
Multibody Syst Dyn (2012) 27:75–93
DOI 10.1007/s11044-011-9261-z

Two approaches for feedforward control and optimal
design of underactuated multibody systems

Robert Seifried

Received: 4 November 2010 / Accepted: 3 May 2011 / Published online: 25 May 2011
© Springer Science+Business Media B.V. 2011

Abstract An underactuated multibody system has less control inputs than degrees of free-
dom. For trajectory tracking, often a feedforward control is necessary. Two different ap-
proaches for feedforward control design are presented. The first approach is based on a co-
ordinate transformation into the nonlinear input–output normal-form. The second approach
uses servo-constraints and results in a set of differential algebraic equations. A comparison
shows that both feedforward control designs have a similar structure. The analysis of the
mechanical design of underactuated multibody systems might show that they are nonmini-
mum phase, i.e., they have unstable internal dynamics. Then the feedforward control cannot
be computed by time integration and output trajectory tracking becomes a very challenging
task. Therefore, based on the two presented feedforward control design approaches, it is
shown that through the use of an optimization procedure underactuated multibody systems
can be designed in such a way that they are minimum phase. Thus, feedforward control
design using the two approaches is significantly simplified.

Keywords Underactuation · Feedforward control · Model inversion · Servo-constraints ·
Internal dynamics · Minimum phase · Optimal design

1 Introduction

Multibody systems with less control inputs than degrees of freedom are called underactu-
ated. Typical examples are multibody systems with passive joints, body flexibility, joint elas-
ticities, and cranes. In order to obtain a good performance in end-effector trajectory tracking,
an accurate and efficient feedforward control is necessary. The feedforward control design
is based on an inverse model which provides the input required for exact reproduction of
a desired output trajectory. In addition, the inverse model provides the trajectories of all
generalized coordinates. In order to account for small disturbances and uncertainties, the
feedforward control has to be supplemented by additional feedback control, whereby the
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computed trajectories of the generalized coordinates can be used. This yields a so-called
control structure with two design degrees of freedom, whereby both parts of this control
system can be designed largely independent from each other.

Differentially flat systems [12] have the property that they can be inverted completely
by algebraic computations without integration. Examples of differentially flat underactuated
multibody systems are often cranes [12], cable manipulators [14], and manipulators with
joint elasticities [10]. In contrast nonflat systems contain internal dynamics which must be
solved. This increases the complexity of the feedforward control design. Examples are multi-
body systems with passive joints or body flexibility [20, 32]. Feedforward control design for
those underactuated multibody systems with internal dynamics are considered in this paper.

The internal dynamics can be investigated using concepts from differential geometric
control theory [16, 25, 34]. Thereby, a nonlinear coordinate transformation is used to trans-
form the system symbolically into the so-called nonlinear input–output normal-form. This
input–output normal-form has a favorable structure and a feedforward control can be derived
easily, consisting of a chain of differentiators, driven internal dynamics, and an algebraic
part. For systems with bounded internal dynamics, i.e., minimum phase systems, the inter-
nal dynamics can be solved by forward time integration [15]. In contrast, for nonminimum
phase systems, the internal dynamics has to be computed off-line by solving a two-sided
boundary value problem, yielding a noncausal control [11, 31, 36]. This approach of feed-
forward control design using a coordinate transformation is very efficient and also especially
helpful for theoretical investigations. However, the complete symbolic derivation requires
Lie-derivatives of the system output in state space representation, which is often only pos-
sible for small systems and special choices of the system output. In this paper, a simplified
linearly-combined system output is chosen, which can be used to describe approximately
the end-effector position of underactuated multibody systems with passive joints. Then it
is shown that using this linearly combined output and the special structure of the equation
of motion of a multibody system; the coordinate transformation can be directly performed
on the second order differential equation of motion. In the practical implementation, this
simplifies significantly the feedforward control design.

A second approach is presented which overcomes some of these shortcomings. This
approach is based on servo-constraints to describe the trajectory tracking problem [2–5,
17, 21], which has been mostly applied to differentially flat mechanical systems. Similar
to multibody systems with geometric constraints, this approach yields a set of differential-
algebraic equations (DAE) which has to be solved numerically. However, in the case of
servo-constraints, higher index DAE might occur [9]. Based on [28], it is shown in this pa-
per that a servo-constraint approach for flat mechanical systems [4–7] can be extended to
minimum phase systems with arbitrary output. In contrast to flat systems investigated in the
mentioned literature, the nonflat systems which are treated in this paper require different
numerical solution methods and a careful analysis and design of the internal dynamics. In
the servo-constraint approach, a projection of the equation of motion into two orthogonal
subspaces is performed. Then a comparison of the projected equations with the feedforward
control approach using coordinate transformation shows that both feedforward control de-
signs have the same structure. Also, it is seen that the DAE can only be solved by forward
time integration if the system is minimum phase.

Due to these difficulties, the aim should be to design an underactuated multibody sys-
tem in such a way that it is minimum phase [29, 30]. In this paper, two optimization-based
design approaches for designing underactuated multibody systems with bounded internal
dynamics are presented. These procedures are based on the two presented feedforward con-
trol design approaches. Thus, besides a minimum phase system design, also immediately
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a viable feedforward control design is obtain from both approaches. In the proposed op-
timizations, the design parameters can be geometric dimensions and the mass distribution
of the underactuated multibody systems. The optimization criteria has two steps and firstly
requires that all eigenvalues of the linearized zero dynamics, this is the internal dynamics
under constant zero output, are in the left half-plane. Secondly, it is required that initial
errors in the nonlinear zero dynamics decay rapidly, i.e., the internal dynamics have good
damping properties. Since this optimization problem is discontinuous, a particle-swarm op-
timization algorithm is used. The efficiency of both optimal design and feedforward control
approaches is demonstrated for a multibody system with passive joints.

