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Abstract This paper discusses some methodological questions regarding the application of
EMG-driven models to estimate muscle forces, for the triceps surae performing isometric
contractions. Ankle torque is estimated from a Hill-type muscle model driven by EMG data,
collected from the three components of triceps surae and tibialis anterior. Ankle joint torque
is synchronously collected from a dynamometer, which is compared to the sum of each mus-
cle force multiplied by the respective ankle moment arm. A protocol consisting of two steps
of low and medium/high loads is used. Raw EMG signal is processed and used as the input
signal for the muscle model. The difference between simulated and dynamometer measured
torque is calculated as the RMS error between the two curves. A set of nominal muscle
model parameters is initially chosen from literature (e.g., OpenSim), which allows observ-
ing the characteristics of the error distribution. One possibility to improve model accuracy
is using individual muscle parameters. We investigated the effect of applying simple scale
factors to the nominal muscle model parameters and using ultrasound for estimating muscle
maximum force. Other questions regarding muscle model improvements are also addressed,
such as using a nonlinear formulation of activation dynamics and variable pennation angle.
Surface EMG signals acquisition and processing can also affect force estimation accuracy.
Electrodes positioning can influence signal amplitude, and the one-channel EMG may not
represent actual excitation for the whole muscle. We have shown that high density EMG
reduces, in some cases, the torque estimation error.
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1 Introduction

Predicting muscle forces in vivo is one of the most important questions in biomechanics
science. However, it is a challenging problem, due to several reasons: actuator redundancy,
several kinds of nonlinearities, invasive experimental set ups and ethical difficulties as, for
example, installing force sensors in the muscle/tendon directly [1]. Most of the research
and clinical works in this field tries to address the problem through one of the follow-
ing approaches: analysis of joint torques measured by dynamometry or inverse dynamics
[2–5], totally predictive simulation (optimal control) [6–8], static optimization [9, 10], di-
rect analysis of the electromyography (EMG) patterns [11], extracted EMG envelopes [12],
and EMG-driven models [13, 14]. Each one of these approaches has its own advantages and
drawbacks. Blajer et al. [15] has shown how the choice of coordinate system, muscle geom-
etry, number of muscles, and optimization approach influences muscle force estimation in
an inverse dynamics analysis, for the upper limb.

This paper discusses some methodological questions regarding the application of EMG-
driven models to estimate muscle forces, using as a benchmark an isometric contraction
protocol for the triceps surae muscle group. The questions addressed include: muscle con-
traction and activation dynamics formulation, selection, scaling and individual estimation
of muscle model parameters, and EMG processing issues. A novel approach based on high-
density multichannel EMG is also discussed. Parameter optimization to fit the EMG-driven
computed forces to an expected result has been usually avoided, not to mask the effect of
model and input processing inaccuracies in the estimated force [13]. This paper summarizes
the main observations and conclusions obtained from a series of works carried out recently
by our group [16–22]. In total, about 150 experiments have been performed in 40 different
subjects. All the experiments were performed in the same conditions within a uniform group
of volunteers: normal young adult males between 18 and 19 years old. However, different
approaches have been tested comparatively to process the EMG signals, regarding the model
formulation and parameter selection or calibration.

2 The isometric triceps surae problem

The addressed biomechanical problem is estimating the plantar flexion isometric torque
with the ankle at 90° degrees, knee extended, using a Hill-type muscle model and EMG data
(Fig. 1), collected from the three components of triceps surae (TS): gastrocnemius medialis
(GM), gastrocnemius lateralis (GL), and soleus (SOL) muscles. The main dorsiflexor, tib-
ialis anterior (TA), has been also recorded in some tests, to evaluate cocontraction. Ankle
joint torque is synchronously recorded from a CybexTM dynamometer. One of the advan-
tages of using a directly dynamometer-measured joint torque is avoid introducing errors
originated from kinematics measurement and dynamic modeling, which are expected to be
found in usual inverse dynamics analysis [23].

