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Abstract In this paper, we present a formulation of the quaternion constraint for rigid body
rotations in the form of a standard perfect bilateral mechanical constraint, for which the
associated Lagrangian multiplier has the meaning of a constraint force. First, the equations
of motion of a scalable body are derived. A scalable body has three translational, three
rotational, and one uniform scaling degree of freedom. As generalized coordinates, an un-
constrained quaternion and a displacement vector are used. To the scalable body, a perfect
bilateral constraint is added, restricting the quaternion to unit length and making the body
rigid. This way a quaternion based differential algebraic equation (DAE) formulation for the
dynamics of a rigid body is obtained, where the 7 × 7 mass matrix is regular and the unit
length restriction of the quaternion is enforced by a mechanical constraint. Finally, the equa-
tions of motion in the form of a DAE are linked to the Newton–Euler equations of motion
of a rigid body. The rigid body DAE formulation is useful for the construction of (energy)
consistent integrators.

Keywords Quaternion · Rotation · Scaling · Constraint · Mass matrix · Rigid body ·
Differential algebraic equation · Equations of motion

1 Introduction

The unit quaternion, also known as Euler parameters, is a well-known parameterization of
finite rotations and often used to represent a body’s orientation in rigid body dynamics.
When formulating the equations of motion of a rigid body using quaternions, one usually
starts with the Newton–Euler equations in terms of the translational and angular velocity.
Subsequently, the derivative of the unit quaternion is related to the angular velocity, yielding
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a kinematic equation which enforces the unity of the quaternion on velocity level (cf. [14]).
To prevent drift of the length of the quaternion in numerical simulations, the quaternion
has therefore to be resized to unit length after each integration step (e.g., as in [10]) or,
alternatively, a discretization scheme which preserves the unit length constraint has to be
employed. One way to achieve the latter is to extend the description to a differential algebraic
equation (DAE) formulation, where the unity of the quaternion is explicitly contained in the
set of equations. Unfortunately, the extension of the equations of motion of a rigid body to a
DAE yields a cumbersome formulation for which the Lagrange multiplier and the equation
enforcing the unit length of the quaternion have no direct physical meaning. Additionally,
the resulting mass matrix is either singular or uses an arbitrarily chosen mass (cf. [13–15]).

In the present paper, a different approach to formulate the DAE is taken. First, the infinite
dimensional dynamics of the underlying continuum is reduced to a scalable body, by using
perfect bilateral constraints. A scalable body has three translational, three rotational, and
one uniform scaling degree of freedom. The displacement of the center of mass and an
unconstrained quaternion are used as generalized coordinates. By introducing an additional
perfect bilateral constraint one can force the scalable body to become a rigid body, i.e.,
the scaling degree of freedom is suppressed by this constraint. Without reducing the set of
coordinates, this yields naturally a DAE description of the dynamics of a rigid body where
the 7 × 7 mass matrix is positive definite and the unit length restriction is enforced by a
mechanical constraint.

In contrast to previous works [2, 12–14, 16, 18–20], the quaternion in this paper is not
assumed to be of unit length while deriving the equations of motion. The unit length re-
striction is added only in a last step in the form of a perfect bilateral constraint to reduce
the scalable body to a rigid body. Besides deriving the nonsingular 7 × 7 mass matrix for a
quaternion based rigid body formulation, we also discuss the associated mechanical model
in the form of the unconstrained scalable body.

Since the present paper is similar to the recent work by Betsch and Siebert [2], a few
of the differences will be outlined in the following. In [2], the assumption of a unit length
quaternion is introduced right at the beginning, but still a nonsingular 7 × 7 mass matrix is
obtained. This is achieved by using a director-based formulation for the kinetic energy of a
rigid body [3], which is identical to the kinetic energy of a body with all twelve affine de-
grees of freedom. This kinetic energy still contains the contributions from the scaling degree
of freedom, contrary to the kinetic energy based on the angular velocity. By reducing the di-
rectors based generalized coordinates to a unit quaternion—without using the unit length
property in a harmful way—a nonsingular 7 × 7 quaternion based rigid body mass matrix
is obtained. This mass matrix is identical to the one associated with the full unrestricted
quaternion degrees of freedom of a scalable body, but the link to the mechanical model of
a scalable body is not shown in [2]. When formulating the inverse mass matrix, [2] uses a
simplification valid only for unit quaternions. This leads to a DAE formulation where the
Lagrange multiplier is not the mechanical scaling constraint force: Setting the multiplier to
zero does not recover the full dynamics of a scalable body. Beside this, in [2], the Lagrange
multiplier is always zero for a free rigid body, even when the body is rotating. For a rotating
rigid body, one would expect a nonzero scaling constraint force preventing the body from
getting larger.