2 Feedforward control design using coordinate transformation

Underactuated multibody systems with f degrees of freedom, generalized coordinates
q ∈ R

f and inputs u ∈ R
m with m < f , i.e., control forces and torques, are considered.

The nonlinear equation of motion is given by

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u, (1)

where M ∈ R
f ×f is the mass matrix, k ∈ R

f the vector of generalized Coriolis, gyroscopic,
and centrifugal forces and g ∈ R

f the vector of applied forces. The control inputs u are
projected on the directions of the generalized coordinates by the input matrix B ∈ R

f ×m.
The system output y ∈ R

m of the multibody system is given by

y = h(q), (2)

which, for example, can be an end-effector position. As often required in nonlinear con-
trol, the dimensions of input and output coincide. In the case of an underactuated multibody
system, the input matrix B cannot be inverted. Therefore, the classical approach of inverse
dynamics used in fully actuated systems [35] cannot be applied. Thus, more advanced non-
linear control techniques are necessary. In the following, a feedforward control design for
output trajectory tracking of underactuated multibody systems is presented. This approach
is based on concepts from differential geometry and its theoretical background for general
nonlinear systems is described in [16, 25, 34].

2.1 Input–output normal-form

The nonlinear input–output normal-form is the basis for feedback linearization as well as for
feedforward control design. This input–output normal-form is obtained by applying a non-
linear coordinate transformation to the equation of motion (1). This diffeomorphic coordi-
nate transformation is given by z = Φ(x) ∈ R

2f , where x = [qT , q̇T ]T are the original states
and z ∈ R

2f are the states of the input–output normal-form. In general, this transformation
requires a state-space representation and the symbolic computation of Lie-derivatives of the
output y until the system input u occurs [16, 25, 34]. However, even for multibody systems
with very few degrees of freedom, these symbolic calculations become very complicated.
Therefore, here these calculations are directly performed on the second order equation of
motion. The first two derivatives of the system output are

ẏ = H (q)q̇, (3)

ÿ = H (q)q̈ + h̄(q, q̇), (4)
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where H is the Jacobian-matrix of the system output and h̄ = Ḣ q̇ is the local acceleration.
In (4) the second derivative of the generalized coordinates q̈ can be replaced by the equation
of motion (1) and yields,

ÿ = Hq̈ + h̄ = HM−1[g − k + Bu] + h̄ = HM−1Bu + HM−1[g − k] + h̄. (5)

If the matrix HM−1B is nonsingular, (5) can be solved for the control inputs u. In this
case, the matrix HM−1B is called decoupling matrix and the system is said to have vector
relative degree r = {r1, . . . , rm} = {2, . . . ,2}. Following [16], the relative degree is defined
as the minimal number of derivatives of each system output hi(q), i = 1, . . . ,m until the
inputs u can be computed. Then no further derivatives are necessary and the first part of the
coordinate transformation is found. Relative degree r = {2, . . . ,2} occurs in fully actuated
multibody systems and is in many instances characteristic for multibody systems with pas-
sive joints or flexible bodies. In contrast, cranes and manipulators with joint elasticities have
in most cases a higher relative degree. Then the nonlinear coordinate transformation is given
by

z = Φ(x) = Φ(q, q̇) =
⎡
⎢⎣

z1

z2

z3

⎤
⎥⎦ with

z1 = y = h(q) ∈ R
m,

z2 = ẏ = H (q)q̇ ∈ R
m,

z3 = Φ3(q, q̇) ∈ R
2(f −m).

(6)

Thereby, the coordinates z3 are determined such that (6) forms at least a local diffeomorphic
coordinate transformation. This requires that the Jacobian-matrix J = ∂Φ(x)/∂x is nonsin-
gular. Applying the coordinate transformation (6) to the equation of motion (1) yields the
nonlinear input–output normal-form

y = z1, (7)

ż1 = z2, (8)

ż2 = HM−1Bu + HM−1[g − k] + h̄ = β(z)u + α(z), (9)

ż3 = ρ(z) + σ (z)u. (10)

The input–output normal-form consists of two parts. The first part, given by the output
equation (7) and the differential equations (8)–(9), describe the relationship between the
inputs u and outputs y . Neglecting the output equation, this subsystem has dimension 2m.
The second part of the normal-form given by (10) has dimension 2(f −m) and describes the
so-called internal dynamics. From this normal-form, the analysis of the internal dynamics,
feedback linearization and feedforward control design can be performed.

It should be noted that for so-called differential flat systems [12, 23], such as many cranes
or manipulators with joint elasticity, no internal dynamics remain. Such systems can be in-
verted completely by algebraic calculations. However, thereby higher derivatives of the sys-
tem outputs h(q) have to be computed for the coordinate transformation, yielding a higher
relative degree.