The directly measured torque is compared to the sum of each muscle force multiplied by
the respective ankle moment arm (Fig. 2). The selected subjects has been, in all tests, healthy
young adult males (age: 18.6 ± 0.7 years, mass: 65.6 ± 6.0 kg, and height: 173.9 ± 7.8 cm),
voluntary from the military personnel enrolled in the basic training program of the Brazilian
Army Physical Education School, Rio de Janeiro.

This simple and controlled experiment allows quantifying indirectly the effect of some
methodological choices in the torque prediction error. The well-known basic idea of the
EMG-driven model approach consists of collecting EMG signals, which are filtered, recti-
fied and input in a muscle dynamical model (Fig. 2). In practice, to apply such a method,
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Fig. 1 Experimental setup

Fig. 2 EMG to muscle force processing and joint torque comparing using a EMG-driven model

several decisions must be made, regarding: EMG electrodes placement, EMG input nor-
malization, filters shape, as well as formulating the activation and contraction dynamics
equations, and selecting their parameters. By choosing a functional and anthropometric uni-
form group of subjects, we have tried to minimize, up to some extent, the possible number
of such methodological decisions.

The experimental protocol consists of two plantar flexion isometric contraction steps,
separated by a relaxing interval. Each step corresponds to 20% and 60% of the individual
Maximum Voluntary Contraction (MVC) torque, which must be tentatively maintained con-
stant through 10 seconds. The subject tries to follow the step target by means of a visual
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Fig. 3 Musculotendon model of
contraction dynamics.
C: contractile element,
B: damping element, KPE:
parallel elastic element, KT :
tendon, LMT: musculotendon
length, LT : tendon length, LM :
muscle length

real-time visual feedback of the actual produced torque, superimposed over a mask of the
target in the computer screen [16, 20] (the protocol can be visualized in Fig. 4). Raw EMG
signal was initially band-pass filtered (15–350 Hz), rectified, and low-pass filtered with a
2nd order digital Butterworth filter (2 Hz cut-off frequency). Input excitation signal u(t)

for the muscle dynamics model was found by normalizing the collected EMG signals with
MVC EMG.

Muscle activation dynamics from [24] was used. Contraction dynamics is a modified ver-
sion of Zajac musculotendon actuator [25] with added parallel elastic and damping elements
[16] (Fig. 3). Each muscle is modeled as a system of three differential equations:

ȧ = (u − a )(k1u + k2)

˙̃
F

T = k̃T
(
ṽMT − ṽM cosα

)
(1)

˙̃
L

M = ṽM

where a is the neural activation, u the excitation input signal, k1 and k2 time constants,
FT tendon force, kT tendon stiffness, vMT musculotendon velocity, vM contractile element
velocity, α pennation angle, and LM contractile element length. The ∼ upperscript means
that the variables are adimensionalized (see details of notation in [25]). vMT can be con-
sidered also as an external input, when the muscle dynamics is integrated independently of
the skeletal system associated rigid body dynamics. The relationship between vM and FT is
modeled using the Hill hyperbole, scaled by the activation level [16]. LM has been included
explicitly as a state variable, since it is used to find the position on the force-length curve that
scales maximum muscle force, as well as to find the actual pennation angle (3). The second-
order nonlinear dynamic model is integrated numerically using u(t) as the input signal. The
initial values for the state variables a and FT has been estimated as the mean normalized
EMG activity in the first second of recording. In the case of the contractile element length,
the initial value was estimated from OpenSim for the knee extended and ankle at neutral
position. It has been observed a high sensitivity of model response with relation to muscle
length initial condition.

