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Abstract This paper deals with one-point collision with friction in three-dimensional, sim-
ple non-holonomic multibody systems. With Keller’s idea regarding the normal impulse
as an independent variable during collision, and with Coulomb’s friction law, the system
equations of motion reduce to five, coupled, nonlinear, first order differential equations.
These equations have a singular point if sticking is reached, and their solution is ‘navigated’
through this singularity in a way leading to either sticking or sliding renewal in a uniquely
defined direction. Here, two solutions are presented in connection with Newton’s, Poisson’s
and Stronge’s classical collision hypotheses. One is based on numerical integration of the
five equations. The other, significantly faster, replaces the integration by a recursive sum-
mation. In connection with a two-sled collision problem, close agreement between the two
solutions is obtained with a few summation steps.

Keywords Collision with friction · Coulomb’s friction hypothesis · Newton’s collision
hypothesis · Poisson’s collision hypothesis · Stronge’s collision hypothesis · Hodograph

1 Introduction

This paper deals with one-point, ‘hard’ collision with friction in three-dimensional (3D),
simple non-holonomic multibody systems, using classical collision theories (alternate ap-
proaches involving restoring and dissipative forces, also called ‘soft’ approach, and finite-
element-based approach, also called full-deformation approach, described, e.g., by Chatter-
jee and Ruina in [1] and by Najafabadi et al. in [2], will not be discussed here). Djerassi has
shown in [3] that, as far as two-dimensional (2D) systems are concerned, an algebraic, closed
form, Poisson’s and Stronge’s hypotheses-related solutions always exist, and are unique, co-
herent, and energy-consistent.

Unfortunately, this is not the case with collision in 3D systems. If Keller’s idea [4] and
Coulomb’s friction law are applied to the solution of collision problems, one obtains a set
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of five, coupled, nonlinear, first order differential equations, which has a singular point if
sticking is reached. Solutions with analytic integrals exist only in special cases (e.g., in the
absence of friction, as in [5] and [6], or if the ‘reduced’ 3 × 3 mass matrix is diagonal [7]).
Battle shows in [8] that for what he calls ‘balanced collision’, solutions can be obtained
with the integration of a single differential equation, that the remaining unknowns can be
evaluated algebraically; and that sliding renewal cannot occur. He shows that, for a given
system and collision points, the hodographs (describing the sliding relative velocity compo-
nents of the colliding points versus one another) spanned by the collision initial conditions
are continuous, unique and nonintersecting curves.

Thus, 3D collision problems require in general the solution of the five differential equa-
tions, investigated in depth by a small number of authors. Bhatt and Koechling [9] used
Keller’s idea ([4]) to formulate the differential equations governing 3D collision of a rigid
body hitting a plane, pointing out the singularity encountered if sticking occurs; and, showed
that, depending on the coefficient of friction, either sticking prevails, or sliding is resumed
in a constant, predictable direction. Battle [10] exploits the mathematical similarity between
the description of the hodograph and an autonomous nonlinear flow, and, without solving
the associated differential equations, draws a picture of the hodograph behavior during the
sliding phase of the collision, and its dependence on five system parameters and on the co-
efficient of friction. Stronge [11] formulated the differential equations governing collisions
between two bodies, and, introducing his coefficient of restitution, solved a number of ex-
amples (e.g., ball, rod, triangle and spherical pendulum hitting a plane). Zhen and Liu [12]
formulated differential equations for 3D collision of holonomic systems using Keller’s idea,
replacing the numerical integration with a difference method. They used a search algorithm
to find the sliding direction if sliding resumption occurs.

It may be concluded that these authors provided the building blocks required to produce
comprehensive solutions to the 3D, one point collision with friction problem for simple
non-holonomic systems, a task undertaken in the present work. Two complete solutions are
discussed, the first is based on the numerical integration of the indicated five differential
equations, dealing with sliding, sticking and sliding renewal phases; and the second com-
prises a recursive summation associated with the first.

In both solutions, use is made of the classic collision hypotheses (by Newton [13], Pois-
son [14] and Stronge/Boulanger [11, 15], introducing, respectively, ‘kinematic’, ‘kinetic’
and ‘energetic’ coefficients of restitutions), a choice requiring elaborations in view of two
observations related to these hypotheses. First, these hypotheses capture local effects, i.e.,
elastic and plastic deformations in the neighborhood of the colliding points. When applied to
one point collision problems in multibody systems, they ’disregard’ the effect of the collision
on the entire system (namely, on the rise of structural vibrations, friction in joints, restitu-
tion in the tangential direction, etc., as noted, e.g., in [16] and [1]), hence are not accurate.
Second, Newton’s collision hypothesis can lead to an increase of the system mechanical
energy (illustrated by Kane and Levinson in [17]). These observations gave rise to a num-
ber of newly defined hypotheses. For example, Chatterjee and Ruina augment in [1] New-
ton’s hypothesis with a tangential coefficient of restitution, which, among other features,
improves the predictions of certain experimental results. Najafabadi et al. propose in [16]
a new energy-related coefficient of restitution, which equals the square root of the ratio of
the kinetic energy associated with the ‘constrained’ motion before and after the collision,
better accommodating multibody systems. Rubin [18] discusses physical restrictions on the
coefficient of restitution, concluding that it equals the ratio between the components of the
velocity of separation and the velocity of approach in the impulse direction. Ivanov [19]
arrives at a similar definition from an energy-related view-point.
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In spite of their shortcomings, the classical hypotheses are widely used by numerous
authors to conduct their studies. For example, Whittaker [5], Brach [20] and Smith [7] use
Newton’s hypothesis, Routh [21], Keller [4] and Zen and Liu [12] use Poisson’s hypothe-
sis, and Stronge [11], Hurmuzlu [22] and Djerassi [3] use Stronge/Boulanger’s hypothesis.
Marghitu and Hurmuzlu [23], Smith and Liu [24], Ivanov [19] and others discuss all three
hypotheses, showing that they lead to different results. It is understood, therefore, that a
real-world problem requires calibration of the coefficient of restitution, validating its value
for a limited parameter range (including, as shown by Stoianovici and Hurmuzlu in [25],
geometrical ones). Incidentally, parameters associated with ‘soft’ approaches also require
calibration (as e.g., in [26] and [27]). Accordingly, the analysis described here rests on the
classical hypotheses. The paper starts with preliminaries (Sect. 2), followed by a presen-
tation of the five differential equations and their solution in the events of sliding, sticking
and sliding renewal (Sect. 3) in conjunction with the three classical hypotheses (Sect. 4).
A 3D two-sled collision example is solved by integration in Sect. 5, and then by a recursive
summation in Sect. 6. A short discussion in Sect. 7 concludes this work.