The analysis of the stability of the internal dynamics is crucial for control design. Since
this analysis is often quite complex, the concept of zero dynamics is used in drawing im-
portant conclusions about the stability of the internal dynamics. The zero dynamics is the
internal dynamics under the constraint that the output is kept constant, for example, identi-
cally zero such that y = z1 = z2 = ż2 = 0, ∀t . For the considered underactuated multibody
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systems, the required control input for this task follows from (9) as

u0 = β−1(0, 0, z3)α(0, 0, z3). (11)

Applying this input u0 to (10), the internal dynamics reduces to the zero dynamics of the
underactuated multibody system and reads

ż3 = ρ(0, 0, z3) + σ (0, 0, z3)β
−1(0, 0, z3)α(0, 0, z3). (12)

A nonlinear system is called asymptotically minimum phase if the equilibrium point of
the zero dynamics is asymptotically stable. Otherwise, the system is called nonminimum
phase. For a first analysis, Lyapunov’s indirect method can be used. If all eigenvalues of
the linearized zero dynamics are in the open left half-plane, the zero dynamics is locally
asymptotically stable, and thus the system is locally minimum phase [16, 25]. It should be
noted, that the eigenvalues of the linearized zero dynamics coincide with the transmission
zeros of the transfer function computed from the linearization of the original equation of
motion (1); see [16]. The minimum phase property is invariant under a diffeomorphic co-
ordinate transformation z = Φ(x). However, the minimum phase property depends on the
system dynamics given by the equation of motion (1) and the choice of the system out-
put (2).

2.2 Feedforward control design

An inverse model for feedforward control can be derived from the input–output normal-
form (7)–(10). The desired trajectory must be at least twice differentiable yielding z1 = yd ,

z2 = ẏd , ż2 = ÿd . Then the required input ud follows from (9) as

ud = β−1(yd , ẏd , z3)
[
ÿd − α(yd , ẏd , z3)

]
. (13)

The computation of the input ud depends on the desired output yd , ẏd , ÿd and the states of
the internal dynamics z3. These latter ones are the solution of the internal dynamics of (10)
which is driven by yd , ẏd and ud . Replacing ud in the internal dynamics (10) by (13) yields
for the coordinates z3 the differential equation

ż3 = ρ(yd , ẏd , z3) + σ (yd , ẏd , z3)β
−1(yd , ẏd , z3)

[
ÿd − α(yd , ẏd , z3)

]
. (14)

In summary, the inverse model consists of three parts. The first part represents a chain of
two differentiators for the desired output vector yd , producing the values ẏd and ÿd . The
second part of the inverse model is the driven internal dynamics (14) for the z3 coordinates.
The third part of the inverse model is the algebraic equation (13) which computes from these
values the desired input ud .

Several methods for model inversion exist which differ in the solution of the internal
dynamics (14). In classical model inversion [15], the z3 variables are found through for-
ward integration of the internal dynamic (14) from the starting time point t0 to the final time
point tf , using the initial values z3(t0) = z30 . However, in order to use the input ud in a
feedforward control, it must be bounded. Thus, depending on the stability of the internal
dynamics, its forward integration might yield unbounded z3 values, and thus unbounded in-
puts ud . Therefore, classical inversion can only be used for feedforward control design if the
internal dynamics (14) remain bounded, which implies that only minimum phase systems
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can be treated. In the case of nonminimum phase systems a bounded feedforward control
can be computed by stable inversion as described in [11, 31]. However, in this approach, the
internal dynamics (14) must be solved as a two-sided boundary value problem, e.g., using
finite differences [36], and yields a noncausal solution.

2.3 Systems with linearly combined output

Even for multibody systems with very few degrees of freedom, the previously presented
symbolic calculations can become very complicated. Especially for the derivation of the
internal dynamics, it might be necessary that z = Φ(x) must be solved analytically for x ,
which is difficult for general nonlinear functions h(q). Therefore, in the following, it is
shown that for a special type of system output y the nonlinear input–output normal-form can
be easily derived in symbolic form. In a first step, the equation of motion (1) is partitioned:

[
Maa(q) Mau(q)

MT
au(q) Muu(q)

][
q̈a

q̈u

]
+

[
ka(q, q̇)

ku(q, q̇)

]
=

[
ga(q, q̇)

gu(q, q̇)

]
+

[
Ba(q)

Bu(q)

]
u. (15)

Thereby, the submatrix Ba ∈ R
m×m has rank m. The first m rows of the partitioned equa-

tion of motion (15) are referred to as actuated part associated with the actuated coordinates
qa ∈ R

m. The remaining f − m rows are referred to as the unactuated part associated with
the unactuated coordinates qu ∈ R

f −m. In the following, it is assumed that Ba = I is the
identity matrix and Bu = 0. These special choices represent interesting cases of underac-
tuated multibody systems in tree structure. Examples include rigid multibody systems with
passive joints [31] and planar elastic manipulators, where the shape functions of the elastic
bodies are chosen according to clamped boundary conditions; see, e.g., [20, 32].

The nonlinear input–output normal-form depends on the choice of the system output y .
Here, it is assumed that the end-effector position can be approximately described by an
output of form

y = h(q) = qa + Γ qu, (16)

where Γ ∈ R
m×fu . This output is a linear combination of actuated and unactuated general-

ized coordinates. For example, such an output can be used for elastic manipulators as shown
in [20, 32] or systems with passive joints [31], which is also demonstrated in Sect. 5. The
output (16) includes also the so-called collocated output y = qa , i.e., Γ = 0. From this, the
coordinates of the input–output normal-form follow as:

z1 = y = qa + Γ qu,

z2 = ẏ = q̇a + Γ q̇u,

z3 = [
qT

u , q̇T
u

]T
.

