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Abstract Design sensitivity analysis of flexible multibody systems is important in opti-
mizing the performance of mechanical systems. The choice of coordinates to describe the
motion of multibody systems has a great influence on the efficiency and accuracy of both
the dynamic and sensitivity analysis. In the flexible multibody system dynamics, both the
floating frame of reference formulation (FFRF) and absolute nodal coordinate formulation
(ANCF) are frequently utilized to describe flexibility, however, only the former has been
used in design sensitivity analysis. In this article, ANCF, which has been recently developed
and focuses on modeling of beams and plates in large deformation problems, is extended into
design sensitivity analysis of flexible multibody systems. The Motion equations of a con-
strained flexible multibody system are expressed as a set of index-3 differential algebraic
equations (DAEs), in which the element elastic forces are defined using nonlinear strain-
displacement relations. Both the direct differentiation method and adjoint variable method
are performed to do sensitivity analysis and the related dynamic and sensitivity equations are
integrated with HHT-I3 algorithm. In this paper, a new method to deduce system sensitivity
equations is proposed. With this approach, the system sensitivity equations are constructed
by assembling the element sensitivity equations with the help of invariant matrices, which
results in the advantage that the complex symbolic differentiation of the dynamic equations
is avoided when the flexible multibody system model is changed. Besides that, the dynamic
and sensitivity equations formed with the proposed method can be efficiently integrated
using HHT-I3 method, which makes the efficiency of the direct differentiation method com-
parable to that of the adjoint variable method when the number of design variables is not
extremely large. All these improvements greatly enhance the application value of the direct

T. Pi · Y. Zhang (�) · L. Chen
Center for Computer-Aided Design, School of Mechanical Science & Engineering, Huazhong
University of Science & Technology, Wuhan, Hubei 430074, China
e-mail: zhangyq@hust.edu.cn

T. Pi
e-mail: piting007@gmail.com

L. Chen
e-mail: chenlp@hustcad.com

mailto:zhangyq@hust.edu.cn
mailto:piting007@gmail.com
mailto:chenlp@hustcad.com


154 T. Pi et al.

differentiation method in the engineering optimization of the ANCF-based flexible multi-
body systems.

Keywords ANCF · Direct differentiation method · Adjoint variable method · HHT-I3 ·
Invariant matrices

1 Introduction

Optimizing the performance of mechanical systems is one of the most important objectives
and applications of multibody system dynamics. Gradient based optimization methods may
greatly improve the efficiency and convergence rate of the optimization process by providing
sensitivity information. In this sense, sensitivity analysis plays a key role in bridging the gaps
between optimization and dynamic analysis.

Design sensitivity analysis has been developed for almost 40 years and four different
methods have been developed: the finite difference method, direct differentiation method,
adjoint variable method, and automatic differentiation method. Among them, the finite dif-
ference method [15] is the simplest, which uses perturbed parameters to calculate sensi-
tivities of the objective function with respect to design variables. However, this method is
very time consuming and results in the difficulty in choosing the perturbation [15]. A large
step size may lead to unacceptable truncation errors while a small one may result in un-
desirable round off errors. The third drawback is the poor numerical performance which is
derived from the need of additional analysis for the perturbation of each additional design
variable [17].

Different from finite difference method, the direct differentiation method and adjoint
variable method belong to analytical methods. The direct differentiation method [10, 11,
18–21, 26, 28, 31, 33, 34, 39] is easy to understand, which obtains the sensitivity equations
by differentiating the dynamic equations with respect to design variables in accordance with
the chain rule of differentiation. The sensitivity equations are then integrated simultaneously
with the dynamic equations to obtain the derivatives of state variables, and Lagrange mul-
tipliers in the case of DAEs, with respect to design variables. After that, sensitivities of the
objective or performance function with respect to design variables can be easily evaluated.
The attractive advantage of direct differentiation is the effective control of time integration
errors when implicit numerical methods are used. However, it needs a large number of sen-
sitivity equations to be derived analytically and integrated if there are a large number of
design variables and state variables, which is cumbersome and error-prone. The situation
is even worse when this method is applied to the sensitivity analysis of flexible multibody
systems. If the flexible part is modeled with the finite element method and the number or
the type of finite elements is modified frequently, it is heavy work to deduce these equa-
tions.