In the work by Vadali [20], the quaternion unit length restriction is not imposed every-
where in the derivation of the equations of motion, but still the kinetic energy of the rigid
body is used as a starting point. This kinetic energy based on the angular velocity does not
contain the contributions from the scaling degree of freedom anymore, thus it is valid only
under the quaternion unit length assumption. The result is a singular 4 × 4 mass matrix for
the rotational dynamics of a rigid body and a Lagrange multiplier which is always zero.
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O’Reilly and Varadi [16] first derive the equations of motion of a scalable body in terms
of a position vector, a scaling factor and a rotation matrix. The resulting equations of motion
are then applied to the dynamics of Hoberman’s sphere which is as a nice application of the
scalable body model. In [16], the derivation of the equations of motion of a scalable body
is based on the equations of motion of a body with all twelve affine degrees of freedom,
while the present work relies directly on the principle of virtual work and the principle of
d’Alembert–Lagrange. While the equations of motion of a scalable body in terms of quater-
nions are given in [16] only in the abstract form of Lagrange’s equations of the second kind,
the present work also derives two simplified representations where all partial derivatives
have been evaluated. In the second part of [16], the equations of motion of a rigid body in
terms of quaternions are derived. This derivation considers only the rotational dynamics of
the body and omits the contributions from the scaling dynamics which results in a singu-
lar 4 × 4 mass matrix associated with the quaternion. Omitting the contributions from the
scaling dynamics corresponds to a unit length assumption for the quaternion. The singular
mass matrix problem is avoided in the present paper by considering the contributions of all
degrees of freedom of a scalable body.

In the recent work by Udwadia and Schutte [18], the kinetic energy of a rotating rigid
body is used as starting point. This kinetic energy already contains the quaternion unit length
assumption, which is also used at different points in the derivation of the equations of mo-
tion. To avoid a singular mass matrix, an arbitrary positive mass is inserted into the equa-
tions. This additional arbitrary mass has been used as well by Morton [13]. In [19], the
method is generalized to a certain class of constrained mechanical systems with positive
semidefinite mass matrices, and again demonstrated for the quaternion based formulation
of the rotational dynamics of a rigid body. The resulting equations of motion do not have a
direct physical model motivating the arbitrarily chosen mass. In the resulting equations of
motion, there is no clear separation into the unconstrained dynamics and the perfect quater-
nion constraint.

The DAE formulation of the dynamics of a rigid body is useful for the construction of
(energy) consistent integration schemes. With respect to consistent integrators, important
properties of the DAE formulation presented in this work are the constant (and regular)
mass matrix when generalized velocities are used, the singularity free parameterization of
the rotation, as well as the small set of generalized coordinates and velocities. The quater-
nion based DAE uses only one redundant coordinate and one redundant velocity, while the
director based formulations [3] use six redundant coordinates and six redundant velocities.
The smaller set of coordinates can be of advantage when no techniques can be applied to
reduce the set of coordinates after discretization. For further details on energy consistent
integrators, the reader is referred to [2, 3, 6, 11].

The paper is organized as follows: In Sect. 2, an overview on quaternions and their ma-
trix and vector representation is given. The parameterization of rotations and uniform scaling
with quaternions is described in Sect. 3. The kinematics of the scalable body on displace-
ment and velocity level is derived in Sect. 4. The principle of virtual work is used in Sect. 5
to derive the variational equations of motion of a system for which the kinematics is given
by a set of generalized coordinates and enforced by perfect bilateral constraints. In Sect. 6,
the variational equations of motion from Sect. 5 are then evaluated with the kinematics of
the scalable body from Sect. 4. To the resulting equations of motion, a perfect bilateral con-
straint is added in Sect. 7 yielding the DAE formulation of a rigid body. In Sect. 8, the
derivative of the quaternion is replaced by a scaling velocity and a generalized angular ve-
locity, giving the DAE a form which can be directly linked to the Newton–Euler equations
of motion of a rigid body.
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2 Quaternions

In this section, a brief introduction to quaternions and the notation used in this paper is
given. For more background on quaternions, the reader is referred to [1, 8, 9, 21].

A quaternion A ∈ H is a hypercomplex number with one real and three imaginary parts.
The imaginary parts are formed with three real coefficients and three imaginary units i, j, k,
i.e.,

A = a0 + a1i + a2j + a3k ∈ H, ai ∈ R. (1)

In this work, the notation A = (a0,a) for a quaternion is used, where a0 is the real part
and a = (a1, a2, a3)

T ∈ R
3 is a vector consisting of the three coefficients of the imaginary

part. The conjugate A∗ of a quaternion is defined as

A∗ = (a0,−a) . (2)

The addition of two quaternions is done componentwise and is associative. The real
part Re(A) and the imaginary part Im(A) of a quaternion is given by

Re(A) = (a0,0) = 1

2

(
A + A∗), Im(A) = (0,a) = 1

2

(
A − A∗). (3)

