Stick–slip effect is an important characteristic of dynamic system with Coulomb’s dry fric-
tion. According to the discussion in Sects. 2.3 and 2.4, one knows that module i (i = 1,2,3)

may conduct a stick–slip motion if the force Fi does not exceed the given maximum value
of the friction forces of rest (i.e., ε or εk). The expressions for Fi (i = 1,2,3) are shown
in (13). Substituting the solutions of η1 and η2 into expressions (13), we obtain

F1 = εβΩ2 sinϕ1 + 1√
2
(y1 + y20),

F2 = εβΩ2 sinϕ2 − √
2y20,

F3 = εβΩ2 sinϕ3 − 1√
2
(y1 − y20).

(55)

In what follows, the detail mechanisms for the possible stick–slip motions will be studied.
Numerical simulations will be carried out to verify our analysis on the mechanisms. In this
section, parameters (48)∼(50) as well as the friction coefficients (51) or (54) will still be
used. Without loss of generality, we still assume that φ20 = 0 here.

5.1 Mechanism 1

Noting that when φ10 ≈ φ30 is hold, sin | φ10−φ30
2 | ≈ 0. In such case, as mentioned in Sect. 4,

the conditions y1 ∼ O(1) and ε � 1 in expression (21) cannot be satisfied by the first-order
modal equation, and hence, method of averaging cannot be adopted any more. This explains
the big quantitative errors in regions A1, A2 of Fig. 2 and regions B1, B2 of Fig. 5.

According to expression (23), |y10|max → 0 when φ10 ≈ φ30. Therefore, the amplitude
of the first mode is so small that it has little influence on η1 and η2. Instead, the spatial
solution of the second mode plays a leading role y20. Hence, the solution of η1 and η2 can
be rewritten as

η1 ≈ 1√
2
y20 = 2εβΩ2

Ω2 − 3
cos

(

Ωt + φ10

2

)

sin

(
φ10

2

)

,

η2 ≈ − 1√
2
y20 = − 2εβΩ2

Ω2 − 3
cos

(

Ωt + φ10

2

)

sin

(
φ10

2

)

.

(56)
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Fig. 6 The time histories of ẋi (i = 1,2,3) for k = 0.25, φ10 = 2.95, φ20 = 0 and φ30 = 3: (a) ẋ1 − t ;
(b) ẋ2 − t ; (c) ẋ3 − t

Then it can speculated from the above equations that η1 and η2 will evolve anti-
synchronously.

Through (13) or (55), the forces Fi (i = 1,2,3) can be expressed as

F1 = εβΩ2

√

1 +
[(

Ω2 − 1

Ω2 − 3

)2

− 1

]

sin2

(
φ10

2

)

sin

(

Ωt + φ10

2
+ s1

)

,

F2 = Ω2 + 1

Ω2 − 3
εβΩ2 sinΩt,

F3 = εβΩ2

√

1 +
[(

Ω2 − 1

Ω2 − 3

)2

− 1

]

sin2

(
φ10

2

)

sin

(

Ωt + φ10

2
+ s1

)

,

(57)

where s1 is a constant used for transformations.
As stated in (27), the difference of the excitation frequency Ω from the first natural

frequency ω10 has a magnitude of ε, i.e., Ω2 − 1 = εσ . Hence, when sin2(
φ10

2 ) → 1, the
order of Fi (i = 1,2,3) can be derived as

|F1| ∼ ε2, |F2| ∼ ε, |F3| ∼ ε2. (58)

As a result, for a large time interval of a period, the magnitudes of F1 and F3 are much
smaller than the maximal friction forces (i.e., ε or εk), while the magnitude of F2 has the
same order with the maximal friction forces. As a result, stick–slip motions may happen to
modules 1 and 3.

However, when sin2(
φ10

2 ) → 0, all the three magnitudes of force Fi (i = 1,2,3) have an
order of ε. Predictably, although method of averaging does not work here either, no obvious
stick–slip motion will take place on modules 1 and 3.