The adjoint variable method [4, 5, 9, 11, 20, 24, 25] introduces a set of adjoint variables
to circumvent explicit calculation of state sensitivities. Firstly, dynamic equations are calcu-
lated forwards to obtain the state variables and Lagrange multipliers. Secondly, the adjoint
equations are integrated backward to obtain the adjoint variables. Finally, the derivatives of
objective functions with respect to design variables are evaluated. The main advantage of
this method compared with direct differentiation method is that the number of DAE sys-
tems to be integrated is greatly reduced if there are a large number of design variables,
which saves a lot of computation time. However, there are mainly two drawbacks. First,
the construction of adjoint equations is complicated. Second, a large number of input and
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output operations are required and the error control of the backward integration is diffi-
cult.

Automatic differentiation method is an approach for efficiently calculating the derivatives
of functions. Adifor [7, 8, 13] is a representation of this method, which is able to generate the
partial derivatives of the source code with respect to the user-defined design variables. The
efficiency of automatic differentiation method is not clear compared with the three methods
discussed above [16]. Valuable suggestions to obtain reliable results with this method are
proposed in [31].

Research on sensitivity analysis of multibody systems mainly focuses on rigid multibody
systems and literature on sensitivity analysis of flexible multibody systems is sparse [6, 11].
In these papers, the flexible multibody systems are formulated using FFRF, which is the
most widely used way to describe flexibility. FFRF uses two sets of coordinates to describe
the configuration of the deformable bodies; one set describes the position and orientation of
a body fixed coordinate system, and the other describes the deformation of the body with
respect to its body fixed coordinate system. As a consequence, the stiffness matrix used to
obtain elastic forces remains the same. However, the mass matrix, centrifugal, and Coriolis
inertia forces and even generalized gravity forces appear highly nonlinear in this approach.
Moreover, the small deformation assumption limits the use of FFRF in large deformation
problems.

Three other description methods applied to simulating flexible multibody systems are the
incremental finite element approach, large rotation vector formulation and ANCF [36]. The
incremental finite element approach introduces infinitesimal rotation angles as nodal vari-
ables to overcome the limitation of FFRF. However, this approach cannot exactly describe
the rigid-body motion, which is an important issue in flexible multibody dynamics. The
large rotation vector formulation replaces the infinitesimal rotation angles of incremental
finite element approach with finite ones so that the rigid-body displacement can be exactly
described. However, this method has not been widely accepted due to the redundancy of
representing the large rotation of the cross section which may lead to singularity problems
and unrealistic shear forces.

ANCF [35, 37, 40] introduces absolute displacements and global slopes as nodal co-
ordinates with respect to the global reference frame, which is significantly different from
the other three formulations mentioned above. This difference prevents the terms of motion
equations from being highly nonlinear because the mass matrix and generalized force re-
main constant and centrifugal and Coriolis inertia forces equal zero in this situation. The
only nonlinear term is the elastic forces vector. However, recent research [14] has developed
an efficient procedure for evaluating the elastic forces, the elastic energy and the Jacobian
matrix of the elastic forces. ANCF is able to achieve the exact modeling of the rigid body
modes and be used to solve large deformation problems while FFRF is just effective in the
range of small deformation situation.

This paper extends ANCF to the first order sensitivity analysis of flexible multibody sys-
tems using both direct differentiation method and adjoint variable method. As far as the
authors’ knowledge, this topic has not been discussed before. In Sect. 2, the dynamic anal-
ysis of the ANCF-based flexible multibody systems and the corresponding computational
strategy are presented. Section 3 describes the first order sensitivity analysis of the flexi-
ble multibody systems, including both the direct differentiation method and adjoint variable
method. A new method to deduce sensitivity equations is proposed in this section. Two nu-
merical experiments are performed to verify the feasibility and efficiency of the proposed
method in Sect. 4. Section 5 gives a conclusion at last.
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2 Dynamics of flexible multibody systems based on ANCF

This section presents the formulation of system dynamic equations and the corresponding
computation strategy at first. Then the terms of system equations based on ANCF are de-
scribed. Jacobian matrix of the elastic forces vector, which is required by the computation
strategy, is presented at last.

2.1 Equations of motion and computational strategy

Different kinds of system equations for constrained multibody systems have been proposed
over the years [1, 23]. This paper adopts the frequently used DAE system of index-3 with
holonomic constraints which is usually written as

M(q,b)q̈ + ΦT
q λ = Qs(q,b, t) + Qe(q̇,q,b, t),

Φ(q,b) = 0, (1)

where Φq is the Jacobian matrix of the constraints Φ , Qe and Qs are the vectors of gen-
eralized external and elastic forces, respectively, λ is the vector of Lagrange multipliers,
q , q̇ and q̈ are the vectors of general displacement, velocity, and acceleration coordinates,
respectively, t is the time variable and b is the vector of design variables. In this paper, an
assumption is made that the most widely used geometry and material parameters are chosen
as design variables.