2 Preliminaries

Let

Fr + F ∗
r = 0 (r = 1, . . . , p) (1)

be Kane’s equations of motion for S, a simple, non-holonomic system of ν particles Pi(i =
1, . . . , ν) of mass mi , possessing p independent generalized speeds u1, . . . , up and n (n >

p) generalized coordinates q1, . . . , qn, where Fr and F ∗
r are, respectively, the r th generalized

active force and the r th generalized inertia force for S (Kane and Levinson [17]). vPi , the
velocity of Pi in N , a Newtonian reference frame, can be expressed in terms of u1, . . . , up ,
q1, . . . , qn and time t as

vPi =
p∑

r=1

vPi
r ur + vPi

t (i = 1, . . . , ν) (2)

where vPi
r , called the r th partial velocity of Pi , and vPi

t , called the remainder partial velocity
of Pi , are vector functions of q1, . . . , qn and t . Let B and B ′ be bodies of S, and let P

be a point of B coming into contact with point P ′ of B ′ during the collision of B with
B ′ occurring between two instants t1 and t2 (Fig. 1). Under these circumstances, collision

Fig. 1 3D Collision; side (left) and top views on S̃
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hypotheses [11, 13, 14] can be used to bring the effect of this collision into (1). To this end,
let vR be the relative velocity of points P and P ′, defined as

vR=̂vP − vP ′
, (3)

and note that vR can be written similarly to vPi in (2), hence

vR
r = vP

r − vP ′
r (r = 1, . . . , p), (4a)

vR
t = vP

t − vP ′
t , (4b)

where vR
r is the coefficient of ur in vR . Suppose that, during collision, P ′ exerts on P a

force R, so that P exerts on P ′ a force −R. Then (1) give way to equations that bring into
evidence the contributions of R, i.e.,

Fr + F ∗
r + R · vP

r − R · vP ′
r = 0 (r = 1, . . . , p; t1 ≤ t ≤ t2) (5)

or, in view of (4a),

Fr + F ∗
r + R · vR

r = 0 (r = 1, . . . , p). (6)

During the collision, P is assumed to maintain contact with P ′, i.e., to coincide with P ′;
and a plane S̃ exists which passes through P ′ (≡ P ) and is tangent to B and B ′ at P ′ if both
are locally smooth, or to B ′ at P ′ if only B ′ is locally smooth. Name B and B ′ such that n,
a unit vector perpendicular to S̃, makes vR(t1) · n a non-positive quantity.

Align t, a unit vector lying in S̃, with the projection of vR(t1) on S̃, making vR(t1) · t a
non-negative quantity (see Fig. 1) and vR(t1) · s, where s=̂n × t, vanish. Then

vR(t) = vR(t) · nn + vR(t) · tt + vR(t) · ss, (7a)

vR(t1) · n ≤ 0, (7b)

vR(t1) · t ≥ 0, (7c)

vR(t1) · s = 0. (7d)

vR(t1) and vR(t2) (at times denoted vA and vS [17]) are called velocity of approach and
velocity of separation, respectively. Equation (6) can thus be replaced with

Fr + F ∗
r + R · nvR

r · n + R · tvR
r · t + R · svR

r · s = 0 (r = 1, . . . , p; t1 ≤ t ≤ t2). (8)

If it is assumed that t2 − t1 is ‘small’ compared to time constants associated with the motion
of S, and that, consequently, q1, . . . , qn and t remain constants between t1 and t2, then both
sides of (8) can be integrated from t1 to t ≤ t2, yielding

p∑

s=1

mrs�us + InvR
r · n + ItvR

r · t + IsvR
r · s = 0 (r = 1, . . . , p). (9)

Here, In, It and Is are the normal and tangential impulses at time t , defined as

In=̂
(∫ t

t1

Rdt

)
· n, (10a)
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It=̂
(∫ t

t1

Rdt

)
· t, (10b)

Is=̂
(∫ t

t1

Rdt

)
· s, (10c)

vR
r =̂vR

r (t) (t1 ≤ t ≤ t2, r = 1, . . . , p) (see (4a)), �us (s = 1, . . . , p) are defined as

�us=̂us(t) − us(t1) (s = 1, . . . , p), (11)

and mrs is the entry in raw r , column s of the mass matrix −M associated with (1) (see (63),
Appendix A). Note that n, t and s, defined only for t1 ≤ t ≤ t2, remain fixed in N during
the collision. Also note that R · n(t1 ≤ t ≤ t2) > 0 (P ′ cannot ‘pull’ P ), hence In > 0. The
matrix form of (9), solved for �us (s = 1, . . . , p) reads

|�u1 · · ·�up| = −VnM−1In − VnM−1It − VnM−1Is (12a)

Vn=̂|vR
1 · n · · ·vR

p · n|, (12b)

Vt=̂|vR
1 · t · · ·vR

p · t|, (12c)

Vs=̂|vR
1 · s · · ·vR

p · s|. (12d)

Now, vR(t) − vR(t1) can be written

vR(t) − vR(t1) = ∣∣�u1 · · ·�up

∣∣∣∣vR
1 · · ·vR

p

∣∣T (
vR

t (t) − vR
t (t1) =

(4b)
0
)

(13)

when use is made of (2), (4a) and (4b). If both sides of (13) are dot-multiplied by n, t and s,
one at a time, and if |�u1 · · ·�up| is eliminated with the aid of (12a), one has, defining
V=̂|VnVtVs |T (⇒ VT = |VT

n VT
t VT

s |),
∣∣∣∣∣∣∣

vR(t) · n − vR(t1) · n

vR(t) · t − vR(t1) · t

vR(t) · s − vR(t1) · s

∣∣∣∣∣∣∣
= −VM−1VT

∣∣∣∣∣∣

In

It

Is

∣∣∣∣∣∣
. (14)

The coefficients of In, It and Is in (14) are functions of q1, . . . , qn and t , hence remain
constants between t1 and t2. Defining mnn, mnt , mtt , mns , mts and mss as

mnn=̂ − VnM−1VT
n > 0, mnt=̂ − VnM−1VT

t , mtt=̂ − VtM−1VT
t > 0,

mns=̂ − VnM−1VT
s , mts=̂ − VtM−1VT

s , mss=̂ − VsM−1VT
s > 0,

(15)

vn, vt , vs , vn1, vt1, vs1, vn2, vt2 and vs2, the n, t and s components of vR at times t , t1 and t2,
and In2, It2 and Is2, the n, t and s impulse components at time t2, as

vn =̂
(7a)

vR(t) · n, vt =̂
(7a)

vR(t) · t, vs =̂
(7a)

vR(t) · s, (16)

vn1=̂vR(t1) · n(< 0)
(7b)

, vt1=̂vR(t1) · t(> 0)
(7c)

, vs1=̂vR(t1) · s(= 0)
(7d)

, (17)

vn2=̂vR(t2) · n, vt2=̂vR(t2) · t, vs2=̂vR(t2) · s, (18)



178 S. Djerassi

In2=̂In(t2), It2=̂It (t2), Is2=̂Is(t2), (19)

(In1=̂In(t1) = 0, It1=̂It (t1) = 0, Is1=̂Is(t1) = 0) one can rewrite (14) for t1 ≤ t ≤ t2

vn − vn1 = mnnIn + mntIt + mnsIs, (20)

vt − vt1 = mntIn + mtt It + mtsIs, (21)

vs − vs1 = mnsIn + mtsIt + mssIs . (22)

(Equations (20)–(22) reduce to (22)–(23) in [28] for 2D systems; then mts = mns =
mss = 0.) These so-called ‘reduced equations of motion’ possess a coefficient matrix M

shown in Appendix A to be positive definite; and six unknowns In, It , Is , vn, vt and vs .
Knowledge of In2, It2 and Is2 enables the evaluation of �u1(t2) . . .�up(t2) with (12a), with
which simulations (i.e., numerical integrations of (1)) can be kept running. Accordingly, In2,
It2 and Is2 are generated in the following sections first by integration and then by recursive
summation, with the aid of friction- and collision-related hypotheses.