All possible products of the imaginary units can be determined from the definition

i2 = j 2 = k2 = ijk = −1 (4)

as formulated in [8]. This gives the rule

AB = (a0,a) (b0,b) = (
a0b0 − aTb, a0b + b0a + ãb

)
(5)

for the multiplication of two quaternions, where ã ∈ R
3×3 is the real skew-symmetric matrix

associated with the cross product, so that ãb = a × b for any a,b ∈ R
3. The quaternion

multiplication is not commutative. For the addition and multiplication of quaternions, the
distributive law holds. The conjugate of a quaternion product is the product of the conjugates
in inverse order, i.e.,

(AB)∗ = B∗A∗. (6)

The norm of a quaternion is defined by

|A| =
√

a2
0 + aTa. (7)

The product of a quaternion and its conjugate is equal to the square of the norm of the
quaternion, i.e.,

AA∗ = (|A|2,0
)
. (8)

This can be used to form the inverse of a quaternion as

A−1 = A∗

|A|2 (9)
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for any nonzero quaternion. A quaternion can be mapped to a real 4 × 4 matrix with the
function

ϕ : H → R
4×4, ϕ

(
(a0,a)

) =
(

a0 −aT

a a0I + ã

)
. (10)

The matrix of a conjugated quaternion is then the transposed of the matrix of a quaternion,
i.e.

ϕ(A∗) = ϕT(A). (11)

The matrix of a product of two quaternions is equal to the product of the matrices of the
quaternions

ϕ(AB) = ϕ(A)ϕ(B). (12)

The inverse of the matrix of a quaternion can be obtained by mapping the inverse of the
quaternion to a matrix or by normalizing the transposed of the matrix

ϕ−1(A) = ϕ
(
A−1

) = 1

|A|2 ϕT(A). (13)

Sometimes it is useful to interpret a quaternion as a real 4-dimensional vector, for which the
function

ψ : H → R
4, ψ

(
(a0,a)

) =
(

a0

a

)
(14)

is introduced. The vector representation of the product of two quaternions is then equal to
the product of the matrix of the first quaternion and the vector of the second quaternion, i.e.,

ψ(AB) = ϕ(A)ψ(B). (15)

The vector of a conjugated quaternion can be obtained by multiplying the vector of the
quaternion with the matrix

T :=
(

1 0
0 −I

)
(16)

which yields

ψ(A∗) = T ψ(A). (17)

3 Rotation and scaling

In this section, the parameterization of rotations and uniform scaling by using quaternions
is shown. As a starting point, we note that the product of a quaternion A ∈ H, a purely
imaginary quaternion (0,x) generated by a vector x ∈ R

3, and the conjugate A∗ of the
first quaternion always evaluates to a purely imaginary quaternion. This property can be
formulated as

(0,y) = A(0,x)A∗ (18)

and follows directly with the help of (3):

Re
(
A(0,x)A∗) = 1

2

(
A(0,x)A∗ +A(0,−x)A∗) = 1

2
A

(
(0,x)+ (0,−x)

)
A∗ = 0. (19)
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The product in (18) can be rewritten by using (6),

(0,y) = A
(
A(0,x)∗)∗

, (20)

and after applying (14), (15), and (17), one obtains the linear relation
(

0
y

)
= ϕ(A)T ϕ(A)T

(
0
x

)
(21)

in vector notation. Multiplication of (21) by (0 I ) from the left yields

y = (
0 I

)
ϕ(A)

︸ ︷︷ ︸
(
a a0I + ã

)

T ϕ(A)T (0 I )T

︸ ︷︷ ︸
⎛

⎝ aT

a0I + ã

⎞

⎠

x. (22)

By using the abbreviations,

R := 1

|A|2
(
a a0I + ã

)
(

aT

a0I + ã

)
, s := |A|2, |A| �= 0. (23)

Equation (22) finally becomes

y = sRx. (24)

The matrix R is a rotation matrix as it has the properties

RRT = RTR = I , Det(R) = 1, (25)

which can be verified by using the definition (23) and the identity

x̃ỹ ≡ yxT − xTyI . (26)

The identity (26) is the vector triple product expansion, also known as Lagrange’s formula,
written in matrix notation. It follows that the product A(0,x)A∗ evaluates to a quaternion
(0,y) for which the vector y is the result of rotating and scaling the vector x by R and s,
respectively. As a consequence, for any quaternion A ∈ H, A �= 0, there exists a rotation
matrix R ∈ SO(3) and a scaling factor s ∈ R

+ such that

A(0,x)A∗ = (0, sRx) , ∀x ∈ R
3. (27)

To deduce the inverse, we take an arbitrary R ∈ SO(3) and show the existence of an
A ∈ H such that (27) holds. Any R ∈ SO(3) may be represented as

R = I + ñ sinϕ + ñ2
(1 − cosϕ) (28)

with n ∈ R
3 being the axis of rotation (|n| = 1) and ϕ the rotation angle. Since

(0, sR) = (
0, s

(
I + ñ sinϕ + ñ2

(1 − cosϕ)
)) = A(0,x)A∗, ∀x ∈ R

3 (29)

is fulfilled for any of the two quaternions

A = ±
(√

s cos
ϕ

2
,n

√
s sin

ϕ

2

)
, (30)
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Fig. 1 Kinematics

one already has proven this assertion, i.e., that for any rotation matrix R ∈ SO(3) and scaling
factor s ∈ R

+ there exists a quaternion A ∈ H such that

(0, sRx) = A(0,x)A∗, ∀x ∈ R
3. (31)

It has to be noted that the associated mapping sR → A is not unique, because the two
quaternions A and −A yield the same rotation and scaling.