To solve (1), the newly proposed HHT-I3 method [29] is employed. In the HHT-I3 algo-
rithm, the position and velocity variables of step n + 1 are defined as

qn+1 = qn + hq̇n + h2

2

[
(1 − 2β)an + 2βan+1

]
, (2)

q̇n+1 = q̇n + h
[
(1 − γ )an + γ an+1

]
, (3)

and the equations of motion and position kinematic constraint are discretized into

1

1 + α
(Ma)n+1 + (

ΦT
q λ − Qe − Qs

)
n+1

− α

1 + α

(
ΦT

q λ − Qe − Qs

)
n
= 0, (4)

1

βh2
Φ(qn+1, tn+1) = 0, (5)

where α is a selected parameter, β and γ are parameters depending on α, h is the time step
size, an+1 is an approximation of q̈(tn + (1 +α)h), and the subscripts n and n+ 1 mean that
the related quantities should be evaluated at the nth and (n + 1)-th time step, respectively.

Note that the unknowns of (4) and (5) are an+1 and λn+1. The associated Jacobian matrix
is [30]

J =
[ 1

1+α
M + βh2(Ma + ΦT

q λ − Qe − Qs)q − γ h(Qe)q̇ ΦT
q

Φq 0

]
. (6)

As shown in (6), an efficient way is needed to evaluate the derivatives of general forces with
respect to state variables.

One of the advantages of this method is the good conditioning of the Jacobian matrix
associated with the implicit integrator. It can be easily found that when h → 0, J is nonsin-
gular as long as M is nonsingular and the kinematic constraints are independent.
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Fig. 1 Pseudocode of the
HHT-I3 algorithm

Fig. 2 Planar shear-deformable
beam element

The pseudocode of the HHT-I3 algorithm from time step n to n + 1 is shown in Fig. 1,
where w = [aT λT ]T , υ is the vector of residual of (4) and (5), and ϑ1 and ϑ2 are user
specified tolerances.

The accuracy and efficiency of this algorithm have been investigated in detail [22, 29,
30]. One of the most expensive tasks when HHT-I3 algorithm is employed is the calculus
of the Jacobian matrix. Taking advantage of ANCF, the Jacobian matrix can be exactly and
efficiently evaluated as shown in the following sections, which greatly reduces the compu-
tational cost compared with numerical differentiation techniques.

2.2 Kinematics of flexible multibody systems based on ANCF

In this paper, a two dimensional shear deformable beam is taken as an example to illus-
trate the procedures of dynamic and sensitivity analysis of ANCF-based flexible multibody
systems, as shown in Fig. 2.

Vector r is the global position vector of an arbitrary point P in the beam cross section,
x and y are the coordinates of P defined in the beam coordinate system. In the shear de-
formable beam model, the cross section of the beam does not remain normal to the neutral
axis. As shown in Fig. 2, angles θ and ψ account for the overall rotation of the cross section
and the shear angle, respectively.

The global position vector of point P can be written as

r = [ r1 r2 ]T = Se, (7)

where S is the global element shape function, and e is the vector of nodal coordinates.
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The element shape function S can be defined as

S =
[

s1 0 ls2 0 ls3 0 s4 0 ls5 0 ls6 0
0 s1 0 ls2 0 ls3 0 s4 0 ls5 0 ls6

]
(8)

where

s1 = 1 − 3ξ 2 + 2ξ 3, s2 = ξ − 2ξ 2 + ξ 3, s3 = η − ξη,

s4 = 3ξ 2 − 2ξ 3, s5 = −ξ 2 + ξ 3, s6 = ξη,

and ξ = x/l, η = y/l; l is the element length.
The vector of the element nodal coordinates e = [e1 . . . e12]T is given by

e1 = r1|x=0, e2 = r2|x=0, e3 = ∂r1

∂x

∣
∣∣
∣
x=0

, e4 = ∂r2

∂x

∣
∣∣
∣
x=0

,

e5 = ∂r1

∂y

∣
∣∣
∣
x=0

, e6 = ∂r2

∂y

∣
∣∣
∣
x=0

, e7 = r1 |x=l , e8 = r2 |x=l ,

e9 = ∂r1

∂x

∣∣
∣∣
x=l

, e10 = ∂r2

∂x

∣∣
∣∣
x=l

, e11 = ∂r1

∂y

∣∣
∣∣
x=l

, e12 = ∂r2

∂y

∣∣
∣∣
x=l

.