The estimated torque output was calculated as the sum of each simulated muscle force
multiplied by its respective ankle angle moment arm regression equations from [26]. TA
moment arm was considered negative, since it is a dorsiflexor muscle. The differences be-
tween simulated and CybexTM measured torques were calculated as the normalized Root
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Mean Square Error (%RMSE) between the two curves (2),

%RMSE = 1

TMMAX

√∑N

i=1(TM(i) − TS(i))2

N
× 100% (2)

where TM is the CybexTM measured torque, TS the simulated torque, N the number of
samples in the time series, and TMMAX the maximum dynamometer measured torque at
MVC for each subject. TMMAX can be selected either from the absolute maximum or from
an average value in the vicinity of the maximum torque (see Sect. 6). The time window
considered in the %RMSE calculus can be either the entire protocol (50 s) or each step
separately (10 s), to assess the model accuracy in a wider or in a more specific level of
activation.

3 The nominal parameters case

One of the most critical decisions to formulate an EMG-driven model problem is choosing
the sources of the muscle model parameters. The first and simplest possibility is taking
them from one of the several available literature data sources, e.g., [27, 28]. Here, we call
“nominal parameters” those available from the “Both Legs” open-source software OpenSim
[29] model, which is becoming increasingly popular in the musculoskeletal biomechanics
community.

A sample solution of the TS EMG-driven model with nominal parameters is presented in
Fig. 4. In the upper part, each muscle contribution to the total torque is shown. In the lower,
it is possible to observe the comparison between the estimated and dynamometer measured
torques.

The %RMSE torque error distribution for a set of subjects, sorted from smallest to high-
est, is shown in Fig. 5. Figure 6 presents average results found for the load sharing among
the muscles to produce the required torque, for low and medium/high contractions. From
these results, some remarks can be highlighted (for a more detailed discussion on the error
analysis of these results, see [19]):

(1) Torque error distribution is not Gaussian, even if “normal adult males” are used, which
should theoretically correspond, in the mean, to the OpenSim model;

(2) The errors are likely to be toward underestimation;
(3) Model predicts better higher than lower activation levels;
(4) TA contributes little to the cocontraction torque (2–3% of the agonistic), and can usually

be disregarded;
(5) A load sharing pattern among the muscles can be observed, following the order: SOL,

GM, and GL. However, significant changes in the individual muscle contributions can
be observed when load increases. Particularly, GL participation grows with contraction
intensity;

(6) The load sharing dispersion among subjects, shown in Fig. 5 error bars as pattern devi-
ations, reduces with load increase.

4 Use of individual muscle model parameters

One possible way to improve model accuracy is by using individual muscle parameters, in-
stead of mean values from literature. Static optimization can be used to adjust some param-
eters such as maximum muscle force, tendon slack length, and optimal length [13, 30, 31].
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Fig. 4 Sample of the torque matching between EMG-driven model and dynamometer. The upper graph
shows the individual torque contributions and the lower the total joint torque compared to dynamometer
measurements

Fig. 5 %RMSE distribution. The subjects (1–13) are ordered from lower to greater error
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Fig. 6 Contribution of each component of triceps surae and tibialis anterior to the total ankle torque in low
(20%MVC) and medium/high isometric contractions (60%MVC)

Buchanan et al. [32] suggest dividing measured joint torques among the muscles, weighted
by the individual PCSAs. Manal and Buchanan [33] propose a specific method to estimate
tendon slack length. Winby et al. [34] tested several scaling techniques for optimal muscle
fiber length and tendon slack length, according to subject size. They observed that a good
scaling can be obtained when the scale is able to maintain the muscle operating range in
maximal activation.

Initially, we have investigated the effect of applying simple scale factors to the nomi-
nal literature muscle model parameters [16]. The proposed scaling factors were determined
by dividing each individual anthropometrical or functional measurement by the respective
mean value of the entire group, composed of 20 volunteers in this particular study. Maximal
muscle force (F om) was scaled by Maximum Torque, Tendon Slack Length by Leg Length,
and Moment Arm (r) by Bimalleolar Diameter (Table 1, from [16]). It can be observed
that maximum torque scaling reduces significantly %RMSE torque prediction error, while
the other proposed scaling factors separately have shown no effect on prediction accuracy.
However, when applied altogether decreased error dispersion among the subjects.