As numerical examples, we firstly take φ10 = 2.95 and φ30 = 3, which satisfies the condi-
tion φ10 ≈ φ30. This group of values locates insider the region A1 of Fig. 2 and region B1 of
Fig. 5. The value of sin2(

φ10
2 ) equals 0.99. The time histories of the velocity of each module

for k = 0.25 and k = 0.75 are drawn in Figs. 6 and 7, respectively. The time histories of η1

and η2 are plotted in Fig. 8 with solid lines and dot-dashed lines, respectively.
Figures 6 and 7 show that, when the values of φ10 and φ30 lie inside the region A1 of Fig. 2

and region B1 of Fig. 5, obvious stick–slip motions occur on modules 1 and 3. Solutions
of such stick–slip motions cannot be derived by first-order approximation of method of
averaging, which as a result, lead to the big quantitative errors in the regions near φ10 ≈ φ30.
Besides, it can be seen from Fig. 8 that the time histories of η1 and η2 are anti-synchronized
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Fig. 7 The time histories of ẋi (i = 1,2,3) for k = 0.75, φ10 = 2.95, φ20 = 0 and φ30 = 3: (a) ẋ1 − t ;
(b) ẋ2 − t ; (c) ẋ3 − t

Fig. 8 The time histories of η1 (solid line) and η2 (dot-dashed line) for φ10 = 2.95, φ20 = 0 and φ30 = 3:
(a) k = 0.25; (b) k = 0.75

Fig. 9 The time histories of ẋi (i = 1,2,3) for k = 0.25, φ10 = 1.95, φ20 = 0 and φ30 = 2: (a) ẋ1 − t ;
(b) ẋ2 − t ; (c) ẋ3 − t

indeed. This phenomenon coincides with (56) and supports out analysis that the second
mode plays a leading role in the situation that φ10 ≈ φ30.

Then, to observe the tendency of the emergence of stick–slip motion with respect to
the value of φ10, the following two groups of values are taken, φ10 = 1.95, φ30 = 2 and
φ10 = 1, φ30 = 1, such that the values of sin2(

φ10
2 ) equal 0.68 and 0.23, respectively. When

k = 0.25, the time histories of the velocity of each module for φ10 = 1.95, φ30 = 2 and
φ10 = 1, φ30 = 1 are drawn in Figs. 9 and 10, respectively. It reads from Fig. 9 that module 1
does not execute a stick–slip motion, while module 3 still has a sticking state in a very short
interval of every period. While from Fig. 10, we find that neither module 1 nor module 3
has stick–slip motion. The above phenomena coincide well with out analysis that modules
1 and 3 will not execute obvious stick–slip motions when sin2(

φ10
2 ) → 0.
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Fig. 10 The time histories of ẋi (i = 1,2,3) for k = 0.25, φ10 = 1, φ20 = 0 and φ30 = 1: (a) ẋ1 − t ;
(b) ẋ2 − t ; (c) ẋ3 − t

5.2 Mechanism 2

Notice that when |φ30 − φ10| ≈ π , the conditions y1 ∼ O(1) and ε � 1 in expression (21)
can be fulfilled by the first-order modal equation. Hence, method of averaging is effective in
this case. With reference to (20) and (29), we have

y1 = a1 sin(Ωt + θ1),

y20 = −
√

2εβΩ2

Ω2 − 3
sinΩt.

The orders of y1 and y20 yield

y1 ∼ O(1), y20 ∼ ε. (59)

It reads that the amplitude of the spatial solution of the second mode y20 is much smaller
than that of y1. Hence, we believe that y1 plays a leading role in η1 and η2, and y20 can be
omitted. As a result, the solutions of η1 and η2 yield

η1 ≈ η2 ≈ 1√
2
a1 sin(Ωt + θ1), (60)

and

η2 − η1 = 2εβΩ2

Ω2 − 3
sinΩt. (61)

Hence, it can be speculated that the difference between η1 and η2 has an order of ε, and η1,
η2 will evolve synchronously.

According to (13) or (55), the forces Fi (i = 1,2,3) can be expressed as

F1 ≈ 1√
2
a1 sin(Ωt + θ1),

F2 = Ω2 − 1

Ω2 − 3
εβΩ2 sinΩt,

F3 ≈ − 1√
2
a1 sin(Ωt + θ1).