2.3 Mass matrix

One of the most attractive characteristics of ANCF is that the mass matrix M in (1) remains
constant during dynamic simulation. To achieve this goal, the element mass matrix Me is
derived at first and then assembled using the standard finite element procedure.

The kinetic energy of the element is defined as

T = 1

2

∫

V

ρṙT ṙ dV = 1

2
ėT

(∫

V

ρST S dV

)
ė = 1

2
ėT Meė, (9)

where V is the element volume, ρ is the mass density of the beam material, ṙ = Sė is the
absolute velocity vector and Me is the mass matrix of the element defined as

Me =
∫

V

ρST S dV . (10)

It can be easily deduced that Me is constant and symmetric.

2.4 Generalized forces

2.4.1 Generalized external forces

Suppose that an external force F e is applied to an arbitrary point of the beam element, the
virtual work due to the force is [32]

δWe = F T
e δr = F T

e Sδe = QT
e δe, (11)
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where Qe is the vector of generalized external forces. Taking the gravity force, for example,
the vector of generalized distributed gravity forces is

Qe = −ρVg
[

0 1
2 0 l

12 0 0 0 1
2 0 − l

12 0 0
]T

. (12)

2.4.2 Generalized elastic forces

Elastic forces based on ANCF are the only nonlinear terms in (1). To efficiently evaluate the
elastic forces, many investigations have been made [2, 3, 14, 27, 38]. An efficient approach
is proposed in [14], in which the elastic forces vector Qs is written as

Qs = −(
K2(e,b) + K1(b)

)
e (13)

where

K2 = κ + 2G

2

(∫

V

ST
,1S,1ee

T ST
,1S,1 dV +

∫

V

ST
,2S,2ee

T ST
,2S,2 dV

)

+ κ

2

(∫

V

ST
,1S,1ee

T ST
,2S,2 dV +

∫

V

ST
,2S,2ee

T ST
,1S,1 dV

)

+ G

(∫

V

ST
,1S,2ee

T ST
,2S,1 dV +

∫

V

ST
,2S,1ee

T ST
,1S,2 dV

)
(14)

and

K1 = − (κ + G)

(∫

V

ST
,1S,1 dV +

∫

V

ST
,2S,2 dV

)
. (15)

In the above equations, κ is the Lamé’s constant and G is the shear modulus of the
material. The ith row of matrix S,j is defined as

(S,j )i =
(

∂x

∂ro

)T

j

[
ST

i,x ST
i,y

]T
, i, j = 1,2, (16)

where (∂x/∂ro)
T
j is the j -th row of (∂x/∂ro)

T , x = [x y]T , ro = Seo represents any ar-
bitrary material point in the reference configuration defined by eo, Si,x and Si,y are the
derivatives of the ith row of the shape function with respect to x and y, respectively.

To separate the state variables from other parameters of the elastic forces, a tensor trans-
formation is introduced and a typical element of K2 is written as

K
ij

2 = eT C
ij

K2
e, (17)

where

C
ij

K2
= κ + 2G

2

∫

V

((
ST

,1S,1

)T

i

(
ST

,1S,1

)
j
+ (

ST
,2S,2

)T

i

(
ST

,2S,2

)
j

)
dV

+ κ

2

∫

V

((
ST

,1S,1

)T

i

(
ST

,2S,2

)
j
+ (

ST
,2S,2

)T

i

(
ST

,1S,1

)
j

)
dV

+ G

∫

V

((
ST

,1S,2

)T

i

(
ST

,2S,1

)
j
+ (

ST
,2S,1

)T

i

(
ST

,1S,2

)
j

)
dV . (18)
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As shown in (15) and (18), matrices K1 and C
ij

K2
are independent of e and t , which means

that matrices K1 and C
ij

K2
are invariant and can be prepared in advance. The generalized

elastic forces are able to be calculated through matrix multiplication with these invariant
matrices instead of the conventional numerical integration procedure, which considerably
reduces the computational expenses during simulation [14].

2.5 Jacobian of the elastic forces

There is a need to evaluate the derivatives of the generalized elastic forces with respect to
state variables in accordance with the invoked integration method. Using invariant matrices
K1 and C

ij

K2
described above, any arbitrary component of these derivatives is written as [14]

(
∂Qs

∂e

)

ik

= ∂Qsi

∂ek

= −eT Cik
K2

e − K1ik −
∑

j

∑

m

em

(
C

ij

K2
+ C

ijT

K2

)
mk

ej . (19)

As presented in (19), the Jacobian of generalized elastic forces can also be evaluated exactly
and efficiently with matrix multiplication.