Regarding �E2, the change in the system mechanical energy following a collision, a
straightforward extension of the proof given in [28] for the planar case shows that

�E2 = 1/2In2(vn2 + vn1) + 1/2It2(vt2 + vt1) + 1/2Is2(vs2 + vs1) (23)

(= 1/2u2(−M)uT
2 − 1/2u1(−M)uT

1 , where u=̂|u1 · · ·up|) for the 3D case, provided

−In2vR
t · n − It2vR

t · t − Is2vR
t · s +

ν∑

i=1

miv
Pi
t · [vPi (t2) − vPi (t1)

] =
(2)

0, (24)

a condition ‘neutralizing’ specified motions implied by vR
t and vPi

t (i = 1, . . . , ν).

3 Solution by integration

One can start with the differential form of (20)–(22) given by

dvn = mnndIn + mntdIt + mnsdIs, (25)

dvt = mntdIn + mttdIt + mtsdIs, (26)

dvs = mnsdIn + mtsdIt + mssdIs . (27)

Let the slip speed s of P relative to P ′ and the orientation angle φ be defined so that

vt = scφ, (28a)

dvt = cφds − ssφdφ, (28b)

vs = ssφ, (28c)

dvs = sφds + scφdφ, (28d)
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where sφ = sinφ and cφ = cosφ (Fig. 1); and note that as long as there is slip R · t =
−μR · ncφ, R · s = −μR · nsφ ([(R · t)2 + (R · s)2]1/2 = μ|R · n|), in accordance with
Coulomb’s friction law, or, in view of (10a)–(10c),

dIt = −μdIncφ, dIs = −μdInsφ, (29)

where μ is Coulomb’s coefficient of friction. With f,g and h defined as

f =̂dvn/dIn, g=̂dvt/dIncφ + dvs/dInsφ,

h=̂ − dvt/dInsφ + dvs/dIncφ
(30)

one can show, dividing (25)–(27) throughout by dIn and using (29), that

f = mnn − μmntcφ − μmnssφ, (31)

g = mntcφ + mnssφ − μmttc
2φ − μmsss

2φ − 2μmtssφcφ, (32)

h = −mntsφ + mnscφ − μmts(c
2φ − s2φ) + μ(mtt − mss)sφcφ, (33)

and that dvt and dvs can be eliminated from (25), (28b) and (28d), which reduce to

dφ/dIn = h/s, (34a)

ds/dIn = g, (34b)

dvn/dIn = f, (34c)

dIt/dIn = −μcφ, (34d)

dIs/dIn = −μsφ. (34e)

Equations (34a)–(34e) comprise five ordinary, coupled, first order differential equations with
five dependent variables φ, s, vn, It and Is and one, monotonously increasing, independent
variable In governing the sliding portion of the collision. The right-hand sides of (34a)–(34e)
and their partial derivatives with respect to φ, s, vn, It and Is , are continuous functions of
φ, s, vn, It and Is in the region s > 0. Therefore, a solution of (34a)–(34e) in conjunction
with the following initial conditions (when In = 0): φ(0) = 0, s(0) = vt1 (then, by (28a)–
(28d) vt (0) = s(0) = vt1, vs(0) = 0), vn(0) = vn1, It (0) = 0 and Is(0) = 0, always exists
and is unique (see, e.g., [29], p. 267). Moreover, d�E = R · vR(t) =

(7a),(16)
(R · nn + R · tt +

R · ss) · (vnn + vt t + vss) =
(10),(28a,c),(29)

(vn − μs)dIn. With d�En=̂vndIn, (34a)–(34e) can be

augmented with the differential equations

d�E/dIn = vn − μs, (35a)

d�En/dIn = vn, (35b)

enabling the evaluation of the ‘total’ and the ‘normal’ energy losses during collision.
It is worth noting that (23) is valid for t1 < t ≤ t2 if �E2, In2, vt2, etc. are replaced with

�E, In, vt , etc.; then the In derivative of both sides of (23) can be used to prove the validity
of (35a) with the aid of (29), (34b)–(34e) and (20)–(22) in yet a different way. Moreover,
d[1/2In(vn + vn1)]/dIn �= vn, hence �En �= 1/2In(vn + vn1). It can be shown this is also the
case with 2D systems, except in sliding.
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In general (34a)–(34e) cannot be integrated analytically (see, e.g., [9] and [11]). Further-
more, the ‘trivial’ solution φ ≡ 0, valid for 2D problems, does not apply: φ ≡ 0 implies
dφ/dIn = 0; however, during sliding s > 0, hence h(μ,φ) = 0 (see (34a)). This equation
has at least two nonzero solutions for φ (Appendix B), in contrast with the trivial solution.

Collisions comprise at least the first of the following events.

3.1 Sliding

Suppose that In2, the normal impulse at t2 is known, and that the sliding speed s remains
positive throughout the integration of (34a)–(34e) from In = 0 to In = In2. Then integration
underlies the solution for sliding, yielding φ(t2), s(t2)(> 0) (hence, by (28a) and (28c) vt2

and vs2), vn2, It2 and Is2.

3.2 Sticking

It may occur that s becomes zero, say, at t = tS < t2, i.e., before In = In2. In that event
h(μ,φ) → 0 as s → 0, provided g(μ,φ) < 0; and vice versa. To show this, note that

dvt/dIn =
(28b)

cφds/dIn − ssφdφ/dIn =
(34a,b)

gcφ − hsφ, (36a)

dvs/dIn =
(28d)

sφds/dIn + scφdφ/dIn =
(34a,b)

gsφ + hcφ, (36b)

hence

dvs/dvt = (dvs/dIn)/(dvt/dIn) = (gsφ + hcφ)/(gcφ − hsφ). (37)

Moreover, lims→0(dvs/dvt ) =
(28b,d)

lims→0[s(φ)/c(φ)], so that, with (37),

lim
s→0

[
sφ/cφ − (gsφ + hcφ)/(gcφ − hsφ)

]

= lim
s→0

{
h/

[
cφ(gcφ − hsφ)

]} = 0 ⇒ h(μ,φ)|s=0 = 0

provided at least one solution φ̄ of h(μ,φ) = 0 satisfies g(μ, φ̄)c2φ̄ �= 0. In fact, when
s(> 0) → 0 then necessarily ds/dIn < 0, hence, by (34b), lims→0⇒φ→φ̄ g(μ,φ) < 0, in
agreement with Appendix B, showing that at least one such solution exists. Conversely,
(34a) and (34b) can be condensed into

ds/s = g/hdφ, (38)

an equation which, when integrated from s = s(0) and φ = 0 to s and φ yields s =
s(0) exp

∫ φ

0 g(μ,η)/h(μ,η)dη, showing that if limφ→φ̄ h(μ,φ) → 0 (and, since dη/h >
(34a)