4 Kinematics

In this section, the kinematics of the scalable body with three translational, three rotational,
and one uniform scaling degree of freedom is described. Every point P ′ of the scalable
body in a reference configuration can be addressed by a fixed vector � ∈ R

3 (� = const.)
starting from a reference point C ′ (cf. Fig. 1). The actual position P of a point in a displaced
configuration is described by the vector ξ ∈ R

3 starting at the inertial point O . The vector
ξ can be obtained by applying a rotation R ∈ SO(3) and a scaling s ∈ R

+ on the vector �

and adding a displacement r ∈ R
3 for the translational degrees of freedom. This yields the

kinematic relation

ξ = sR� + r (32)

for the scalable body. To parameterize the rotation R and the scaling s, a quaternion

A = (a0,a) ∈ H, |A| �= 0 (33)

is used, which allows to reformulate the kinematic relation (32) in quaternion notation

(0, ξ) = A(0,�)A∗ + (0, r) (34)

by using the results from Sect. 3. The displacement r and the components of the quaternion
A are grouped into a generalized coordinates vector

q :=
⎛

⎝
r

a0

a

⎞

⎠ . (35)
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The absolute velocity ξ̇ of a point on the body is obtained by differentiating equation (34)
with respect to time,

(0, ξ̇) = Ȧ (0,�)A∗ + A(0,�) Ȧ∗ + (0, ṙ)

= AA∗

|A|2 Ȧ (0,�)A∗ + A(0,�) Ȧ∗ AA∗

|A|2 + (0, ṙ)

= A

|A|
(
(0,�) Ȧ∗A − A∗Ȧ (0,−�)

) A∗

|A| + (0, ṙ)

= A

|A| Im
(
(0,�)

(
2A∗Ȧ

)∗) A∗

|A| + (0, ṙ) . (36)

Here, it is useful to introduce new variables

v := ṙ, (ν,ω) := 2A∗Ȧ (37)

for the terms containing the derivatives of the generalized coordinates. A geometric inter-
pretation of v, ν, and ω is given at the end of this section. The new variables v, ν, and ω can
then be taken to define the vector of generalized velocities as

u :=
⎛

⎝
v

ν

ω

⎞

⎠ =
(

I 0
0 2ϕ(A∗)

)

︸ ︷︷ ︸
=: Q

q̇ (38)

and relate them to the derivative of the generalized coordinates as shown. The matrix Q ∈
R

7×7 is regular for any A �= 0 and can be obtained by rewriting (37) with the help of (15).
In terms of the generalized velocities u, (36) becomes

(0, ξ̇) = A

|A| Im
(
(0,�) (ν,−ω)

) A∗

|A| + (0,v)

= A

|A| Im
((

�Tω,�ν − �̃ω
)) A∗

|A| + (0,v)

= A

|A| (0,�ν − �̃ω)
A∗

|A| + (0,v)

= (0,R�ν − R�̃ω) + (0,v)

= (
0, (I R� −R�̃ )u

)
, (39)

where the quaternion product has been removed with the help of (27). Two purely imaginary
quaternions are equal when their imaginary components are equal. This yields the equation

ξ̇ = (I R� −R�̃ )Qq̇ (40)

relating the absolute velocity ξ̇ of a point of the scalable body to the derivative of the gener-
alized velocities q̇ .

The generalized velocity defined in (38) consists of the vector v, the scalar ν and the
vector ω. The velocity v is the absolute velocity of the point C, which can be seen directly
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from the definition. To get an interpretation of ν and ω, their definition (37) can be reformu-
lated in terms of ṡ and Ṙ. First, the absolute velocity ξ̇ expressed in ṡ and Ṙ is obtained by
differentiating (32) with respect to time, yielding

ξ̇ = ṙ + ṡR� + sṘ�

= ṙ + R
(
ṡ� + sRTṘ�

)
. (41)

On the other hand, the absolute velocity ξ̇ in terms of ν and ω can be obtained from the last
line of (39),

ξ̇ = v + R(ν� + ω̃�). (42)

Of course, both representations of the velocity field have to be equal for any point of the
body, i.e.,

v + Rν� + Rω̃� = ṙ + Rṡ� + RsRTṘ�, ∀� ∈ R
3. (43)