3 First order sensitivity analysis of ANCF-based flexible multibody systems

3.1 Objective function of optimization

An objective function must be specified for optimizing the performance of a multibody
system. A widely used objective function investigated in this article takes on the form

Ψ =
∫ t2

t1

H
(
t,q (t,b) , q̇ (t,b) ,λ (t,b) ,b

)
dt, (20)

where t1 and t2, assumed to be known, are the initial and final time of dynamic simulation,
respectively. The state variables q , q̇ and Lagrange multipliers λ are functions of the design
variables.

To evaluate the design sensitivity, applying Leibnitz’s and the chain rule of differentiation
yields

dΨ

db
=

∫ t2

t1

(Hqqb + Hq̇ q̇b + Hλλb + Hb) dt (21)

where the derivative of a scalar with respect to a column vector is defined as a row vector. To
evaluate (21), the direct differentiation method and adjoint variable method are performed
in this article as follows.

3.2 Direct differentiation method

The direct differentiation method differentiates (1) with respect to vector b, which yields

Mq̈b + ΦT
q λb = −(

M ˆ̈q)
b
− (

M ˆ̈q)
q
qb − (

ΦT
q λ̂

)
b
− (

ΦT
q λ̂

)
q
qb

+ (Qe + Qs)b + (Qe + Qs)qqb + (Qe)q̇ q̇b, (22)

Φqqb + Φb = 0, (23)
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where a hat “ˆ” over a term means that the term is held constant during differentiation. The
above procedure is usually realized with symbolic differentiation method. Suppose b is a
vector of dimension n, (22) and (23) compose n DAE systems of index-3 for unknowns qb

and λb . The HHT-I3 method is introduced again to integrate the sensitivity DAEs, and (21)
is then evaluated to obtain the objective sensitivities.

However, according to the features of ANCF illustrated in Sect. 2, it can be found that
term (M ˆ̈q)q vanishes because mass matrix M is independent of q . Besides that, all the terms
in (22) can be exactly evaluated as follows:

M,ΦT
q , (Qe + Qs)q , (Qe)q̇ : These items can be assembled and exactly evaluated with the

same method as in dynamic analysis.
(M ˆ̈q)b: The procedure to deduce this item can be divided into three steps. Firstly, the
derivatives of element mass matrix Me with respect to a specific design variable b are
obtained analytically. Secondly, the derivatives above are assembled using finite element
procedure to get Mb . Finally, (M ˆ̈q)b is obtained by multiplying Mb by ˆ̈q , which is used
as a constant vector in the process of sensitivity analysis.

(Qe)b: As shown in Sect. 2.4.1, the generalized external forces vector Qe takes on a simple
form. (Qe)b can be easily deduced by differentiating Qe with respect to b.

(Qs)b: The generalized elastic forces vector Qs is defined in (13). (Qs)b is obtained by
taking the derivative of (13) with respect to a specific design variable b as

(Qs)b = −(
(K2)b + (K1)b

)
e. (24)

(K1)b can be prepared in advance because K1 is invariant as shown in (15). Any arbitrary
element of (K2)b is defined as

(
K2

)ij

b
= eT

(
C

ij

K2

)
b
e (25)

where (C
ij

K2
)b can also be prepared beforehand for the same reason as (K1)b .

(ΦT
q λ̂)b, (Φ

T
q λ̂)q : The evaluation of these terms has been investigated in many papers.

The above procedure can be summarized as a new method to deduce the system sensitiv-
ity equations of ANCF-based flexible multibody systems for general purpose. The most sig-
nificant advantage of this method is that element sensitivity invariant matrices (Me)b , (K1)b

and (C
ij

K2
)b can be prepared in advance along with Me , K1 and C

ij

K2
, which means that

system sensitivity equations can be reformulated by assembling element sensitivity equa-
tions instead of conventional symbolic differentiation approach when the system model is
changed. Furthermore, this method can greatly improve the accuracy and efficiency of con-
struction and integration of sensitivity equations, which will be verified in the numerical
experiments later.