(17)

Computing the Jacobian-matrix of the coordinate transformation shows that this choice of z3

forms a diffeomorphic coordinate transformation. The partitioned equation of motion (15)
is now transformed into the input–output normal-form; see, e.g., [31] for details. The input–
output normal-form of the underactuated multibody system with the linearly combined sys-
tem output reads then

M̃ÿ = g̃ − k̃ + u, (18)
[
Muu − MT

auΓ
]
q̈u = gu − ku − MT

auM̃
−1[

g̃ − k̃ + u
]
. (19)
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In this nonlinear input–output normal-form, the terms are summarized according to the con-
vention

M̃ = Maa − (Mau − MaaΓ )
(
Muu − MT

auΓ
)−1

MT
au,

g̃ = ga − (Mau − MaaΓ )
(
Muu − MT

auΓ
)−1

gu,

k̃ = ka − (Mau − MaaΓ )
(
Muu − MT

auΓ
)−1

ku.

Equation (18) describes the relationship between the input u and output y . The second part
of the normal-form (19) describes the internal dynamics.

The control input for keeping the output identically zero, i.e. y = 0,∀t , follows from (18)
as:

u0 = k̃(0,qu, 0, q̇u) − g̃(0,qu, 0, q̇u). (20)

Applying this input u0 to the internal dynamics (19) reduces this to the zero dynamics of
the underactuated multibody system

[
Muu(0,qu) − MT

au(0,qu)Γ
]
q̈u = gu(0,qu, 0, q̇u) − ku(0,qu, 0, q̇u). (21)

As shown in Sect. 2.2 the feedforward control can be derived from the nonlinear input–
output normal-form (18)–(19). The input ud computed by the feedforward control follows
in this case from (18) as

ud = M̃(yd ,qu)ÿd − g̃(yd ,qu, ẏd , q̇u) + k̃(yd ,qu, ẏd , q̇u). (22)

The computation of the input ud depends on the desired output yd , ẏd and the unactuated
states qu, q̇u. These latter ones are the solution of the internal dynamics of (19) which is
driven by yd , ẏd and ud . Replacing ud in the internal dynamics of (19) by (22) yields for
the unactuated states qu, q̇u the differential equation

[
Muu(yd ,qu) − MT

au(yd ,qu)Γ
]
q̈u

= gu(yd ,qu, ẏd , q̇u) − ku(yd ,qu, ẏd , q̇u) − MT
au(yd ,qu)ÿd . (23)

A graphical representation of the inverse model is shown schematically in Fig. 1. First,
a chain of two differentiators computes for the desired output vector yd the values ẏd and ÿd .
Then the inverse model contains the driven internal dynamics (23) for the qu, q̇u states.
Finally, the algebraic equation (22) computes from these values the desired input ud .

3 Feedforward control design using servo-constraints

An alternative approach for feedforward control design is the use of so-called servo-
constraints [2–5, 17, 21]. These servo-constraints can be seen as an extension of geomet-
ric constraints representing joints. If in a multibody system additional geometric constraints
arise, e.g., due to a kinematic loop, the equation of motion (1) is supplemented by constraint
equations yielding the set of differential-algebraic equation (DAE),

M(q)q̈ + k(q, q̇) = g(q, q̇) + CT (q)λ,

cg(q) = 0.
(24)
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Fig. 1 Graphical representation of feedforward control of an underactuated MBS with linearly combined
output

Thereby, cg(q) is the constraint equation and λ the Lagrange multipliers associated with re-
action forces due to the constraint. The matrix C = ∂cg(q)/∂q is the Jacobian-matrix of the
constraint and CT distributes the Lagrangian multipliers on the direction of the generalized
coordinates.

In trajectory tracking, it is desired that the output h(q) tracks exactly the desired trajec-
tories yd . This trajectory tracking problem can be described by supplementing the equation
of motion (1) by the so-called servo-constraint c(q) such that

M(q)q̈ + k(q, q̇) = g(q, q̇) + B(q)u,

c(q) = h(q) − yd = 0.
(25)

Comparing (24) and (25) shows that both sets of DAEs have a very similar structure. The
main difference is that in the case of servo-constraints the term CT λ is replaced by Bu,
where u are the unknown control inputs. Then the numerical solution of the DAE (25)
provides the desired control inputs ud and the trajectories of all generalized coordinates q .

For the analysis of DAE problems, the differentiation index is often very helpful [8, 13].
Following [13], the differentiation index is the minimal number of analytical differentiations
of the DAE (or parts of it) such that from the DAE an ordinary differential equation can be
extracted. It is assumed that the geometric constraints cg(q) are independent, i.e., the rows
of C are linearly independent. Then after three differentiations of the constraint equation,
a differential equation for λ can be extracted since the matrix CM−1CT has full rank; see,
e.g., [13] for details. Thus, (24) has differentiation index 3.

In the case of servo-constraints, this is not any more necessarily true and higher index
DAE can arise. Various mechanical systems with servo-constraints and different differen-
tiation index are analyzed in [9]. As discussed there, the differentiation index is closely
related to the previously discussed relative degree used in nonlinear control [16]. In [9], it
is pointed out that the differentiation index is one higher than the relative degree if the in-
ternal dynamics are not affected by a constraint. In this paper, systems with vector relative
degree r = {2, . . . ,2} are treated. The corresponding DAE has therefore differentiation in-
dex 3, comparable to systems with geometric constraints (24). This is also seen from the
nonsingular decoupling matrix HM−1B following from (25), where H = ∂c(q)/∂q is the
Jacobian-matrix of the servo-constraints. The decoupling matrix corresponds to the matrix
CM−1CT in the system with geometric constraints (24). Thus, the input matrix B projects
the control inputs into directions with components orthogonal to the constraint manifold.
Therefore, following [3–5] such a servo-constraint problem with nonsingular decoupling
matrix HM−1B is called an orthogonal realization.
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For the considered systems, the DAE (25) might be solved directly with a DAE solver
suitable for index 3 mechanical systems, e.g., [1, 19]. In [4, 5], feedforward control compu-
tation using servo-constraints for flat underactuated mechanical systems, such as cranes, is
described. Thereby, higher index DAE arise and a projection method is used for index reduc-
tion. Then a backward Euler schema is used for the numerical solution of the index reduced
system. For differentially flat flexible joint manipulators, a discrete time feedforward control
is obtained in [17] by applying a backward Euler schema. For minimum phase manipulators
with servo-constraints, [21] use higher order backward differentiation formula.