An alternative way to find individual muscle parameters is using ultrasound (US) to esti-
mate muscle maximum force (F om) [20]. This imaging technique is used to measure muscle
thickness, which allows evaluating triceps surae muscle volume, through regression equa-
tions from literature [35]. SOL, GM, and GL PCSAs are estimated using published vol-
ume proportions among leg muscles [36], which also require measurements of muscle fiber
length and pennation angle during rest, made by US (Fig. 7). F om values obtained by this ap-
proach were used to test the EMG-model torque prediction accuracy, comparatively to the



28 L.L. Menegaldo, L.F. Oliveira

Table 1 Torque RMS Errors calculated for the whole protocol time window, when applying scale fac-
tors,. NC = No Correction; TMMAX = Maximum Measured Torque; BD = Bimalleolar Diameter; LL = Leg
Length; ALL = All corrections applied simultaneously. ANOVA main effect p = 0.046. Post-hoc between
NC and TMmax

∗p = 0.046 and between NC and ALL ∗∗p = 0.026

Scaling factor Means(SD) RMSE(%)(SD) RMSE(%)(min–max)

NC – 12.92(4.94) 7.11–25.74

TMMAX (Nm) 104.15(18.53) 10.32(2.06)∗ 7.17–21.68

BD (cm) 7.19(0.47) 12.19(4.37) 6.83–25.94

LL (cm) 41.13(2.78) 12.94(5.04) 8.01–16.56

ALL – 10.12(1.73)∗∗ 7.98–13.04

Fig. 7 Procedure adopted to estimate maximum muscle force from US thickness, fiber length, and pennation
angle measurements

nominal parameters case. A small but statistically significant reduction in the Root Mean
Square Error was observed when US-obtained F om was used, as compared to the F om from
literature. Most of the error decrease occurred in the volunteers whose anthropometrical
parameters and strength varied more widely from OpenSim data.

It is worth noting that, in this work, an experimentally estimated value of muscle maxi-
mum tension σm = 22.5 N/cm2, as found by Powell et al. [37], was applied. In the nominal
OpenSim model, PCSAs from old cadaveric specimens available in literature was used, as-
sociated with adjusted values of σm, which varied from 73 N/cm2 to 30 N/cm2, depending
on the PCSA source used [38], as already pointed out by Buchanan [32, 39] and Lloyd and
Bessier [13]. Such values of σm could not be adopted if PCSA is estimated individually in
vivo by US or any other medical image technique. In addition, trained subjects are likely
to show an increase in muscle PCSA compared to untrained, but this hypertrophic effect is
not sufficient, in many cases, to explain the entire force increase that is usually observed
[40]. Part of strength gain can be attributed to neural drive facilitations and to the change
of other muscle architecture parameters [41]. Therefore, using specific σm values, estimated
from MVC experiments for either trained and untrained subjects, is a promising approach,
that is now being investigated [42].
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5 Model improvements

Two approaches to improve musculotendon dynamics have been tested: using a non-linear
formulation for activation dynamics and a muscle-length variable pennation angle [21].
Based on published steady-state EMG-to-force relationships [43], Manal and Buchanan
[44] proposed an nonlinear algebraic expression between the “muscular activation” a(t) and
“neural activation” a(t), known as “A-Model” (Fig. 8). The classical first-order differential
bilinear equation [24] is still used, but a neural-activation dependent nonlinear relationship
scales its output. This curve is composed by a logarithmic and a linear part, but is continuous
and differentiable throughout the dominion (Fig. 9). Such condition is achieved by formulat-
ing and solving numerically (Newton–Raphson) a nonlinear algebraic condition that holds
for the node point between the two parts of the curve. For small values of the A parameter,
the “nonlinearization” is almost negligible, but for greater values the curve gets more bulged
toward the small activation part.