3.3 Adjoint variable method

Different from direct differentiation method, the adjoint variable method does not calculate
the sensitivities of state variables directly. This method introduces a set of adjoint variables
to get rid of numerical integration of (22) and (23). The procedure is as follows:

1. Integrating the second term in the integral of (21) by parts yields

dΨ

db
= H 2

q̇ q2
b − H 1

q̇ q1
b +

∫ t2

t1

(
(Hq − Ḣq̇)qb + Hλλb + Hb

)
dt, (26)
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where Hi
q̇q

i
b, i = 1,2, are the quantities of Hq̇qb evaluated at t = ti , i = 1,2, respec-

tively.
2. Multiplying (22) and (23) by the transpose of introduced adjoint variable vectors μ and

ζ , respectively, and integrating them over period [t1, t2] yields

∫ t2

t1

μT
(
Mq̈b + ΦT

q λb + (
M ˆ̈q)

b
+ (

M ˆ̈q)
q
qb + (

ΦT
q λ̂

)
b
+ (

ΦT
q λ̂

)
q
qb

− (Qe + Qs)b − (Qe + Qs)qqb − (Qe)q̇ q̇b

)
dt = 0, (27)

∫ t2

t1

ζ T
(
Φqqb + Φb

)
dt = 0. (28)

Integrating the terms involving q̈b and q̇b in (27) by parts yields

(
μT Mq̇b − (

μ̇T M + μT Ṁ
)
qb − μT (Qe)q̇qb

)∣∣t2
t1

+
∫ t2

t1

[(
μ̈T M + μT

(
M̈ + (

M ˆ̈q)
q
+ (

ΦT
q λ̂

)
q
+ (Q̇e)q̇ − (Qe + Qs)q

) + μ̇T (Qe)q̇

+ 2μ̇T Ṁ
)
qb + μT

(
ΦT

q λb + (
M ˆ̈q)

b
+ (

ΦT
q λ̂

)
b
− (Qe + Qs)b

)]
dt = 0. (29)

Note that mass matrix M is independent of q and t , so (29) can be reduced to

(
μT Mq̇b − μ̇T Mqb − μT (Qe)q̇qb

)∣∣t2
t1

+
∫ t2

t1

[(
μ̈T M + μT

((
ΦT

q λ̂
)
q
+ (Q̇e)q̇ − (Qe + Qs)q

) + μ̇T (Qe)q̇

)
qb

+ μT
(
ΦT

q λb + (
M ˆ̈q)

b
+ (

ΦT
q λ̂

)
b
− (Qe + Qs)b

)]
dt = 0. (30)

Note that vector 0 on the right side of (27), (28), (29), and (30) is a row vector with the
same dimension as that of b.

3. To make the terms containing q̇2
b and q2

b equal to zero in (30), taking the derivatives of
velocity constraints

Φq

(
q,b

)
q̇ = 0 (31)

with respect to b gives

(Φqq̇)qqb + (
Φq

ˆ̇q)
b
+ Φqq̇b = 0. (32)

Multiplying (23) and (32) by the transpose of introduced vectors γ and ε, respectively,
and evaluating them at the final time t2 yields

γ 2T
(
Φ2

qq
2
b + Φ2

b

) = 0, (33)

ε2T
(
(Φqq̇)2

qq
2
b + (

Φq
ˆ̇q)2

b
+ Φ2

q q̇
2
b

) = 0. (34)

4. Subtracting the left side of (28), (30), (33), and (34) from (26) gives

dΨ

db
=

∫ t2

t1

[
Hq − Ḣq̇ − μ̈T M − μT

((
ΦT

q λ̂
)
q
+ ˙(Qe)q̇ − (Qe + Qs)q

)
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− μ̇T (Qe)q̇ − ζ T Φq

]
qb dt +

∫ t2

t1

(
Hλ − μT ΦT

q

)
λb dt

+
∫ t2

t1

(
Hb − μT

((
M ˆ̈q)

b
+ (

ΦT
q λ̂

)
b
− (Qe + Qs)b

) − ζ T Φb

)
dt

+ (
μ̇2T M − γ 2T Φ2

q − ε2T
(
Φqq̇

)2

q
+ μ2T (Qe)

2
q̇ + H 2

q̇

)
q2

b

− (
μ2T M + ε2T Φ2

q

)
q̇2

b + μ1T Mq̇1
b

− (
H 1

q̇ + μ̇1T M + μ1T (Qe)
1
q̇

)
q1

b − γ 2T Φ2
b − ε2T

(
Φq

ˆ̇q)2

b
. (35)

Selecting the adjoint variables such that the coefficients of qb , λb , q2
b, and q̇2

b are equal
to zero yields the following set of adjoint equations:

Mμ̈ + ΦT
q ζ = HT

q − Ḣ T
q̇ − (Qe)

T
q̇ μ̇ −

[(
ΦT

q λ̂
)T

q
+ ˙(Qe)

T

q̇ − (Qe + Qs)
T
q

]
μ, (36)

Φqμ − HT
λ = 0, (37)

Mμ̇2 − Φ2T
q γ 2 = (

Φqq̇
)2T

q
ε2 − (Qe)

2T
q̇ μ2 − H 2T

q̇ , (38)

Mμ2 + Φ2T
q ε2 = 0. (39)

5. Equations (37) and (39) form a linear system of unknowns μ2 and ε2 as follows:

[
M Φ2T

q

Φ2
q 0

][
μ2

ε2

]
=

[
0

H 2T
λ

]
. (40)

μ2 and ε2 can be obtained by solving the above linear equations.
6. The linear system of unknowns μ̇2 and γ 2 is then constructed using (38) and the equation

derived from differentiating (37) with respect to t for t = t2 is as follows:

[
M −Φ2T

q

Φ2
q 0

][
μ̇2

γ 2

]
=

[(
Φqq̇

)2T

q
ε2 − (Qe)

2T
q̇ μ2 − H 2T

q̇

Ḣ 2T
λ

]

. (41)

Since μ2 and ε2 have been obtained in the last step, μ̇2 and γ 2 can be similarly got by
calculating this linear system.

7. Backward integrating the DAE system composed of (36) and (37) using the HHT-I3
method with the initial condition μ2 and μ̇2 derived from the last two steps yields the
adjoint variables μ and ζ during period [t1, t2].

8. Calculating the remaining terms in (35)

dΨ

db
=

∫ t2

t1

(
Hb − μT

((
M ˆ̈q)

b
+ (

ΦT
q λ̂

)
b
− (Qe + Qs)b

) − ζ T Φb

)
dt

+ μ1T Mq̇1
b − (

H 1
q̇ + μ̇1T M + μ1T (Qe)

1
q̇

)
q1

b − γ 2T Φ2
b − ε2T

(
Φq

ˆ̇q)2

b
(42)

with μ, ζ , μ̇, γ 2, and ε2 obtained in the last steps to obtain the desired sensitivities.

As shown in (42), the adjoint variable method avoids the expensive numerical evaluation
of the derivatives of state variables and Lagrange multipliers with respect to design variables.
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Fig. 3 Planar single pendulum

4 Numerical experiments

4.1 Single pendulum

In this section, a planar flexible single pendulum example, as shown in Fig. 3, is presented to
demonstrate the use of the proposed method in sensitivity analysis. A body coordinate frame
is fixed at the left end of the beam with the x axis tangent to the curve of the beam’s central
line. �y is defined as the deflection of the right end with respect to the body frame. The
density, Young’s modulus and Poisson ratio of the material are assumed to be 4000 kg/m3,
107 N/m2 and 0.3, respectively. The length of the beam is chosen to be L = 1.2 m, the
rectangular cross section is given by h = b = 0.05 m. The pendulum is divided into 5 ele-
ments and released from its straight and horizontal initial configurations. A 4s simulation is
performed with a step size of 2−7 s.

In order to see the effect of Young’s modulus on the elastic deformation, the Young’s
modulus of the pendulum is changed to 5.0 × 106 N/m2 for another simulation. The de-
flections and their sensitivities with respect to Young’s modulus of these two pendulums
are compared in Fig. 4. As expected, the first pendulum’s deflections are smaller and more
insensitive to the change of Young’s modulus than those of the second one.

To verify the results obtained above, the sensitivity analysis of the first pendulum is
performed with the finite difference method. h, ρ, and E are selected as the design variables
and a 1% variation in the design variables is chosen. From Fig. 5, it can be found that the
direct differentiation sensitivities are comparable with the finite difference sensitivities.

This planar single pendulum can be easily extended into the spatial case. To make a com-
parison between the 2d and 3d cases, the spatial fully parameterized ANCF beam element
proposed in [40] is employed. Sensitivities with respect to h, ρ, and E in these two cases
obtained by the direct differentiation method are plotted in Fig. 6. It can be found that spatial
sensitivity curves coincide well with the planar curves.