0)

and limφ→φ̄ g(μ,φ) < 0, then s(> 0) → 0 and sticking is approached.
During sticking, (25)–(27) remain valid with

vt ≡ 0, vs ≡ 0 ⇒ dvt = 0, dvs = 0, (39)

yielding, when solved for dIn, dIt and dIs ,

dIn = cndvn, (40a)
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dIt = ctdvn, (40b)

dIs = csdvn, (40c)

where cn, ct and cs are functions of mnn, mnt , . . . ,mss given by

cn = (mttmss − m2
ts )/detM > 0, (41a)

ct = (mnsmts − mntmss)/detM, (41b)

cs = (mntmts − mnsmtt )/detM, (41c)

⇒ M|cnct cs |T = |100|T . (41d)

Equations (40a)–(40c) govern sticking just as (34c)–(34e) govern sliding. Seeking limit-
values of φ and μ satisfying both (34c, 34d, 34e) and (40a)–(40c) one finds

dIs/dIt =
(34d,e)

tanφ =
(40)

cs/ct , (42)

μ =
(34d)

−dIt/dInc
−1φ =

(40a,b)
−ct/(cncφ), μ =

(34e)
−dIs/dIns

−1φ =
(40a,c)

−cs/(cnsφ).

Here cn > 0 (see (41a)) and μ > 0, conditions that, given ct and cs , determine μ and (the
signs of sφ and cφ, hence) φ uniquely, namely,

μc =
√

c2
t + c2

s /cn, φc = a tan 2(−cs,−ct ). (43)

Moreover, dvt/dIn = 0 and dvs/dIn = 0 ((39)), so that, in view of (36a) and (36b)

g(μ,φ) = 0, h(μ,φ) = 0. (44)

μc and φc in (43) satisfy (44), and conversely, if g(μ,φ) and h(μ,φ) ((32) and (33)) are
substituted explicitly in (36a) and (36b), then, in view of (39) and (44), mns − μmsssφ −
μmtscφ = 0 and mnt − μmttcφ − μmtssφ = 0, equations having (μc,φc) as a unique so-
lution. μc is interpreted as the minimal coefficient of friction for which sticking remains
once it has occurred. (In ‘balanced collision’ mnt = mns = 0 ⇒

(41)
ct = cs = 0 ⇒

(43)
μc = 0, as

indicated by Battle in [8].) That is, if s(t = tS) = 0 and μ > μc then s(tS < t ≤ t2) = 0; and,
for tS < t ≤ t2, (34a)–(34e) can be replaced with

dφ/dIn = 0, (45a)

ds/dIn = 0, (45b)

dvn/dIn =
(40a)

1/cn, (45c)

dIt/dIn =
(40a,b)

ct /cn, (45d)

dIs/dIn =
(40a,c)

cs/cn. (45e)

3.3 Sliding renewal

If μ < μc , and s(t = tS) = 0 before In2 is reached, sliding is resumed; however, In2, It2

and Is2 cannot be obtained by the integration of (34a)–(34e), which become singular (s(t =
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tS) = 0 ⇒ h(μ, φ̄) = 0). One way to navigate the solution through this singularity (see [9])
for t > tS is to let φ switch values from φ = φ̄ to φ = φ̂, the only solution of h(μ,φ) = 0
satisfying ds/dIn = g(μ, φ̂) > 0 (see Appendix B). If, in addition, dφ/dIn = 0 is imposed,
then φ remains constant (= φ̂), ds/dIn = const = g(μ, φ̂) > 0 (see (34a) and (34b)), and,
for tS < t ≤ t2 (34a)–(34e) can be replaced with

dφ/dIn = 0, (46a)

ds/dIn = g(μ, φ̂), (46b)

dvn/dIn = f (μ, φ̂), (46c)

dIt/dIn = −μcφ̂, (46d)

dIs/dIn = −μsφ̂. (46e)

In conclusion, solutions to the 3D collision problem can be obtained by the integration
of (34a)–(34e). If s(t = tS) = 0, then (34a)–(34e) are replaced by either (45a)–(45e) or
(46a)–(46e), according to weather μ > μc (sticking) or μ < μc (sliding renewal).

It may occur that μ = μs=̂mns/mts ; then initially h(μ,0) = mns − μmts = 0. In that
event φ ≡ 0, and the hodograph remains on the vt axis unless sticking occurs with μs < μc;
then sliding is renewed in the φ̂ direction. If μs > μc , sticking prevails.

Next, the assumption that In2 is known is abandoned in favor of collision hypothe-
ses which govern the integration limits. Accordingly, Newton’s [13], Poisson’s [14] and
Stronge’s [11] collision hypotheses will be introduced, along with the following assumption,
namely, that the collision time comprises a compression phase, starting at t1 and terminating
at tC , the instant of maximum compression, when the normal relative velocity vanishes, i.e.,

vnC=̂vR(tC) · n = 0 (t1 < tC < t2); (47)

and a restitution phase, starting at tC and terminating at t2, when R(t2) = 0 (see (5)).

4 Newton’s, Poisson’s and Stronge’s hypotheses

4.1 Newton’s hypothesis

In accordance with Newton’s hypothesis, the coefficient of restitution is defined

e=̂ − vn2/vn1 (0 ≤ e ≤ 1). (48)

Here, the integration proceeds until vn = vn2.

4.2 Poisson’s hypothesis

Let InC and InR be parts of In2 associated with the compression and with the restitution
phases, respectively; then (see (10a))

In2 = InC + InR, InC=̂
(∫ tC

t1

R dt

)
· n, InR=̂

(∫ t2

tC

R dt

)
· n. (49)

According to Poisson’s hypothesis, the coefficient of restitution is defined

e=̂InR/InC (0 ≤ e ≤ 1), (50)
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so that, in light of (49) and (50)

In2 = (1 + e)InC. (51)

Here InC is recorded for which vn vanishes. In2 is then evaluated with (51), and the integra-
tion proceeds until In = In2.

4.3 Stronge’s hypothesis

Let �EnC(< 0) and �EnR(> 0) be parts of the ‘normal’ energy loss �En2 (see (35b))
associated with the compression and the restitution phases, respectively; then

�En2 = �EnC + �EnR, �EnC=̂
∫ InC

0
vn dIn, �EnR=̂

∫ In2

InC

vn dIn. (52)

According to Stronge’s hypothesis, the coefficient of restitution is defined

e2=̂ − �EnR/�EnC (0 ≤ e ≤ 1), (53)

so that, in light of (52) and (53)

�En2 = (1 − e2)�EnC. (54)

Here �EnC is recorded for which vn vanishes (see (35b)). �En2 is then evaluated with (54),
and the integration proceeds until �En = �En2.

The steps underlying the solution by integration can be summarized as follows:

1. Find n, t and s satisfying relations (7b)–(7d), and identify Vn, Vt and Vs ((12a)–(12d)),
the members of M ((9)) and M ((18)), cn, ct and cs (41a)–(41c), and μc , φc ((43)); and
φ̂ satisfying h(μ, φ̂) = 0 with g(μ, φ̂) > 0.