(62)

Then, based on (27), the orders of Fi (i = 1,2,3) can be determined as

|F1| ∼ O(1), |F2| ∼ ε2, |F3| ∼ O(1). (63)
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Fig. 11 The time histories of ẋi (i = 1,2,3) for k = 0.25, φ10 = 0, φ20 = 0 and φ30 = 3: (a) ẋ1 − t ;
(b) ẋ2 − t ; (c) ẋ3 − t

Fig. 12 The time histories of ẋi (i = 1,2,3) for k = 0.75, φ10 = 0, φ20 = 0 and φ30 = 3: (a) ẋ1 − t ;
(b) ẋ2 − t ; (c) ẋ3 − t

Fig. 13 The time histories of η1 (solid line) and η2 (dot-dashed line) for φ10 = 0, φ20 = 0 and φ30 = 3:
(a) k = 0.25; (b) k = 0.75

Therefore, the magnitudes of F1 and F3 are much larger than the maximal friction forces (ε
or εk) for almost the whole period. On the contrary, the magnitude of F2 is smaller than the
maximal friction forces. Stick–slip motion may happen to module 2 as a result. This explain
the big quantitative error in region C of Fig. 5.

As an example, we select φ10 = 0 and φ30 = 3 to verify our analysis on the occurrence
of stick–slip motion on module 2. Such values locate inside the region C of Fig. 5(a). Fig-
ures 11 and 12 show the time histories of the velocity of each module for k = 0.25 and
k = 0.75, respectively. From Figs. 11 and 12, we can see clearly that module 2 executes an
obvious stick–slip motion when k = 0.75, while no stick–slip motion appear on any mod-
ule when k = 0.25. The above phenomena not only support our prediction on the stick–slip
motion of module 2, but also suggest that the stick–slip motion is also associated with the
parameter k (to be discussed later). Moreover, the time histories of η1 and η2 are shown in
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Fig. 14 The time histories of ẋi (i = 1,2,3) for k = 0.25, φ10 = 2.5, φ20 = 0 and φ30 = 2.5: (a) ẋ1 − t ;
(b) ẋ2 − t ; (c) ẋ3 − t

Fig. 15 The time histories of ẋi (i = 1,2,3) for k = 0.75, φ10 = 2.5, φ20 = 0 and φ30 = 2.5: (a) ẋ1 − t ;
(b) ẋ2 − t ; (c) ẋ3 − t

Fig. 13 with solid line and dot-dashed line, respectively. Notice that η1 and η2 are almost
synchronized. Hence, the analysis on the solutions of η1 and η2, as well as (60) and (61) are
verified.

5.3 Effect of k on the stick–slip motion

As is shown in Figs. 11 and 12, the emergence of stick–slip motion is related to the coeffi-
cient k. In this section, we will discuss the effect of k on the stick–slip motions.

On one hand, when the value of k is small, the friction for forward motion is relatively
low (assuming that f− remains the same). It leads to a larger magnitude of average steady-
state velocity of the system as a whole. This can be clearly observed through comparison
between Figs. 2 and 5. Besides, according to (60), it can be found that η̇1 ≈ η̇2. Then it
follows from ẋ2 = V − 1

3 (η̇1 − η̇2) that the velocity of module 2 can be always positive.
This result is demonstrated well through Fig. 11, from which we can see that the curve of
ẋ2 locates above zero always. Hence, the stick–slip motion is impossible on module 2, for
the reason that ẋ2 = 0 cannot be realized. Consequently, we obtain the first result about the
effect of k on stick–slip motions.

Result (1): For fixed values of initial phases φi0 (i = 1,2,3) that satisfying |φ10 − φ30| ≈
π , stick–slip motion on module 2 is more difficult to be realized for smaller values of k.

On the other hand, provided that φ10 ≈ φ30 is satisfied, the magnitudes of F1 and F3

in (57) increase if sin2(
φ10

2 ) → 0. If the magnitudes of F1 and F3 are larger than the maximal
friction forces (εk or ε), sticking state cannot be triggered. Hence, it can be predicted that
stick–slip motion is easier to be realized on modules 1 and 3 if we take a smaller value of k.
We put two examples with the same values of initial phases (φ10 = 2.5, φ20 = 0φ30 = 2.5)

but different values of k into comparison. One is k = 0.25, and the other is k = 0.75. The
time histories of the velocity of each module are shown in Figs. 14 and 15, respectively.
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From Figs. 14, we find that modules 1 and 3 perform obvious stick–slip motions for
k = 0.25. Rather, in Fig. 15, for k = 0.75, no stick–slip motion appears. Therefore, our
prediction is verified, and the second result about the effect of k on stick–slip motion is
given as follows:

Result (2): For fixed values of initial phases φi0 (i = 1,2,3) that satisfying φ10 ≈ φ30, it
is easier for modules 1 and 3 to perform stick–slip motions for smaller value of k.