In this paper, the projection approach [4, 5] is extended to minimum phase underactu-
ated multibody systems with vector relative degree r = {2, . . . ,2}. By this, a one-to-one
correspondence between the feedforward control using coordinate transformation and the
feedforward control using servo-constraints is obtained. This correspondence is useful in
the analysis of the feedforward control problem. In addition, index reduction is achieved
by this approach. Differentiating the servo-constraint twice yields the constraint on velocity
and acceleration level

ċ = H (q)q̇ − ẏd = 0, (26)

c̈ = H (q)q̈ + h̄(q, q̇) − ÿd = 0. (27)

As shown in [4], the equation of motion can be projected into two complementary subspaces
in velocity space. These are the constrained and unconstrained subspace. The constrained
subspace describes in this context the output subspace and follows from projection with the
Jacobian-matrix of the output H ∈ R

m×f . For the second subspace, an orthogonal comple-
ment D ∈ R

f ×f −m must be derived, such that HD = DT H T = 0 is satisfied. Using these
two matrices, the equation of motion (1) is projected into the two subspaces, yielding

[
HM−1

DT

]
(Mq̈ + k = g + Bu) =⇒ Hq̈ + HM−1k = HM−1g + HM−1Bu,

DT Mq̈ + DT k = DT g + DT Bu.

(28)

From (27) follows the relationship Hq̈ = ÿd − h̄, which is applied to the first part of (28). In-
troducing the new state v = q̇ in the projection results and adding the servo-constraints (25)
on position level provides:

0 = HM−1Bu + HM−1[g − k] + h̄ − ÿd , (29)

q̇ = v, (30)

DT Mv̇ = DT [g − k] + DT Bu, (31)

0 = h(q) − yd . (32)

This forms a set of 2f +m differential algebraic equations for the 2f +m unknowns q, v,u.
Note that (29) has dimension m and describes an algebraic equation in q, v,u. Together
with the m servo-constraints (32) there are 2m algebraic equations in this DAE system.
For the considered underactuated multibody systems, the decoupling matrix HM−1B is
nonsingular, and thus (29) can be solved for the desired input,

ud = (
HM−1B

)−1[
ÿd − HM−1[g − k] − h̄

]
. (33)
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Inserting (33) in (31) results in

q̇ = v, (34)

DT Mv̇ = DT [g − k] + DT B
(
HM−1B

)−1[
ÿd − HM−1[g − k] − h̄

]
, (35)

0 = h(q) − yd . (36)

The numerical solution of this DAE provides the unknowns q, v, which are required to
compute the control input ud using (33).

In order to analyze the structure of the obtained feedforward control, a comparison with
the input–output normal-form and the inverse model from Sect. 2 is done. Comparing (29)
and (33) with (9) and (13), respectively, shows that they represent the same algebraic output
equation. However, in the DAE approach this is given in original coordinates q, v, while
(9) and (13) are given in the new coordinates z = [yT , ẏT , zT

3 ]T . Comparing (34)–(36) with
(14) shows that both describe the internal dynamics of the underactuated multibody system
which is driven by the desired output trajectory yd and its derivatives. Thereby, (14) is an
ordinary differential equation of dimension 2(f −m) while (34)–(36) is a set of differential-
algebraic equations, consisting of 2f −m differential equations and m servo-constraints. As
discussed in Sect. 2, the internal dynamics can only be solved by forward time integration,
if the system is minimum phase, otherwise unbounded states and inputs occur. Thus, in the
case of minimum phase systems, the internal dynamics given by (34)–(36) can be solved
by forward time integration. In summary, both approaches for feedforward control show the
same structure, consisting of a chain of differentiators which computes the derivatives of
the desired output trajectory yd , driven internal dynamics and an algebraic output equation.
However, in the first approach presented in Sect. 2, the output tracking problem is solved
by transforming the system into new coordinates containing the output y , while in the sec-
ond approach output tracking is achieved by introducing additional servo-constraints for the
output y .

Due to the projection and elimination of the control input u in (31) the obtained
DAE (34)–(36) has index 2. By replacing the servo-constraints on position level (36) by
the servo-constraints on velocity level (26), an index 1 DAE is obtained,

q̇ = v,

DT Mv̇ = f (q,v, t), (37)

0 = Hv − ẏd .

Here, f (q, v, t) is the right-hand side of (35). This index 1 DAE can be solved easily, e.g.,
in Matlab using the ode15s integrator which is based on numerical differentiation formu-
las [33]. Since the servo-constraint on velocity level is used a drift of the servo-constraint can
occur. However, for the example considered in this paper, the drift of the servo-constraints
in the feedforward control design proofs to be negligible. Further, replacing the servo-
constraints on position level (36) by the servo-constraints on acceleration level (27) yields
an ordinary differential equation,

q̇ = v,

[
DT M

H

]
v̇ =

[
DT

HM−1

]
Mv̇ =

[
f (q,v, t)

ÿd − h̄(q)

]
.

(38)
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It should be noted that the coefficient matrix coincides with the one used in (28), which
is by construction nonsingular. Equation (38) can be solved with standard integrators for
ordinary differential equations. Due to the use of the servo-constraints on acceleration level,
a stronger drift might occur as in the index 1 DAE formulation.