2. Introduce λ, a parameter, and integrate both sides of the expressions

[Eqs.(34i)](1 − |λ|) + [Eqs.(45i)]λ(λ − 1)/2 + [Eqs.(46i)]λ(λ + 1)/2 (55)

with i playing the roles of a, b, c, d and e, one at a time, and with λ(0) = 0, φ(0) = 0,
s(0) = vt1, vn(0) = vn1, It (0) = 0 and Is(0) = 0 as initial conditions, switching, if s <

εs , from the initial sliding (λ = 0) to sticking (μ > μc,λ = −1) or to sliding renewal
(μ < μc,λ = 1). It can be shown that, if εs is sufficiently small, it has no effect on the
integration results.

3. Identify vn2, In2 or �En2, and stop the integration according to the chosen collision
hypothesis; find In2, It2 and Is2 and then �u1, . . . ,�up with (12a).

4. Evaluate the mechanical energy loss with both (23) (two versions) and (35a). Identical
results validate of the entire procedure.

These steps need modifications, discussed in Appendix C, when used to solve the 2D prob-
lem. With these modifications, all the results reported in Table 3 of [3] for the planar version
of the two-sled problem are reproduced with a three-digit precision.

5 The two-sled example ([30], p. 9)

Figure 2 shows two identical sleds A and B comprising rods of length 2l and mass m,
supported by massless knife-edges with steering angles γ and δ, touching planes Ā and



184 S. Djerassi

Fig. 2 A two-sled collision

B̄ fixed in N at points As and Bs , a distance k from their mass centers A∗ and B∗; and
supported by two back sliders moving in Ā and B̄ , respectively. Ā and B̄ are rotated with
respect to one another about their intersection line L forming an angle θ < π/2 with ā1, a
unit vector fixed in Ā, such that lines a and b lying in Ā and B̄ normal to L form an angle
η < π/2; and b̄1|η=0 = ā1. Let u1, . . . , u6 be generalized speeds, and let the velocities of A∗
and B∗, and the angular velocities of A and B in N , expressed as

vA∗ = u1a1 + u2a2, ωA = u3a3, vB∗ = u4b1 + u5b2, ωB = u6b3,

be subject to the constraints vAs · a′
2 = 0 and vBs · b′

2 = 0 imposed by the knife-edges. Here
ai , bi , a′

i and b′
i (i = 1,2,3) are sets of three dextral, mutually perpendicular unit vectors

fixed in A and B , with a3 and a′
3, and b3 and b′

3 normal to Ā and B̄ , respectively, as shown in
Fig. 2. The indicated constraint equations, when written explicitly and solved for u2 and u5,
read

u2 = tγ u1 − ku3, u5 = tδu4 − ku6,

where t (.) = tan(.), and lead, with u1, u3, u4, and u6 regarded as independent generalized
speeds, to the following equations, governing motions of A and B:

−u̇1/c
2γ + ktγ u̇3 − ku2

3 = 0, ktγ u̇1 − (l2/3 + k2)u̇3 + ku1u3 = 0,

−u̇4/c
2δ + ktδu̇6 − ku2

6 = 0, ktδu̇4 − (l2/3 + k2)u̇6 + ku4u6 = 0,

where s(.) = sin(.) and c(.) = cos(.). Defining generalized coordinates q1, . . . , q6 as
q1=̂pA∗ · a1, q2=̂pA∗ · a2, q̇3=̂u3 and q4=̂pB∗ · b1, q5=̂pB∗ · b2, q̇6=̂u6, one can replace
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the constraint equations with

−s(γ + q3)q̇1 + c(γ + q3)q̇2 + kcγ q̇3 = 0,

−s(δ + q6)q̇4 + c(δ + q6)q̇5 + kcδq̇6 = 0,

non-integrable differential equations, which make the system non-holonomic. Next, suppose
that at time t1 the endpoint Bc of B collides with point Ac of A located a distance p from
A∗; and that it is required to evaluate the associated changes in the generalized speeds and
in the system kinetic energy. To this end, the velocities of Ac and Bc are expressed as

vAc = u1a1 + (u2 + pu3)a2, vBc = u4b1 + (u5 + lu6)b2,

and the relative velocity vR = vBc − vAc of the colliding points is written, with z1 = (k −
p)u3 − tγ u1, z2 = (l − k)u6 + tδu4, z3 = cη + c2θ(1 − cη), z4 = cη + s2θ(1 − cη), z5 =
sθcθ(1− cη), z6 = z5sq6 + z3cq6, z7 = z5cq6 − z3sq6, z8 = z5cq6 + z4sq6, and z9 = z5sq6 −
z4cq6, as

vR = [(sq3z8 + cq3z6)u4 − u1 + (sq3z9 − cq3z7)z2]a1 + [z1 − (sq3z7

+ cq3z9)z2 − (sq3z6 − cq3z8)u4]a2 + [c(θ − q6)z2 − s(θ − q6)u4]sηa3.

With n, t and s identified as n = a2, t = cϕa1 + sϕa3 and s = −sϕa1 + cϕa3, ϕ can be
found that satisfies vR · t = vt1 > 0 and vR · s = vs1 = 0, enabling the evaluation of Vn, Vt

and Vs ((12a)–(12d)) and of the members of M ((15)). With m = 3 kg, l = 1, k = 0.75,
p = −0.5m, γ = δ = 0.2, θ = π/3, η = 2π/9 rad, q3(t1) = π/4, and q6(t1) = 7π/4 rad
one can show, by substitutions, that ϕ = 3.81, mnn = 0.225, mtt = 0.236, mss = 0.270,
mnt = −0.109, mts = −0.116, mns = −0.126 ((18)), cn = 42.6, ct = 37.3, cs = 35.8 ((41a)–
(41c)), μc = 1.21, φc = 3.76 ((43)) and φ̂ = 3.91 (Sect. 3.3). For u1(t1) = u4(t1) = 1 m/sec,
u3(t1) = u6(t1) = 0.1 rad/sec (vn1 = −0.9, vt1 = 1.06, vs1 = 0m/ sec), one obtains, integrat-
ing (34a)–(34e), (45a)–(45e) and (46a)–(46e) with εs = 0.1 ÷ 0.01, results recorded in Ta-
ble 1 and Fig. 3 for μ = 0.6, 1.1, 1.6 and e = 0.8, where ‘!’, ‘+’ and ‘�’ designate collision
termination points according Newton’s, Poisson’s and Stronge’s hypotheses, respectively.
One can thus follow the hodographs as μ increases. For μ < μs=̂mns/mts = 1.086 (e.g.,
μ = 0.6) there is sliding, with a local maximum approaching the origin. If μ = μs ⇒ h = 0
(see end of Sect. 3.3) then φ ≡ 0 throughout sliding ((34a)). The sliding part runs along the
vt axis, and is followed by a sliding renewal part. The latter becomes ‘shorter’ as μ increases
toward μc , vanishing for μ = μc . For μ > μc sliding is followed by sticking for all collision
hypotheses; then the three hodograph end-points overlap at the origin. The similarity be-
tween the hodographs for the sliding and the sliding renewal cases corroborates the ‘switch’
between φ̄ and φ̂ when sliding renewal occurs (Appendix B). Regarding energy gains asso-
ciated with Newton’s hypothesis, it turns out to be significantly larger than that recorded for
2D systems, e.g. in [17] and [28].