6 Optimal control

As a possible dynamic model of worm-like robot, average steady-state velocity of the system
is one of the key characters and is our optimizing object in this research. Larger magnitude
of the average steady-state velocity of the system implies higher efficiency and less energy
input, which is of great significance in robot industries.

Firstly, the effects of friction coefficients on the average steady-state velocity will be
studied. Parameters (48)∼(50) are used in this section again, and the friction coefficient
f− = 0.8 remains unchanged. Similarly with Sects. 4.1 and 4.2, two examples are calculated
for k ∈ (0, 1

2 ) and k ∈ ( 1
2 ,1) respectively, i.e.,

Example 5 k ∈ (0, 1
2 ), φ20 = 0, φ30 = 3.1, and let φ10 vary from 0 to 2π .

Example 6 k ∈ ( 1
2 ,1), φ20 = 0, φ30 = 3.1, and let φ10 vary from 0 to 2π .

For different values of k, the dimensionless average steady-state velocities of the system
are numerically obtained and are shown in Fig. 16(a). To observe the variation of the average
steady-state velocity with the parameter k more clearly, plots for k ∈ (0, 1

2 ) and k ∈ ( 1
2 ,1)

are shown in Figs. 16(b) and (c), respectively.
It follows from Fig. 16 that the average steady-state velocity decreases significantly when

we enlarge the magnitude of k. Such a phenomenon is predictable, since the resistance force
for forward motion will be much smaller than that for backward motion if a small value of k

is taken. Moreover, no matter what values of φ10 are taken, we find that all the dimensionless
average steady-state velocities for k > 0.5 are almost smaller than 0.1. In such situation, the
average steady-state velocities are so small that can be hardly utilized in practice. Based on
the above analysis, we conclude the first optimal control strategy.

Strategy (1): The dimensionless friction coefficient k (k = f+
f− ) should be taken as small

as possible, so as to achieve a higher average steady-state velocity of the system as a whole.
Then, we will study the effects of initial phases on the average steady-state velocity.

Provided that the value of k is small (e.g., k < 0.45), we notice from Fig. 16 that the
maximum value of the average steady-state velocity is always obtained in the region near
|φ10 − φ30| ≈ π . Such a phenomenon does not occur when k > 0.45 due to the stick–slip
motions on module 2 when |φ10 − φ30| ≈ π . Hence, the second optimal control strategy is
derived as follows:

Strategy (2): Provided that Strategy (1) is applied, the values of initial phases φ10 and φ30

should satisfy the condition that |φ10 − φ30| ≈ π so as to increase the average steady-state
velocity of the system as a whole. Extra energy input is not required in the process of this
optimal control.

To observe the effects of control, we put the uncontrolled situation and the optimal-
controlled situation into comparison. When there is no control, we have φ10 = φ20 =
φ30 = 0; and when the optimal control is applied according to Strategy (2), we have φ10 = 0,
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Fig. 16 The average steady-state velocities for different values of k when φ20 = 0, φ30 = 3.1 and φ10 varies
from 0 to 2π : (a) k ∈ (0,1); (b) k ∈ (0, 1

2 ); (c) k ∈ ( 1
2 ,1)

φ20 = 0, φ30 = 3.1. k is assumed to be 0.25 here. The time histories of the variable V are
shown in Fig. 17(a) and (b) for the two situations, respectively.

It follows from Fig. 17 that the average steady-state velocity has a remarkable increase
due to our optimal control. The dimensionless average steady-state velocity equals 0.107 for
the uncontrolled situation, while equals 0.45 for the optimal-controlled situation. Besides,
the velocity amplitude has a significant decline to about 0.09 for the optimal control situation
from 0.27 for the uncontrolled situation. Thus, by utilizing control strategy (2), without extra
energy input, a higher average steady-state velocity can be obtained. The efficiency of the
system is improved.