For the numerical solution of the servo-constraint problem, the initial conditions must be
consistent with the servo-constraints on position level (25) and velocity level (26). However,
these conditions only provide 2m equations for the 2f states q, v. The remaining conditions
are obtained here from the assumption, that the system starts at time t0 from an equilibrium
position, which is compatible with the servo-constraints. Thus, all states at time t0 are spec-
ified.

For differential flat systems, such as presented in [4, 5], the matrix HM−1B is singular,
and thus (33) cannot be solved for ud , and thus the DAE (30)–(32) must be solved. Since flat
systems can be inverted completely algebraically, the output specifies completely the entire
motion of the system. Therefore, DAE (30)–(32) do not contain any internal dynamics.
For the flat crane considered in [4], the initial DAE (25) has index 5 and the projected
DAE (30)–(32) has index 3, which in this case can be solved efficiently by a backward Euler
schema. However, such a backward Euler schema is not suitable for feedforward control
design of underactuated multibody systems with internal dynamics. As shown in [28], the
backward Euler schema introduces significant numerical damping into the internal dynamics
and, therefore, provides inaccurate control inputs. This effect can only be moderated by
using an extremely small time step size, which is computationally inefficient.

4 Optimization based design of underactuated multibody systems

As shown in Sects. 2 and 3 underactuated multibody systems might posses unbounded in-
ternal dynamics. Due to the shortcomings and difficulties in trajectory control of such non-
minimum phase systems, it is desired to design the multibody system in such a way that
the internal dynamics remains bounded. The internal dynamics depends on the choice of the
system output y and the equation of motion (1) of the multibody system. Output relocation
is a method where a different system output ŷ is chosen in order to achieve minimum phase
property. However, the use of this approach is limited if trajectory tracking of an end-effector
point is aspired. Thus, minimum phase property can only be achieved by modifying the sys-
tem dynamics, which means the mechanical design of the underactuated multibody system
must be altered. Such an optimization based design approach is proposed in [27, 29, 30].
This approach is originally based on the analysis and feedforward control design using co-
ordinate transformation, as presented in Sect. 2 and summarized in the following. Then also
the extension of this approach using the feedforward control by servo-constraints is pre-
sented.

4.1 Design procedure using coordinate transformation

As discussed in Sect. 2.1 the zero dynamics is often used to draw important conclusions
about the internal dynamics. For example, the analysis of the zero dynamics (21) of un-
deractuated manipulators with passive joints shows that the stability property depends on
the mass distribution as well as on the geometric dimensions. For this analysis, the sym-
bolic transformation into the input–output normal form is very helpful, since from these the
dependencies are clearly seen. The mass distribution and geometry could be used directly
as design variables p. However, these quantities are mostly highly coupled, and the opti-
mization might yield values which cannot be realized from an engineering point of view.
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Therefore, other parametrizations of the mass distribution and geometry are more suitable;
see examples in [29, 30] and in Sect. 5. A suitable parameterization of the optimization pa-
rameters are very problem specific and must be specified by the design engineer. However,
the following proposed optimization procedure is general and independent of the chosen
feasible parameterization of the design space.

The primary design goal is to achieve a stable zero dynamics, such that the underactuated
multibody system is minimum phase. The zero dynamics given by (21) depends only on the
unactuated states qu, q̇u and the design variables p. Therefore, the zero dynamics can be
written as

[
Muu(p,qu) − MT

au(p,qu)Γ
]
q̈u = gu(p,qu, q̇u) − ku(p,qu, q̇u). (39)

In order to obtain a powerful mechanical design, not only minimum phase behavior must be
guaranteed, but also additionally the zero dynamics should be designed in such a way that
disturbances decay rapidly. This is especially important in order to avoid that disturbances
yield large undesired vibrations of the internal dynamics during trajectory tracking. A two-
step computation of the optimization criteria f (p) is proposed, which should be minimized
in the course of the optimization:

Step 1: In the first step, Lyapunov’s indirect method is used for analyzing the asymptotic
stability of the zero dynamics. Thus, all eigenvalues of the linearized zero dynamics must
be in the left half-plane:

Re
[
λ
(
A(p)

)]
< 0, (40)

where A(p) is the system matrix of the linearized zero dynamics (39). If at least one eigen-
value has a nonnegative real part, a large default value for the optimization criteria f (p) is
returned. Otherwise, the linearized analysis shows local asymptotic stability and it is pro-
ceeded with step 2.

Step 2: If all eigenvalues are in the left half-plane, the final optimization criteria f (p)

is calculated. In order to achieve good damping properties, it is required that initial errors
in the nonlinear zero dynamics (39) decay rapidly. The disturbance is given by the initial
conditions qu(t0) = qu0

, q̇u(t0) = 0. The optimization criteria f (p) is then described by the
maximal cumulated squared error of the f − m unactuated coordinates qu with respect to
the equilibrium point qu = 0 of the zero dynamics. This is given by

f (p) = max
i

∫ t1

t0

q2
ui

dt, (41)

where t1 describes the final time of the simulation. By evaluating only the attenuation of the
least damped coordinate of the zero dynamics, it is achieved that the design improvements
concentrates on the damping properties of the least damped coordinate. Besides evaluating
the damping properties of the zero dynamics, this simulation also provides a very good
indication about the behavior of the nonlinear zero dynamics. It gives an indication if the
zero dynamics remains stable in the case that the internal states are pushed by a disturbance
further away from the equilibrium point.