These characteristics are convenient in our particular case, since it has been observed
that the torque errors are predominantly of underestimation, especially at small activation
levels. In a study performed over 11 subjects, the best A (minimum torque error) values were
found among 0.025 and 0.1 (mean 0.07±0.05). By applying this correction, the mean torque
errors decreased from 24.13 ± 10.33% to 12.73 ± 4.10%. On the other hand, the A-model
approach implies the introduction, in the activation dynamics formulation, of a certain kind
of parameter optimization, what is, a priori, an inconvenient feature in the context of the
present studies.

The other model improvement was using a variable pennation angle, instead of a fixed
nominal value. Such modification can more accurately represent what actually happens in
the physiological system [13, 32]. We have tested the classical formula to estimate the pen-
nation angle:

α
(
L̃M

) = sin−1

(
sin(αo)

L̃m

)
(3)

where L̃M is the contractile element normalized length (relative to the optimum length) and
αo the pennation angle at the optimum length. However, this equation is no longer valid if
sin(αo) > L̃m, what may occurs if the muscle is highly shortened.

Fig. 8 A-Model activation dynamics. In the upper part, the usual activation dynamics formulation is shown,
delivering the activation signal from the neural excitation. The A-Model introduces an additional process-
ing step. The result of the classical activation dynamics is called “neural activation,” which is algebraically
nonlinearized to produce the muscular activation
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Fig. 9 A-Model relationship
between neural activation (a(t))

and muscular activation a(t). The
value of the A-parameter
determines the function degree of
curvature. Three A parameter
values are shown. If A = 0, the
relationship is one-to-one

Fig. 10 Exponential curve of
variable pennation angle for
gastrocnemius lateralis, as
function of the normalized
muscle contractile element length

In our approach, the maximum and minimum contractile elements lengths of the three
components of triceps surae were estimated from OpenSim. Such length values were them
associated to the maximum and minimum pennation angles of each muscle, measured by
Kawakami et al. [45]. Between the two points [minimum length, minimum α] [maximum
length, maximum α] a smooth exponential curve was adjusted to simulate the intermediary
points (Fig. 10, for GM as an example):

α
(
L̃M

) = Δα

(1 + e−β(L̃M−LM))
+ αmin (4)

In the above equation, Δα is the observed pennation angle amplitude, L
M

is the mean length
value, β imposes the curve inclination, and αmin is the minimum value of the pennation
angle for each particular muscle.
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This model has been used to study comparatively the “benchmark” case, with knee fully
extended, to the situation with knee flexed at 90° [21]. In this position, it is expected the
gastrocnemii to become shortened, and contribute only marginally to the total plantar flexor
torque. Therefore, the ankle should behave as a single-muscle joint, and torque readings
directly associated to muscle force, which is a very attractive situation for muscle biome-
chanics studies. The resulting torque sharing patterns among the three muscles, in this par-
ticular study were found as: knee extended, SOL, GM, GL percentile contributions to the
total torque were (MEAN±SD): 52.8 ± 6.2,29.2 ± 5.6, and 17.9 ± 3.5, respectively, for all
conditions. For the knee flexed, such proportions were 74.9±5.0,10.0±3.3, and 15.4±3.5.
It means that about 25% of the ankle torque is still being produced by the gastrocnemii, and
the “single muscle paradigm” must be interpreted carefully. However, further knee flexion
(e.g., 120o) is likely to reduce GM and GL forces, remaining almost only the soleus as the
active plantar flexor [46].

6 EMG input issues

Surface EMG signals acquisition and processing are critical questions to be addressed to-
wards more reliable force estimation with EMG-driven models. Excitation u(t) to the EMG-
driven model corresponds to the processed EMG signals normalized by the EMG recorded
during maximal voluntary isometric (MVC) test. The EMG epoch chosen for MVC ref-
erence can constitute itself an error source. The EMG-RMS peak amplitude is a common
option, but also a problematic choice due to the high signal variability. Mean RMS value of
the whole test period is an alternative. Our group adopts the average RMS of a 2 seconds
epoch, chosen visually in the vicinity where the torque curve, given by the dynamometer, is
approximately maximal and constant.