Figures 18(a) and (b) show the time histories of the velocity of each module of the two
situations, respectively. It is clear that modules 1, 2 and 3 move synchronously in the uncon-
trolled situation, with a low velocity on average. No elastic force is generated on the springs,
i.e., the three modules move independently. However, in the optimal-controlled situation, it
is noticed that the three modules oscillate with a larger average steady-state velocity. Espe-
cially, module 2 has an always positive velocity, with very little up-and-down fluctuation.
Instead, the velocities of modules 1 and 3 oscillate with a large amplitude. A half cycle
difference exists between their velocities, and it seems that modules 1 and 3 conduct an
anti-synchronized motion. Such anti-synchronization phenomenon can be explained as fol-
lows. As mentioned in (61) and (62), when |φ10 − φ30| ≈ π , η1 ≈ η2 ≈ 1√

2
a1 sin(Ωt + θ1)
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Fig. 17 The time histories of V for the uncontrolled situation and optimal-controlled situation when
k = 0.25: (a) uncontrolled situation φ10 = φ20 = φ30; (b) optimal-controlled situation φ10 = 0, φ20 = 0,
φ30 = 3.1

and η2 − η1 = 2εβΩ2

Ω2−3
sinΩt . Putting (61) and (62) into (31), one obtain

ẋ1 ≈ V − 1√
2
a1Ω cos(Ωt + θ1),

ẋ2 ≈ V + 2εβΩ3

3(3 − Ω2)
cosΩt,

ẋ3 ≈ V + 1√
2
a1Ω cos(Ωt + θ1).

(64)

Hence, we know that modules 1 and 3 do carry out an anti-synchronized motion. Some
elastic forces will generate on the springs owing to the relative displacement between two
adjacent modules. It seems that each module “pushes” or “pulls” the neighboring module.

7 Conclusion

The dynamics of a three-module vibration-driven system is studied in this paper. Each mod-
ule serves as an actuator and represents a system with a movable internal mass. Such system
accords with the developing trend of modern robots, since it has the earthworm as prototype
and is promisingly to be further minimized. Therefore, the study on the dynamics of such
vibration-driven system is of great significance in robots design and manufacture. In this
research, non-symmetric Coulomb’s dry friction is assumed to act between the system and
the medium, and sinusoidal excitations are applied to the internal masses.
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Fig. 18 The time histories of ẋ1 (dashed lines), ẋ2 (solid lines) and ẋ3 (dotted lines) for the two situa-
tions when k = 0.25: (a) uncontrolled situation φ10 = φ20 = φ30; (b) optimal-controlled situation φ10 = 0,
φ20 = 0, φ30 = 3.1

Our paper consists of two parts. In the first part, the mechanical system is established,
whose equations of motion are transformed into a nondimensional form. Particular attention
is paid to investigate the steady-state behaviors of the system when stick–slip effect is neg-
ligible. By studying the modal coordinate equations, both methods of averaging and modal
superposition are employed to construct the steady-state solutions of the system. A series of
algebraic equations are obtained, from which, the average steady-state velocity of the sys-
tem as a whole can be derived. For relatively small value of k, numerical simulation shows
that the approximate average steady-state velocities based on method of averaging coincide
with the numerical results in acceptable accuracy. However, when k is relatively large, the
magnitudes of the average steady-state velocity are very small, and there exist big quantita-
tive errors between the analytical results and numerical results. These errors are caused by
the invalidation of the method of averaging and the possible stick–slip motions.

In the second part of our paper we focus firstly on the mechanisms for the possible
stick–slip motions. Two mechanisms associated with the initial phases of the internal ex-
citations are put forward, which explains the big quantitative errors on the approximate
average steady-state velocity of the system. Numerical examples are calculated to verify our
analysis on the mechanisms of stick–slip motions. Moreover, we point out that the stick–
slip motions are k-dependent. Then the optimal control problem is analyzed, whose object
is to realize the maximization of the average steady-state velocity of the system as a whole.
Starting from the effect of friction coefficient on the average steady-state velocity, by control
strategy (1) it is seen that small values of k should be taken so as to achieve a large magni-
tude of the average steady-state velocity. Special attention is also paid to the initial phases of
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the internal excitations, and control strategy (2) is raised: the values of initial phases φ10 and
φ30 should satisfy the condition |φ10 − φ30| ≈ π so as to increase the average steady-state
velocity of the system without extra energy input.
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