It should be noted that from a practical point of view this design approach yields a viable
design. However, to prove that the states of the internal dynamics and the inputs remain
bounded during trajectory tracking, a complete stability analysis of the driven internal dy-
namics for each specific trajectory would be necessary [16]. In this paper, this is verified
implicitly by the computation of the feedforward control, which would fail if the states be-
come unbounded.
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4.2 Design procedure using servo-constraints

Instead of using the explicit transformation of the equation of motion into the input–output
normal-form, also the feedforward control design approach using servo-constraints can be
used in this design procedure. In this case, the same quantities are considered in the opti-
mization criteria computation. Since they are computed in a different way, the differences
are briefly summarized.

Step 1: The eigenvalues of the zero dynamics coincide with the zeros of the transfer func-
tion of the linearized system [16]. Thus, the complete equation of motion (1) is linearized
and the zeros are computed. For details on system zeros, see, e.g., [37]. If all zeros are in the
left half-plane, it is proceeded with step 2, otherwise a large default value is returned.

Step 2: The damping properties of the zero dynamics is evaluated using DAE (37). There-
fore, the output trajectory yd is kept constant for all time. Again a disturbance is introduced
in the initial conditions of the unactuated coordinates qu(t0) = qu0

, q̇u(t0) = 0 and the re-
sponse is simulated. In order to obtain consistent initial conditions for the time integration,
the actuated coordinates qa(t0) = qa0

, q̇a(t0) = 0 must fulfill h(qa0
,qu0

) = yd0
. Then the

optimization criteria is again evaluated using (41).

4.3 Particle swarm optimization

In the optimization procedure, the criteria function f (p) should be minimized with respect
to the design variables p. Due to the two-step criteria computation, the optimization prob-
lem is discontinuous and thus the gradient free particle swarm optimization procedure is
used. This population based optimization method originates in the study and simulation of
social behavior of bird and fish flocks; see [18]. The basic idea is the modeling of social
interaction between individual particles of a population on the quest for the best point in the
feasible design space. Thereby, it is aspired to use the collective intelligence of a swarm to
solve complex optimization problems. The swarm is described by the parameter sets of all
particles, where pi is the set of the ith particle of the swarm. The recursive update equation
is the basic step of the particle swarm optimization and reads for iteration step k,

pk+1
i = pk

i + Δpk+1
i , (42)

Δpk+1
i = wΔpk

i + c1r1

(
pbest,k

i − pk
i

) + c2r1

(
pbest,k

swarm − pk
i

)
. (43)

Thereby, r1, r2 are evenly distributed numbers and w, c1, c2 are control parameters. The
update of the parameters Δpk+1

i consists of three contributions. The first part describes the
tradition and the particle moves in the direction of the previous update Δpk

i . The cognitive
part moves the particle in the direction of the best parameter set pbest,k

i which it found on its
own. The social behavior part moves the particle in the direction of the best parameter set
pbest,k

swarm which the entire swarm has found so far.
Advantages of the particle swarm optimization are that no gradient information is nec-

essary; the solution is independent of initial sets of design parameters p, and there are no
requirements on smoothness or continuity of the optimization criteria. This approach is well
suited for finding global minima and is often easy to program and to adjust to specific prob-
lems. The used algorithm is a Matlab implementation presented in [26]. Compared to gra-
dient based methods, a general disadvantage of stochastic optimization algorithms is their
large computational expense due to a large amount of criteria evaluations. In the criteria
computation, the most time consuming part is the time integration of the zero dynamics in
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the second step. However, in the first step of the criteria computation, many unfeasible de-
signs are filtered out and thus the number of time integrations is reduced by the restriction
to locally stable designs.

5 Design and feedforward control of a manipulator with passive joints

The optimization-based design procedures and the feedforward control design approaches
for underactuated multibody systems are demonstrated using an underactuated manipula-
tor with two passive joints. Passive joints might result intentionally from a cost and ef-
ficiency driven reduction of the number of actuators, as used by [24] in the design of a
hyper-articulated assembly arm. Also, such an approach has been proposed in the design
of mechanical grippers or robotic hands, where in addition the underactuation supports the
adaption to the shape of the object; see, e.g., [22]. The manipulator investigated in this pa-
per is shown in Fig. 2. It consist of a chain of four links. The links 1 and 2 are actuated by
torques u = [T1, T2]T . The links 3,4 are passive and are supported by spring-damper com-
binations. At the end of link 4, a loading mass is added. The system is described by relative
coordinates. The actuated generalized coordinates are qa = [α1, α2]T and the unactuated
generalized coordinates are qu = [β1, β2]T . The manipulator is made of aluminum and the
physical properties of the initial design are summarized in Table 1.

The end-effector point of the manipulator should follow a predefined trajectory. In order
to derive the input–output normal-form, the position of the end-effector point is described
approximately by a linearly combined system output of form (16). For a somewhat stiff
spring-damper combination, the angles β1, β2 remain small. Then the end-effector position

Fig. 2 Initial design of underactuated manipulator with two passive joints (left) and proposed design
parametrization for the unactuated links (right)

Table 1 Initial parameters for underactuated manipulator

Link 1 m1 = 6.875 kg I1 = 0.5743 kg m2 l1 = 1.0 m

Link 2–4 mi = 2.292 kg Ii = 0.0217 kg m2 li = 0.333 m with i = 2,3,4

Load ml = 6 kg Il = 0.0147 kg m2

Spring/damper c = 400 Nm/rad d = 0.25 Nms/rad
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can be approximated by using the linearly combined output y such that

ref(qa,qu) ≈ r̂
ef
(y) =

[
l1 sin(y1) + (l2 + l3 + l4) sin(y1 + y2)