The difficulty for fixing the foot to get reliable ankle torque measurements is reported by
some authors, e.g., [47]. This is a subtle question: if the rear foot disconnects from the dy-
namometer support, the ankle joint extends, the muscles from triceps surae shorten, and the
force at maximum excitation occurs even farther from the optimal length, observed at about
20o of dorsiflexion in static conditions (simulated with OpenSim). If the heel extends during
MVC, due to the high forces, but not in submaximal contractions (20% and 60% MVC), the
modeled relationship between normalized u(t) and force could fail, due to an unreliable nor-
malization. With this potential problem in mind, we used a custom-made rear heel u-shape
apparatus to fix the foot to the dynamometer. It is possible that for some subjects, the foot
positioning precaution resulted not completely worthy.

Some MVC tests were also performed with the ankle at 15° of dorsiflexion since, at
this position, triceps surae produces the highest torque. Indeed, the plantar flexion torque
was significantly higher (154.6 ± 12.82 Nm and 110.1 ± 14.63 Nm for dorsiflexed and
neutral (0o) ankle positions, respectively) . However, we have observed that EMG maxi-
mal amplitudes were similar in both ankle positions, with the same effect for input signal
normalization purposes.

Another question that should be worth noting is the most appropriate signal processing
technique for extracting the EMG envelope to find the control signal u(t). It can observed
that even using a very low cut-off frequency (2 Hz) low-pass filter, large muscle force fluctu-
ations are still observed (for example, the 60% MVC step in Fig. 4). A possible approach for
improving such envelope estimation is using more advanced signal processing techniques
for envelope-extracting [12, 48] and smoothing [49] to find u(t).
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6.1 Use of high-density surface EMG

EMG signals constitute a summation of the motor unit action potentials, occurring within
the detection area of the electrode. Constructive and destructive wave superimpositions are
present simultaneously, leading to a “natural” large variance of the EMG’s linear envelope
[47], which does not strictly represent fluctuations in muscle activation. Electrodes posi-
tioning about the innervate zone can affect drastically the signal amplitude, as well as the
conductor volume, which depends on the distance between the signal origin and the detec-
tion system, varying among the anthropometric characteristics of each subject. The use of
single differential configuration may hinder force prediction due to the small detection area
covered by a couple of electrodes [50, 51], failing to represent the actual excitation u(t) for
the muscle as a whole, as hypothesized by the model. However, reliable detection of surface
EMG from several electrodes represents a difficult technical problem, since the recording
signal has two spatial and one temporal dimension.

A grid of densely spaced monopolar electrodes, known as high-density EMG (HD-EMG)
[51, 52], maps the myoelectrical activation over a wide surface on the skin, providing a better
spatial representation of the neuromuscular activity. Using spatially distributed electrodes,
likely covering different motor units, have shown to increase muscle force estimation accu-
racy in some EMG-force studies, without concerning to Hill-type muscle models [12, 53].
For example, a 30% improvement of force estimation for the triceps brachii muscle during
three different contractions levels [53].

Our group, in collaboration with the Laboratory of Engineering of Neuromuscular Sys-
tem of the Politecnico di Torino (LISiN), compared the torque prediction accuracy of HD
EMG with the traditional bipolar configuration in the EMG-driven model. A study with 10
adult male subjects, and a similar plantar flexion protocol, was performed [17]. The elec-
trode arrays were: for GM, 6 × 5 electrodes, 8 mm interelectrode distance (IED); for GL,
8 × 1 electrode array, 5 mm IED and for SOL, 5 × 13 electrodes array, 8 mm IED (Fig. 11).
For each muscle, the EMG signals were processed in two ways. (1) HD (High Density):
the envelopes of single differential EMG signals, pertaining to pairs of electrodes disposed
along each column of the matrix, were averaged into a single envelope. (2) BP (bipolar):
one single differential signal was digitally obtained between two selected electrodes, sepa-
rated by 2.4 cm, to simulate the conventional bipolar configuration. In both conditions, the
resulting envelope was normalized and input into the model as the excitation signal for each
muscle.