Solving this variational equation for � = 0 and � �= 0 yields

v = ṙ, ν = ṡ, ω̃ = sRTṘ. (44)

Obviously ν is the scalar scaling velocity associated with the scaling factor s. The absolute
angular velocity Ω associated with a rotation R is given by

Ω̃ := ṘRT. (45)

Expressing ω̃ in terms of Ω̃ ,

ω̃ = sRTṘ = sRTṘRTR = sRTΩ̃R, (46)

together with the rotational invariance of the cross product

(Rx )̃ = Rx̃RT, ∀x ∈ R
3, R ∈ SO(3) (47)

yields the matrix relation

ω̃ = s
(
RTΩ

)
˜. (48)

Removing the cross product operator one gets the equation

ω = sRTΩ. (49)

This means the vector ω is the angular velocity Ω associated with the rotation R, scaled
by the factor s and rotated with RT from the displaced configuration back to the reference
configuration.

5 Principle of virtual work

The equations of motion of an infinite-dimensional mechanical system are classically de-
scribed by the principle of virtual work

δW =
∫

S
δξT(ξ̈ dm − dF ) = 0, ∀δξ (50)
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where dm is the mass distribution and ξ describes the displacement at each point of the
system as already shown in Fig. 1. For more background on the principle of virtual work,
the reader is referred to [4, 5, 7, 17]. The force distribution dF in classical dynamics is
composed of the constraint forces dFz and some remaining forces dFq , i.e.,

dF = dFz + dFq . (51)

All constraints acting on a mechanical system may implicitly be taken into account by a
minimal parameterization of the surviving degrees of freedom via the so-called general-
ized coordinates q . If the constraints are bilateral and perfect, they fulfill by definition the
principle of d’Alembert–Lagrange which reads

ξ = ξ(�,q, t),

∫

S
δξT dFz = 0, δξ = ∂ξ

∂q
δq, ∀δq. (52)

The principle of d’Alembert–Lagrange is the force law of the perfect bilateral constraints
that restrict the motion to the remaining degrees of freedom taken into account by q . It states
that the virtual work of the constraint forces has to vanish for any virtual displacements
compatible with the constraint. If the variation δξ is restricted to variations induced by δq
then the constraint forces dFz disappear in (50) and one gets the variational equations of
motion

δqT

∫

S

(
∂ξ

∂q

)T

ξ̈ dm − δqT

∫

S

(
∂ξ

∂q

)T

dFq

︸ ︷︷ ︸
=: fq

= 0, ∀δq (53)

for the system in terms of the coordinates q . Classically, the acceleration terms in (53) are
reformulated as a difference

(
∂ξ

∂q

)T

ξ̈ = d

dt

[(
∂ξ

∂q

)T

ξ̇

]
− d

dt

(
∂ξ

∂q

)T

ξ̇ (54)

by using Leibniz’s law. The partial derivatives of ξ in (54) can be expressed as partial deriva-
tive of the absolute velocity,

∂ξ

∂q
= ∂ ξ̇

∂ q̇
,

d

dt

(
∂ξ

∂q

)
= ∂ ξ̇

∂q
, (55)

where the absolute velocity function ξ̇ is given by

ξ̇(�, q̇,q, t) := ∂ξ

∂q
q̇ + ∂ξ

∂t
. (56)

Combining (53), (54), and (55) yields the variational equations of motion

δqT d

dt

∫

S

(
∂ ξ̇

∂ q̇

)T

ξ̇ dm − δqT

∫

S

(
∂ ξ̇

∂q

)T

ξ̇ dm − δqTfq = 0, ∀δq (57)

in terms of the absolute velocity ξ̇ and its derivatives. Instead of using the absolute velocity
ξ̇ one can introduce the kinetic energy

T (q̇,q, t) := 1

2

∫

S
ξ̇

T
ξ̇ dm, (58)
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and replace the partial derivatives in (57) by partial derivatives of the kinetic energy

δqT d

dt

(
∂T

∂ q̇

)T

− δqT

(
∂T

∂q

)T

− δqTfq = 0, ∀δq. (59)

This variational equation of motion describes the dynamics of a mechanical system with
kinematics ξ(�,q, t) enforced by perfect bilateral constraints of d’Alembert–Lagrange type.
The variational equations (53) and (57) describe exactly the same dynamics as (59) but
in terms of the function ξ and its derivatives. Equation (59) is very close to Lagrange’s
equations of the second kind, except that it is formulated as a variational equation and it still
contains a general force term fq , in which any additional forces can be considered.