It may occur that the number of collisions become large, as when numerous particles
or bodies collide with one another. In that case the use of elaborate numerical integrators
to solve (55) can produce prohibitively long simulations, unless exact integrals exist, e.g.,
when μ = 0 ([5] and [6]) or when mnt = mns = mts = 0. This state of affairs can be al-
leviated with recursive summation-based solutions, which, taking advantage of the limited
integration range of (55), provide a reasonable compromise between accuracy and speed.
Such a solution is discussed next.
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Fig. 3 vs vs. vt (hodograph) and vn and s vs. In for μ = 0.6, 1.1, 1.6, yielding sliding, sliding renewal
(φ̄ = 0.432) and sticking (φ̄ = 0.598), respectively

6 Solution by recursive summation

6.1 Recursive summation

Referring to Euler’s explicit, first order accurate method, described, e.g., in [31], Para. 3,
Sect. 9, let In(1) = 0, In(i) = (i − 1)/k, D(i)=̂In(i) − In(i − 1)(i = 2,3, . . .), where k, an
integer, is a refinement factor, and replace (55) with

φ(i) =
(34a),(45a),(46a)

{
φ(i − 1) + [

h(i − 1)/s(i − 1)
]
D(i)

}
(1 − |λ|) + φ̂λ(λ + 1)/2, (56a)

f (i) =
(31)

mnn − μmntcφ(i) − μmnssφ(i), (56b)

g(i) =
(32)

mntcφ(i) + mnssφ(i) − μmttc
2φ(i) − μmsss

2φ(i) − 2μmtssφ(i)cφ(i), (56c)

h(i) =
(33)

−mntsφ(i)+mnscφ(i)−μmts[c2φ(i)−s2φ(i)]+μ(mtt −mss)sφ(i)cφ(i), (56d)

s(i) =
(34b),(45b),(46b)

[
s(i − 1) + g(i − 1)D(i)

][
1 − |λ| + λ(λ + 1)/2

]
, (56e)

vn(i) =
(34c),(45c),(46c)

[
vn(i − 1) + f (i)D(i)

]
(1 − |λ|)

+ vn(i − 1)D(i)f̂
[
λ(λ + 1)/2

]

+ vn(i − 1)D(i)/cn

[
λ(λ − 1)/2

]
, (56f)



188 S. Djerassi

It (i) =
(34d),(45d),(46d)

[
It (i − 1) − μcφ(i)D(i)

]
(1 − |λ|)

+ [
It (i − 1) − μcφ̂D(i)

][
λ(λ + 1)/2

]

+ [
It (i − 1) + ct/cnD(i)

][
λ(λ − 1)/2

]
, (56g)

Is(i) =
(34e),(45e),(46e)

[
It (i − 1) − μsφ(i)D(i)

]
(1 − |λ|)

+ [
Is(i − 1) − μsφ̂D(i)

][
λ(λ + 1)/2

]

+ [
Is(i − 1) + cs/cnD(i)

][
λ(λ − 1)/2

]
, (56h)

vt (i) =
(28a)

s(i)cφ(i), (56i)

vs(i) =
(28c)

s(i)sφ(i), (56j)

�E(i) =
(35a)

�E(i − 1) + [
vn(i) − μs(i)

]
D(i), (56k)

�En(i) =
(35b)

�En(i − 1) + vn(i)D(i), (56l)

where λ = 0, φ(1) = 0, s(1) = vt1, vn(1) = vn1, It (1) = Is(1) = �E(1) = �En(1) = 0,
and f (1) = mnn − μmnt , g(1) = mnt − μmtt , h(1) = mns − μmts . Now, by [31] Eu-
ler’s method is stable if each of the eigenvectors λj (j = 1, . . . ,5) of the coefficient ma-
trix of the linearized right-hand-sides of (34a)–(34e) about a point φ0, s0, vn0, It0 and Is0

‘close’ to the integration range satisfies the inequalities |1 − λjD| ≤ 1, D = D(i)/k be-
ing the summation step. There are two nonzero eigenvector associated with (34a)–(34e),

namely λ1,2 = 1/s0(h
′
0 ±

√
h′2

0 − 4h0g
′
0), h

′
0=̂dh/dφ|φ=φ0 , g′

0=̂dg/dφ|φ=φ0 , drifting apart as

s0 → 0, thus leading to a stiffer system. At the limit s0 = 0, hence (Sect. 3.2) h0 = h(φ̄) = 0
(φ0 = φ̄). Only one nonzero, infinitely large eigenvector remains, which decrees 0 <

h′
0/s0D < 1, and, with a finite summation step, leads to instability accompanied by relatively

poor results. One obtains for D(i) = 1, k = 1 (i.e., 5-8 summation steps) a ∼96% agreement
with the results of Sect. 5 for μ = 0.6, and (only) ∼70% agreement for μ = 1.1,1.6, where
s0 = 0 (sticking) is reached. Increasing k to 5, one has ∼98% and ∼90% agreement, respec-
tively. Further investigation of this procedure is left for future work.

6.2 Partial integration/recursive summation (i/rs)

Equations (45a)–(45e) and (46a)–(46e) can be integrated analytically. Thus, a one-step eval-
uation can replace integration or recursive summation for the sticking or the sliding renewal
parts of the collision, saving computation time. To show this, suppose again that the normal
impulse In2 is known. If, in the i/rs process, In2 is reached with s > 0, then sliding prevails.
If, however, s vanishes before In2 is reached, then the associated values of vn, In, It and
Is , denoted vnS , InS , ItS and IsS , obtained with (34a)–(34e) or (56a)–(56l) (for λ = 0) are
recorded, and used to identify vn2, In2, It2, Is2 and �En2, as follows. If μ > μc , then sticking
prevails, and In2, It2 and Is2 can be obtained by the analytic integration of (45a)–(45e) from
tS to tC and from tC to t2 if tC > tS (sticking in compression), yielding

InC =
(45c)

InS + cn(0 − vnS), (57a)
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In2 =
(45c)

InC + cn(vn2 − 0), (57b)

ItC =
(45c,d)

ItS + ct (0 − vnS), (57c)

It2 =
(45c,d)

ItC + ct (vn2 − 0), (57d)

IsC =
(45c,e)

IsS + cs(0 − vnS), (57e)

Is2 =
(45c,e)

IsC + cs(vn2 − 0), (57f)

where (47) was used; or from tS to t2 if tC < tS (sticking in restitution), yielding

In2 =
(45c)

InS + cn(vn2 − vnS), (58a)

It2 =
(45c,d)

ItS + ct (vn2 − vnS), (58b)

Is2 =
(45c,e)

IsS + cs(vn2 − vnS), (58c)

relations valid also for sticking in compression. If, on the other hand, μ < μc , then sliding
renewal prevails, and In2, It2 and Is2 can be obtained by the analytic integration of (46a)–
(46e) from tS to tC and from tC to t2 if tC > tS (sliding renewal in compression), yielding

InC =
(46c)

InS + (1/f̂ )(0 − vnS), (59a)

In2 =
(46c)

InC + (1/f̂ )(vn2 − 0), (59b)

ItC =
(46c,d)

ItS − (μcφ̂/f̂ )(0 − vnS), (59c)