4.2 Spatial crank-slider mechanism

In this section, a spatial crank-slider mechanism is employed as shown in Fig. 7 to make
a comparison between the direct differentiation method, adjoint variable method, and finite
difference method (1% variation). Both the crank and connecting rod are flexible beams and
modeled using a 3-dimensional fully parameterized ANCF beam element and their detailed
characteristic parameters are listed in Table 1. The slider is assumed to be massless for
simplicity. The crank and connecting rod are set horizontal initially as shown in Fig. 7 and
only suffer the load from gravity.
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Fig. 4 Effect of Young’s modulus on elastic deformation

Table 1 Characteristic parameters of the crank and connecting rod

Crank Connecting Rod

Length (m) 0.9 1.8

Cross section (m2) 0.05 × 0.05 0.05 × 0.05

Density (kg/m3) 2770 2770

Young’s modulus (N/m2) 1.0 × 109 1.0 × 108

Poisson ratio 0.3 0.3

Number of elements 2 4

The objective function in this example is selected as

Ψ =
∫ 2

0

(
x − 1.8

)2
dt, (43)

where x is the slider’s position coordinate in the sliding direction. The vector of design
variables is selected as b = [h1 ρ1 E1 h2 ρ2 E2 ]T , where hi , ρi, and Ei are the height of
cross section, density, and Young’s modulus of the crank and connecting rod, respectively.
Figure 8 shows the sensitivities of the slider’s x position coordinate using both the direct
differentiation method and the finite difference method. Different from the single pendulum
example, not all the sensitivity curves coincide very well. There is a big difference in the
sensitivities with respect to E1 and h2 between these two methods. Figure 9 shows the
time dependent design sensitivities of the object function obtained with all of these three
methods. The results obtained with the direct differentiation method and adjoint variable
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Fig. 5 Comparison between direct differentiation method and finite difference method

method show good agreement, which demonstrates the reliability of these two methods.
However, when comparing these two methods with the finite difference method, not all the
obtained sensitivities coincide very well, especially with respect to the design variables h2

and E1, whereas in the previous single pendulum example, the finite difference method with
the same variation performs much better. It can be concluded that it is not easy to select
appropriate perturbations for all the design variables in all situations, which reflects the
difficulties of the finite difference method mentioned in the Introduction.

The sensitivity analysis is performed on a notebook computer with an Intel Core Duo
2.53 GHz processor and 2 GB RAM in MATLAB environment. The CPU time taken in
this 6 design variables example using the finite difference method, direct differentiation
method, and adjoint variable method are 2922.2, 700.3, and 794.5 seconds, respectively.
It is shown that the direct differentiation method is more efficient than the adjoint variable
method and finite difference method. However, in some papers such as [11, 12], which adopt
FFRF, the adjoint variable method is more efficient than the direct differentiation method
when the number of design variables is large. In [12], the computational expense of the
direct differentiation method is twice as much as that of the adjoint variable method when
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Fig. 6 Comparison between 2D and 3D ANCF beams

Fig. 7 Spatial slider-crank mechanism

a planar crank-slider mechanism with 5 design variables is used. The difference between
the results of [12] and this article is due to the different formulations of the motion and
sensitivity equations employed. When ANCF is applied, as shown in this paper, the time that
the direct differentiation method needs in integrating the dynamic and sensitivity equations
is less than that the forward and backward integration needs in the adjoint variable method.
Thus, it can be concluded that when ANCF is utilized and the number of design variables is
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Fig. 8 Sensitivities of the slider’s x position coordinate w.r.t. design variables using both the finite difference
method and the direct differentiation method

not extremely large, the efficiency of direct differentiation method is comparable to that of
adjoint variable method.

5 Conclusion

In this article, ANCF is extended into the sensitivity analysis of flexible multibody sys-
tems. Both the direct differentiation method and the adjoint variable method are performed,
whose feasibility and accuracy are validated through a single pendulum example and a spa-
tial crank-slider example.

As a benefit from ANCF, a new approach to deduce the system sensitivity equations is
proposed. With this approach, the system sensitivity equations are constructed by assem-
bling the element sensitivity equations with the help of invariant matrices, which results in
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Fig. 9 Comparison between direct differentiation method, adjoint variable method, and finite difference
method

the advantage that the complex symbolic differentiation of the dynamic equations is avoided
when the flexible multibody system model is changed.

Furthermore, the dynamic and sensitivity equations formed with the proposed method
can be efficiently integrated using the HHT-I3 method, which makes the efficiency of the
direct differentiation method comparable to that of the adjoint variable method when the
number of design variables is not extremely large. All these improvements greatly enhance
the application value of the direct differentiation method in the engineering optimization of
the ANCF-based flexible multibody systems.
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