6 Equations of motion

The variational equations of motion described in Sect. 5 can be combined with the kinemat-
ics from Sect. 4 to obtain the equations of motion of the scalable body. In the following, the
variational formulation (59) based on the kinetic energy will be used to derive the equations
of motion. Alternatively, one could also use (53) or (57) directly. As a first step, the definition
of the kinetic energy (58) is evaluated with the absolute velocity (40), which yields

T = 1

2

∫

B
ξ̇

T
ξ̇ dm

= 1

2
q̇TQT

∫

B

⎛

⎝
I R� −R�̃

�TRT �T� 0
�̃RT 0 −�̃2

⎞

⎠ dm

︸ ︷︷ ︸
=: M

Qq̇

= 1

2
q̇TQTMQq̇. (60)

The arbitrary reference point C ′ introduced in Sect. 4 is chosen now to be identical with the
center of mass of the mass distribution in the reference configuration. This means that the
integral

∫

B
� dm = 0 (61)

is always zero. Two abbreviations

m :=
∫

B
dm, Θ :=

∫

B
−�̃2 dm (62)

are introduced to represent the mass distribution in the body. The symbol m is the total
mass and Θ is the classical inertia tensor with respect to the center of mass in the reference
configuration. The remaining integral

∫

B
�T� dm = 1

2
TrΘ (63)
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is half the trace of the classical inertia tensor Θ as can be verified easily. This finally yields
the constant and symmetric mass matrix

M =
⎛

⎝
mI 0 0
0 1

2 TrΘ 0
0 0 Θ

⎞

⎠ . (64)

If the classical inertia tensor Θ of the body is positive definite, then the mass matrix M is
positive definite as well. For the lower right submatrix of M the abbreviation

Θ̂ :=
(

1
2 TrΘ 0

0 Θ

)
(65)

is introduced. The kinetic energy T as given in (60) is a quadratic form in q̇ , from which the
partial derivative ∂T /∂ q̇ can be obtained directly. To calculate the partial derivative ∂T /∂q

it is useful to note that in this case the kinetic energy can be formulated as the sum of a
quadratic form in q plus a term not depending on q . One gets

T = 1

2
q̇TQTMQq̇

= m

2
ṙTṙ + 2ψT(Ȧ)ϕ(A) Θ̂ ϕT(A)ψ(Ȧ)

= m

2
ṙTṙ + 2ψT(A)ϕ(Ȧ) T TΘ̂ T ϕT(Ȧ)ψ(A)

= m

2
ṙTṙ + 2ψT(A)ϕ(Ȧ) Θ̂ ϕT(Ȧ)ψ(A)

= m

2
ṙTṙ + 1

2
qTQ̇TMQ̇q (66)

where the identity

ϕT(A)ψ(B) = ψ
(
A∗B

) = ψ
((

B∗A
)∗) = T ψ

(
B∗A

) = T ϕT(B)ψ(A) (67)

has been used. Using these two representations of the kinetic energy, one obtains

(
∂T

∂ q̇

)T

= QTMQq̇,

(
∂T

∂q

)T

= Q̇TMQ̇q (68)

for the partial derivatives. Inserting them into the variational equations of motion (59) yields

δqT

(
d

dt

(
QTMQq̇

) − Q̇TMQ̇q − fq

)
= 0 ∀δq. (69)

By evaluating the time derivative and the variation, one gets the equations of motion

QTMQq̈ + QTMQ̇q̇ + Q̇TM
(
Qq̇ − Q̇q

) − fq = 0 (70)

of the scalable body. The only thing that remains to do, is to specify the force distribu-
tion dFq and to calculate from it the associated generalized force fq ,

fq =
∫

B

(
∂ξ

∂q

)T

dFq . (71)
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Before doing this, the force distribution is split up once more

dFq = dFe + dFg (72)

into a portion dFe and a force distribution dFg which will be used in Sect. 7 to realize an
additional perfect bilateral constraint that makes the scalable body rigid. According to (71),
the generalized force associated with dFg is denoted by

fg :=
∫

B

(
∂ξ

∂q

)T

dFg. (73)

The partial derivative occurring in (71) can be obtained via relation (55) and the absolute
velocity (40),

∂ξ

∂q
= ∂ ξ̇

∂ q̇
= (I R� −R�̃ )Q. (74)

The three integrals that result for dFe when putting (74) into (71) are

F :=
∫

B
dFe, SC :=

∫

B
�TRT dFe, MC :=

∫

B
�̃RT dFe (75)

and have the following meaning: The vector F is the resultant external force and the vector
MC is the resultant moment with respect to the point C. The scalar SC is the resultant
scaling force with respect to point C. The resultant scaling force and the resultant moment
are formed by rotating the external forces with RT back from the displaced configuration
to the reference configuration. With these abbreviations, one gets the complete generalized
force (71) as

fq = QT

⎛

⎝
F

SC

MC

⎞

⎠ + fg. (76)

Setting the resultant forces and the additional generalized force fg equal to zero results in a
generalized force fq which is equal to zero as well. In this case, the equations of motion (70)
would describe the dynamics of a free scalable body.