It2 =
(46c,d)

ItC − (μcφ̂/f̂ )(vn2 − 0), (59d)

IsC =
(46c,e)

IsS − (μsφ̂/f̂ )(0 − vnS), (59e)

Is2 =
(46c,e)

IsC − (μsφ̂/f̂ )(vn2 − 0), (59f)

vtC =
(36a)

(ĝcφ̂/f̂ )(0 − vnS), (59g)

vt2 =
(36a)

vtC + (ĝcφ̂/f̂ )(vn2 − 0), (59h)

vsC =
(36b)

(ĝsφ̂/f̂ )(0 − vnS), (59i)

vs2 =
(36b)

vsC + (ĝsφ̂/f̂ )(vn2 − 0), (59j)

where (47) was used with f̂ =̂
(31)

f (μ, φ̂) and ĝ =̂
(32)

g(μ, φ̂); or from tS to t2 if tC < tS (sliding

renewal in restitution), yielding

In2 =
(46c)

InS + (1/f̂ )(vn2 − vnS), (60a)

It2 =
(46c,d)

ItS − (μcφ̂/f̂ )(vn2 − vnS), (60b)



190 S. Djerassi

Is2 =
(46c,e)

IsS − (μsφ̂/f̂ )(vn2 − vnS), (60c)

vt2 =
(36a)

(ĝcφ̂/f̂ )(vn2 − vnS), (60d)

vs2 =
(36b)

(ĝsφ̂/f̂ )(vn2 − vnS), (60e)

relations valid also for sliding renewal in compression.
The use of (57a)–(57f) and (60a)–(60e) can limit the integration or the recursive sum-

mation to the sliding part of the collision with the aid of the following collision hypothesis-
dependent procedures, all starting with the evaluation of s, vn, In, It and Is by i/rs.

6.3 Collision hypotheses

6.3.1 Newton’s hypothesis

If, during i/rs, vn2 is reached with s(vn2) > 0, then In2 = In(vn = vn2), It2 = It (vn = vn2) and
Is2 = Is(vn = vn2) are identified. If s(vn < vn2) = 0, then vnS , InS , ItS and IsS are recorded,
and used to evaluated In2, It2 and Is2 either with (58a)–(58c) or with (60a)–(60c), depending
on whether μ > μc (sticking) or μ < μc (sliding renewal), respectively.

6.3.2 Poisson’s hypothesis

If, during i/rs, vn = 0 occurs before s vanishes (tC < tS ), then InC is recorded, and In2

calculated ((51)). The i/rs proceeds until s = 0 or In = In2. If In = In2 occurs first, then
sliding prevails, and In2, It2 = It (In = In2) and Is2 = Is(In = In2) are identified during the
i/rs. If s = 0 occurs first, then vnS , InS , ItS and IsS are recorded. If μ > μc , then sticking
prevails in restitution, and vn2, and then It2 and Is2 are evaluated with (58a), and then (58b)
and (58c), respectively. If μ < μc , then sliding renewal prevails in restitution, and vn2, and
then It2 and Is2 are evaluated with (60a), and then (60b) and (60c), respectively. Next, if
s = 0 occurs before vn = 0(tC > tS), then vnS , InS , ItS and IsS are recorded. If μ > μc , then
sticking prevails in compression. InC and In2 are obtained form (57a) and (51); and vn2, and
then It2 and Is2 are evaluated with (58a), and then (58b) and (58c), respectively. Finally, if
μ < μc, then sliding renewal prevails in compression. InC and In2 are obtained form (59a)
and (51); and vn2, and then It2 and Is2 are evaluated with (60a), and then (60b) and (60c),
respectively.

6.3.3 Stronge’s hypothesis

Here �En is obtained by i/rs (see (35b)/(56l)) as well. If vn = 0 occurs before s van-
ishes (tC < tS, InC < InS ), then �EnC is recorded, and �En2 is evaluated ((54)). The
i/rs proceeds until s = 0 or �En2 is reached. If �En2 is reached first, then sliding pre-
vails, and In2 = In(�En = �En2), It2 = It (�En = �En2) and Is2 = Is(�En = �En2)

are identified during the i/rs. If s = 0 occurs first, then vnS , InS , ItS , IsS and �EnS

are recorded. Now, if μ > μc, then sticking prevails in restitution, and one can write
�En2 − �EnS =

(35b)

∫ In2
InS

vn dIn =
(45c)

cn

∫ vn2
vnS

vn dvn = cn(v
2
n2 − v2

nS)/2, which yields

vn2 = {
v2

nS + 2/cn

[
(1 − e2)�EnC − �EnS

]}1/2
, (61)
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in accordance with (54). The positive root was chosen to ensure vn2 > 0 and ∂vn2/∂e > 0;
and In2, It2 and Is2 are evaluated with (58a)–(58c). If μ < μc , then sliding renewal prevails
in restitution, vn2 is evaluated by (61) with 1/f̂ replacing cn (dvn/dIn =

(46c)
f̂ [=̂f (μ, φ̂)]

replaces dvn/dIn =
(45c)

1/cn); and In2, It2 and Is2 are evaluated with (60a)–(60c). Next, if s = 0

occurs while vn < 0 (tC > tS, InC > InS), then vnS , InS , ItS , IsS and �EnS are recorded.
If μ > μc, then sticking prevails in compression, and �EnC − �EnS =

(35b)

∫ InC

InS
vn dIn =

(45c)

cn

∫ vnC

vnS
vn dvn =

(47)
−cnv

2
nS/2, or

�EnC = �EnS − cnv
2
nS/2. (62)

One can then obtain vn2 by substitution form (62) in (61), and then evaluate In2, It2 and Is2

with (58a)–(58c). Finally, if μ < μc , then sliding renewal prevails in compression. �EnC is
identified with the aid of (62) with 1/f̂ replacing cn. Then (61) is used to evaluate vn2 (again
with 1/f̂ replacing cn), which is then used to uncover In2, It2 and Is2 with (60a)–(60c).

For the last two cases of Table 1 one obtains, integrating (34a)–(34e) in conjunction
with (58a)–(58c), (60a)–(60c), (61) and (62),

μ = 1.1 ⇒ �EnC = −1.295, �EnS = −1.291,

f̂ = 0.0425, vnS = 0.0533 ⇒
(61)

vn2 = 0.203,

μ = 1.6 ⇒ �EnC = −1.085, �EnS = −1.083,

cn = 42.59, vnS = 0.0402 ⇒
(61)

vn2 = 0.267,

the exact results (within four digits) obtained by the integration of (55).

7 Conclusions

Three sets of five differential equations governing 3D one-point collision with friction prob-
lems associated with simple, non-holonomic systems were discussed, and shown to possess
unique solutions. Ways to speed up the integration were presented, whereby the integration
of equations governing the sliding part of the collision was replaced with recursive summa-
tion, and the integration of equations governing the sticking and sliding renewal parts were
replaced with a one-step evaluation of the impulse components. It was also demonstrated
that Newton’s hypothesis can lead to energy discrepancy significantly exceeding the val-
ues recorded to-date for planar systems. Finally, it is noted that there is no clear cut proof
that Poisson’s hypothesis always lead to energy-consistent solutions in 3D systems, leaving
Stronge’s hypothesis the most suitable for the type of solution under consideration.