The ultrasound device was used to scan both gastrocnemii and soleus to find the locations
for positioning the electrode arrays. Marks on the skin are drawn, according to muscle fibers
arrangement, Achilles tendon insertion, and both of the gastrocnemii myotendinous junc-
tions (MYJ). The arrays of electrodes were placed at specific locations on the skin following
the criteria: (a) GM: longitudinally just over the end of the superficial fibers, laterally one
centimeter from the gastrocnemius midline, (b) GL: over the line between the MYJ and the
end of the superficial fibres, and (c) SOL: just under the medial gastrocnemius myotendinous
junction, with the electrode matrix center aligned according to the gastrocnemius midline
and the Achilles tendon insertion.

The mean RMSE(%) values were: for 20% MVC, 22.2 ± 7.2 and for 60% MVC, 25.7 ±
9.9 with the BP configuration. With HD, the 60% MVC error reduced significantly to 21.6±
10.2, showing that the HD-EMG improved the torque estimation error by approximately
16%. The 20% MVC error reduction, to 21.0 ± 8.0 with HD, was not significant.

The choice to use one mean enveloped signal from the electrode matrixes, as represen-
tative of the muscle input signal u(t), may perhaps represent not the most appropriate ap-
proach. The advantage of the HD-EMG is related to the ability to map the myoelectrical
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Fig. 11 Schematics of electrodes positioning. In the left, the ultrasound images are used to find the anatom-
ical landmarks considered as references for electrodes array positioning. L is the measured fiber length. On
the right, the electrode array developed by LISiN for the gastrocnemius is shown

activation over a wide superficial area. Therefore, it should be possible to identify areas
from which the “most representative” EMG signals can be detected, thus increasing the re-
liability of the muscle activation level detection. It is possible that averaging the signals, in
order to obtain one average signal, have somehow worsened the input function: if the super-
ficial muscle activation is not equally distributed, larger nonactivated areas could pull down
the mean signal amplitude; other processing methods, as maximal centroid amplitude and
cluster analysis might enhance muscle activation level and force estimations.

7 Conclusions

This paper has addressed some methodological questions regarding the use of an EMG-
driven model to estimate isometric ankle muscle forces. Force prediction accuracy can be
evaluated indirectly, through the RMS error between the torque curves obtained by the
model and those measured synchronously by a dynamometer. Despite the apparent sim-
plicity of the proposed problem, several questions can be raised, especially: the origin and
reliability of the muscle dynamical model parameters, some characteristics of muscle dy-
namics formulation, and EMG input issues. On the average, among the subjects, the pre-
diction was more accurate in medium/high activation than in low activation levels. Usually,
the error was of torque underestimation, which can be minimized by applying a nonlinear
formulation of activation dynamics (A-Model). A pattern of individual contributions to the
total torque has been observed, following the sequence: SOL, GM, and GL. When the acti-
vation level increases, GL participation in the torque sharing becomes significantly higher.
Simultaneously, intersubject variability of the torque sharing among the muscles decreases.
Tibialis anterior antagonist has shown little activity in the studied task, and its action can
be usually disregarded. Using high density, multichannel EMG has shown to reduce torque
estimation error, but at the expense of much greater instrumentation complexity.

Many of these questions must be addressed and better understood, before applying the
EMG-driven model approach to other muscle groups, with even more reason in complex
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tasks. Increasing model reliability may lead to narrowing system constraints, when opti-
mization techniques are applied to refine the solution. In such situations, we believe that
physiologically more meaningful solutions are likely to be obtained.
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