7 Rigid body

In this section, an additional perfect bilateral constraint is applied on the scalable body in
order to make it rigid. The scaling is the only additional degree of freedom that makes the
scalable body different from a rigid body. For a rigid body, the scaling s as introduced in
Sect. 4 is always equal to one. The corresponding constraint equation can be written by (23)
as

g(q) = |A|2 − 1 = 0. (77)

A force law of d’Alembert/Lagrange type

δqTfg = 0 ∀δq | δg = 0 (78)

will now be formulated to complete the description of the perfect bilateral constraint. The
product δqTfg is the virtual work done by the constraint force (cf. Sect. 5). The virtual
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Fig. 2 Constraint

work has to vanish for any virtual displacements induced by δq that are compatible with
the constraint (i.e., δg = 0). A simplified illustration of this situation is shown in Fig. 2.
The relation between variations δg of the constraint and variations δq of the generalized
coordinates is classically given by

δg = ∂g

∂q
δq. (79)

Combining this with the force law, (78) yields

δqTfg = 0 ∀δq | δqT

(
∂g

∂q

)T

= 0. (80)

Evaluating the variation reveals that the generalized constraint force fg lies in the linear
subspace spanned by the vector (∂g/∂q)T. This can be formulated with (35) and (14) as

fg =
(

∂g

∂q

)T

λ =
(

0
2ψ(A)

)
λ, λ ∈ R, (81)

where λ is the scalar constraint force associated with the constraint. Inserting the generalized
constraint force fg into (70) finally yields with the help of (76) the DAE description

QTMQq̈ + QTMQ̇q̇ + Q̇TM
(
Qq̇ − Q̇q

) − QT

⎛

⎝
F

SC + λ

MC

⎞

⎠ = 0, |A|2 = 1 (82)

of the dynamics of a rigid body. In this formulation, the unit length restriction of the quater-
nion is explicitly contained as algebraic constraint. The associated constraint force λ is me-
chanically consistent, as setting it to zero and dropping the constraint equation restores the
unrestricted dynamics of the scalable body.

8 Generalized velocities

The DAE formulation of the dynamics of a rigid body obtained in the last section can be
further simplified by replacing the derivative of the generalized coordinates q̇ with the gen-
eralized velocities u as introduced in Sect. 4. As a first step, the equations of motion (69)
based on the principle of virtual work are replaced by an equivalent formulation based on
the principle of virtual power

δq̇T

(
d

dt

(
QTMQq̇

) − Q̇TMQ̇q − fq

)
= 0 ∀δq̇. (83)
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Next, the kinematic relation (38) is solved for the derivative of the generalized coordinates

q̇ = Q−1u. (84)

The inverse Q−1 can be obtained by inverting each block on its diagonal. With the help of
relation (13) one gets

Q−1 =
(

I 0
0 1

2|A|2 ϕ(A)

)
. (85)

Equation (84) applies in the same form for the virtual velocities,

δq̇ = Q−1δu. (86)

Inserting (84) and (86) into (83) yields

δuTQ−T d

dt

(
QTMu

) − δuTQ−TQ̇TMQ̇q − δuTQ−Tfq = 0 ∀δu. (87)

After having carried out the derivatives with respect to time, one gets

δuTMu̇ + δuTQ−TQ̇TM
(
u − Q̇q

) − δuTQ−Tfq = 0 ∀δu. (88)

To further simplify this equation, the product Q−TQ̇T is evaluated in terms of the gener-
alized velocities u and the generalized coordinates q . The matrix Q−T can be obtained by
transposing (85) and applying relation (11). Transposing the time derivative of (38) yields
the matrix Q̇T. For the product, one obtains

Q−TQ̇T =
(

I 0
0 1

2|A|2 ϕ(A∗)

)(
0 0
0 2ϕ(Ȧ)

)
= 1

2|A|2
(

0 0
0 ϕ(2A∗Ȧ)

)

= 1

2|A|2
(

0 0
0 ϕ((ν,ω))

)
= 1

2|A|2

⎛

⎝
0 0 0
0 ν −ωT

0 ω νI + ω̃

⎞

⎠ (89)

by using relations (10) and (12) as well as the kinematic relation (37) in quaternion notation.
Similarly, the product Q̇q can be evaluated

Q̇q =
(

0 0
0 2ϕ(Ȧ∗)

)(
r

ψ(A)

)
=

(
0

ψ(2Ȧ∗A)

)
=

(
0

ψ((ν,ω)∗)

)
=

⎛

⎝
0
ν

−ω

⎞

⎠ . (90)

Combining the results from (89) and (90), one gets the simplification

Q−TQ̇TM(u − Q̇q)