Appendix A

The kinetic energy of a system S of ν particles described in Sect. 2 is given by E =
1/2

∑ν

i=1 mi(vPi )2, a positive quantity which can be cast into the form

E = −1/2
p∑

r=1

p∑

s=1

mrsurus = 1/2u(−M)uT > 0; u=̂|u1, . . . , up| (63)
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where mrs=̂−∑ν

i=1 miv
Pi
r · vPi

s , if vPi
t = 0, i = 1, . . . , ν (see (2)), rendering the mass matrix

−M symmetric and positive definite. Now, the coefficient matrix M of (23)–(25) is also
positive definite. To show this, note that M can be written

M = V
(−M−1

)
VT (64)

where V is 3 × p matrix appearing in (14). Because −M hence −M−1 are positive definite
matrices, one can write ([32], p. 109)

−M−1 = AAT = AT A. (65)

Thus,

M = VAAT VT = BBT ; B = VA (66)

and, since det(BBT ) = det B det BT = (det B)2 > 0, then detM = det(BBT ) > 0, where

detM = mnnmssmtt − (
mnnm

2
ts + mttm

2
ns + mssm

2
nt

) + 2mntmnsmts > 0. (67)

By the same token, the removal of the first, second or third row of V reduces V(−M−1)VT

to 2 × 2 diagonal submatrices of M, obtained by the removal of the first, second or third
row-and-column of M, respectively. As with the 3 × 3 case, these submatrices have positive
determinants, namely

mnnmtt − m2
nt > 0, mnnmss − m2

ns > 0, mttmss − m2
ts > 0. (68)

The removal of any two of the rows of V reduces V(−M−1)V T to one of the diagonal ele-
ments of M, positive numbers defined in the first, third and last of (15). Thus, the principal
submatrices of M are all positive, hence M is positive definite ([32], p. 250).

Appendix B

If g(μ,φ) = 0 and h(μ,φ) = 0 (see (44)), then also μg(μ,φ) = 0 and μh(μ,φ) = 0; and
these equations become, if the substitutions u = μcφ and v = μsφ are used,

μg =
(32)

−mttu
2 − 2mtsuv − mssv

2 + mntu + mnsv = 0, (69)

μh =
(33)

= mtsu
2 − 2

[
(mtt − mss)/2

]
uv − mtsv

2 − mnsu + mntv = 0, (70)

even and odd functions, respectively of v,mns and mts (μg(v,mns,mts) = μg(−v,

−mns,−mts) = 0 and μh(v,mns,mts) = −μh(−v,−mns,−mts) = 0). The coordinate
transformation |u′v′| = |uv|T, where the columns of T are the eigenvectors of the coeffi-
cient matrix g = |mttmts ; mtsmss |, brings (69) into the form λ1u

′2 +λ2v
′2 + ( )u′ + ( )v′ = 0,

where λ1 and λ2 are the eigenvalues of g ([32], p. 255) given by

λ1,2 = {
(mtt + mss) ± [

(mtt + mss)
2 − 4(mttmss − m2

ts )
]1/2}

/2. (71)

Here λ1 > 0 and λ2 > 0 (the expression under the root is always positive and smaller than
mtt + mss ), therefore (69) represents an ellipse passing through the origin, as illustrated in
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Fig. 4 The ellipse and the
hyperbola for the example of
Sect. 5, with circular segments
designating μ = 0.6, 1.1, 1.6 and
μc = 1.21

Fig. 4 for the example of Sect. 5. Similarly for (70), the eigenvalues of the coefficient matrix
h = |mts − (mtt − mss)/2; −(mtt − mss)/2 − mts | are

λ1,2 = ±{
m2

ts + [
(mtt − mss)/2

]2}1/2
, (72)

and, since λ1 > 0 and λ2 = −λ1, (70) represents a hyperbola with orthogonal asymptotes
parallel to the lines u′ = ±v′. Its branches are called ‘remote’ and ‘near’, the latter passing
through the origin (Fig. 4). The normalized (unit) eigenvectors of g and h are Sines and
Cosines of φe and φh, uniquely determined angles describing the orientation of the major
axes of the ellipse and the hyperbola with respect to the u − v axes. φe and φh satisfy the
relations

t (2φe) = 2mts/(mtt − mss), t (2φh) = −1/2(mtt − mss)/mts, (73)

so that the angle between the major axes of the ellipse and the hyperbola is π/4 (see Fig 4).
Moreover, the ellipse and the hyperbola intersect at the origin u = v(= μ) = 0, where they
are perpendicular, i.e.,

g(μ,φ)|μ=0 = 0 ⇒ tφ = −mnt/mns;h(μ,φ)|μ=0 = 0 ⇒ tφ = mns/mnt ; (74)

and at point (μc,φc) described by (43) as a unique solution of (44) (or (69) and (70)), hence
lie on the near branch of the hyperbola (so that the remote branch does not intersect the
ellipse). Note that point (0,0) is not a solution of (44), for g(0,0) = mnt �= h(0,0) = mns

(see (32) and (33)). Now g(μ,φ) can be written

g(μ,φ) = mntcφ + mnssφ + μ
[−|cφsφ‖mttmts;mtsmss‖cφsφ|T ]

. (75)

The expression multiplying μ comprises a negative number (Appendix A, (68)). Conse-
quently, if l is a line passing through the origin and point (μe,φe) on the ellipse (g(μe,φe) =
0), then the (cylindrical) coordinates μ and φe of points of l satisfy either g(μ,φe) > 0
or g(μ,φe) < 0, depending on whether the indicated point is inside (μ < μe) or outside
(μ > μe) the ellipse. If a circle of radius μ is drawn with its center at the origin, then the
orientation angles of lines passing through the origin and each of the intersection points of
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the circle with the hyperbola (two or four), are solutions of h(μ,φ) = 0. If outside the el-
lipse, these points satisfy g(μ,φ) < 0 (e.g., Points A and B in Fig. 4). However, if μ < μc ,
then one, and only one of these points, namely (μ, φ̂), lies within the ellipse (e.g., Points
C in Fig. 4); and, because g(μ, φ̂) > 0, it accommodates sliding renewal in direction φ̂

(Sect. 3.3). Points B accommodate angle φ̄ (Sect. 3.2) and Point D accommodates μc and
φc ((43)).

Appendix C

In 2D systems

1. mns = mts = mss = 0, hence cn = ct = cs = 0 (see (41a)–(41c)); and μc and φc (43)
become undefined. With φ ≡ 0 and dφ/dIn = 0 (34a)–(34e) remain intact.

2. Equations (25)–(27) reduce to dvn = �/mttdIn, dIt = −mnt/�, dIs = 0 where
�=̂mnnmtt − m2

nt , hence (45a)–(45e) become dφ/dIn = 0, ds/dIn = 0, dvn/dIn =
�/mtt , dIt /dIn = −mnt/mtt , dIs/dIn = 0.

3. The solution of h(μ,φ) = 0, g(μ,φ) > 0 is φ̂ = π , leaving (46a)–(46e) intact.

The procedure of Sect. 4 can be applied to 2D systems if modified accordingly.
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