= 1

2|A|2

⎛

⎝
0 0 0
0 ν −ωT

0 ω νI + ω̃

⎞

⎠

⎛

⎝
mI 0 0
0 1

2 TrΘ 0
0 0 Θ

⎞

⎠

⎛

⎝
v

0
2ω

⎞

⎠

= 1

2|A|2

⎛

⎝
0 0 0
0 ν −ωT

0 ω νI + ω̃

⎞

⎠

⎛

⎝
mv

0
2Θω

⎞

⎠ = 1

|A|2

⎛

⎝
0

−ωT

νI + ω̃

⎞

⎠Θ ω (91)
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for the product occurring in (88). Inserting the simplification (91) and the generalized force
(76) together with the constraint force (81) into (88), one gets the variational equation

δuTMu̇ + δuT 1

|A|2

⎛

⎝
0

−ωT

νI + ω̃

⎞

⎠Θ ω − δuT

⎛

⎝
F

SC + λ

MC

⎞

⎠ = 0 ∀δu. (92)

Eliminating the variation and completing the set of equations with the kinematic relation
(84) and the constraint equation (77), one gets the full DAE formulation for the dynamics of
a rigid body

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mv̇ = F ,
1

2
TrΘ ν̇ − 1

|A|2 ωTΘω = SC + λ,

Θω̇ + 1

|A|2 (νI + ω̃)Θω = MC,

⎧
⎨

⎩

ṙ = v,

Ȧ = 1

2|A|2 A(ν,ω) ,
|A|2 = 1 (93)

in terms of the generalized velocities v, ν, and ω. This formulation is equivalent to (82).
If the constraint force λ is set to zero and the constraint equation |A|2 = 1 is removed, one
recovers the full seven degree of freedom dynamics of the scalable body. The rigid body
DAE (93) can be simplified to the classical Newton–Euler equations when the constraint is
differentiated twice

s = |A|2 = 1 ⇒ ṡ = ν = 0, ν̇ = 0 (94)

and all occurrences of |A|2, ν and ν̇ are eliminated. One then gets the ODE of a rigid body

{
mv̇ = F ,

Θω̇ + ω̃Θω = MC,

⎧
⎨

⎩

ṙ = v,

Ȧ = 1

2
A(0,ω)

(95)

and an equation to calculate the scaling constraint force as

λ = −ωTΘω − SC. (96)

The scaling constraint force λ has to balance the external resultant scaling force SC and a
term depending on the angular velocity. If there is no external resultant scaling force SC and
the body is not rotating, then a scalable body is identical to a rigid body.

Note that while it is very simple to reduce the rigid body DAE formulation (93) to the
rigid body ODE formulation (95), the inverse way going from the ODE to the DAE based
on the scalable body is not directly possible. In the Newton–Euler equations used in the
ODE description of a rigid body, the scaling dynamics is no longer present. Exactly this
scaling dynamics and its coupling to the Newton–Euler equations is missing when one tries
to recover the scalable body based DAE of a rigid body from the Newton–Euler equations.
Correspondingly, the mass term 1/2 TrΘ associated with the scaling dynamics in the second
equation of (93) can be replaced by any other value if only the rigid body dynamics is to be
described correctly.

9 Conclusion

In this paper, the quaternion based equations of motion of a scalable body have been derived.
For a scalable body, an unconstrained quaternion was used to parameterize the rotational
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and scaling degrees of freedom. A perfect bilateral constraint has been added to the scalable
body to make the body rigid. In this way, a DAE formulation for the dynamics of a rigid body
with a regular mass matrix and a quaternion unit length restriction in the form of a standard
mechanical constraint has been obtained. By using quaternions, the singularity problems of
Euler angles are avoided, while keeping the number of redundant variables to a minimum.

The mechanical model of a scalable body itself might be rarely used in a technical appli-
cation, due to the fact that a scalable body is rather complicated to build in reality. Never-
theless, the equations of motion of a scalable body can be valuable for the interpretation of
the quaternion based rigid body DAE. The regular 7 × 7 mass matrix used in the rigid body
DAE formulation is exactly the mass matrix of the scalable body. The Lagrangian multi-
plier associated with the quaternion unit length constraint has the meaning of a constraint
force, preventing the scaling body from changing its size. While already (82) completely de-
scribes the dynamics of a rigid body in DAE form, it is difficult to see the connection to the
Newton–Euler equations (95). This is the reason why the equations of motion of a scalable
body have been reformulated to (93) using angular and scaling velocities. The rigid body
DAE formulation (93) can be directly recognized as a DAE generalization of the Newton–
Euler equations (95), while at the same time being the complete description of the dynamics
of a scalable body when removing the explicitly contained constraint.

For DAE based energy consistent integrators, the most important results are the mass ma-
trix (64) and the kinetic energy (60) of a scalable body. With the model of the scalable body,
the kinetic energy is valid without any additional restrictions on the quaternion and thus can
be used directly in any Lagrangian (for example, [11]) or Hamiltonian based approaches. To
get a rigid body, the quaternion unit length constraint can be added in a second step like any
other additional perfect bilateral constraint of a multibody system as fits best the employed
integration scheme.
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