−l1 cos(y1) − (l2 + l3 + l4) cos(y1 + y2)

]
, (44)

where y1 = α1 and y2 = α2 + Γ1β1 + Γ2β2. For small angles β1, β2, the system output y2

can be seen as an auxiliary angle for describing the end-effector point. For the determination
of Γ1,Γ2, the exact output ref(qa,qu) and the approximated output r̂

ef
(y) are linearized

around a desired trajectory with β1 = β2 = 0. Then, from a comparison it follows that for
Γ1 = (l3 + l4)/(l2 + l3 + l4) and Γ2 = l4/(l2 + l3 + l4) the linearized outputs coincide. Using
an inverse kinematics procedure, the desired output trajectories yd(t) can be computed from
the desired end-effector trajectory ref

d (t) based on (44). However, it should be noted that due
to this approximation a small tracking error for the end-effector position has to be expected.
With the derived linearly combined system output, the input–output normal-form can be
derived conveniently following the steps presented in Sect. 2.3.

An analysis of the zero dynamics shows that the initial design of the system is non-
minimum phase. Also, the analysis shows that for this manipulator the linearized zero dy-
namics is independent of the position of the manipulator. Due to the nonminimum phase
property, the proposed optimization procedure is used to design a minimum phase manipu-
lator. The stability of the zero dynamics (39) of the underactuated manipulator depends on
the mass distribution of the unactuated links i = 3,4, given by their mass mi , inertia Iiz and
center of mass si , as well as by their geometry described by the length li . In the absence of
gravity, the spring and damping coefficients c, d alter the response of the system, but not
the stability. There are many feasible design parameterizations, which depend strongly on
the given problem. In [29], a basic homogeneous initial design of the underactuated multi-
body system with constant link length is assumed and additional small balancing masses are
added to each unactuated link in order to alter the stability property of the zero dynamics.
With this approach, a minimum phase behavior is achieved using only a modest total mass
increase. Thereby, the optimization yields designs where the additional masses are mounted
as counterweights.

In this paper, a parameterization with focus on changing the length of the unactuated
homogenous links l3, l4 is proposed. The length of the second link l2 is chosen such that the
total length of all three links is 1 m, i.e., l2 = 1m− l3 − l4. However, it turns out that by only
changing the link length no viable minimum phase design is found. Therefore, in addition
to the change of link length also the center of gravity s3 of the third link is introduced as
a design variable. This is motivated by the results in [29] where the center of gravity of
the unactuated links is moved closer to the passive joints by counterweights. This change
of the center of mass can be achieved by extending link 3 in the opposite direction; see
Fig. 2. Thus, the total length of the third link is lt3 = 2(l3 − s3). Such an approach could
also be used for link 4, however, it turns out that this additional design parameter does not
influence the optimal design of this example. A design is aspired, where the links 2,3,4 are
homogenous with the same constant cross section. In order to avoid too small cross sections,
and to allow a detailed comparison with the initial design, the mass of the three links should
remain constant compared to the initial design. Then the cross section is determined from
this mass constraint. In order to obtain a viable physical design, bounds have to be put on
the design variables which results in the feasible design space

P =
⎧⎨
⎩p =

⎡
⎣

l3
s3

l4

⎤
⎦

∣∣∣∣∣∣
0.3 m ≤ l3 ≤ 0.7 m, 0.1 ≤ s3/l3 ≤ 0.5, 0.1 m ≤ l4 ≤ 0.3 m

⎫⎬
⎭ . (45)
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Fig. 3 Optimized internal dynamics under disturbance (solid: with coordinate transformation; dashed: ser-
vo-constraints)

Both design approaches yield the optimal parameters l3 = 0.334 m, s3 = 0.034, and
l4 = 0.1 m. Thus, the third link has total length lt3 = 0.6 m. It is interesting to note, that
the design variables are very close to their bounds. A detailed investigation shows that an
extension of the length of link 4 yields nearly immediately a nonminimum phase design. It
should be mentioned, that the obtained design is robust again some parameter uncertainties.
For example, the obtained design remains its minimum phase property when varying the
loading mass and inertia in the range of 0.1ml − 5ml and 0.1Il − 5Il , respectively. For the
optimized parameter set, the damping behavior of the zero dynamics under a disturbance is
shown in Fig. 3. This shows that a good attenuation of the initial disturbance is achieved
by the optimized design. Also, this simulated dynamic response shows for both approaches
an overall good agreement. There are some smaller differences, which result from the use
of a linearly combined output in the coordinate transformation approach. When using this
linearly combined system output also in the servo-constraint approach, identical results are
obtained with both feedforward control design approaches. However, this simulation of the
response of the optimized design under disturbance is about 3.5 times faster using the coor-
dinate transformation approach than the servo-constraint approach with index 1 formulation.

For the obtained optimal design, the feedforward control is computed and tested by sim-
ulation. Using the coordinate transformation approach, the feedforward control is computed
using (22) and (23). For the servo-constraint approach the index 1 DAE formulation (37) is
used. In the example, the end-effector should follow a half-circular end-effector trajectory.
The center of the half-circle is at position (0,−1.5 m) and the radius is 0.75 m; see Fig. 4.
The end-effector point should follow the trajectory in the short time period of 1.5 s, which
describes an aggressive manoeuver.

Figure 5 shows the control inputs computed with both feedforward control approaches
and the obtained end-effector error. Both feedforward control approaches yield nearly iden-
tical results, with no visible differences in the control input. Due to the approximation of the
end-effector point by a linearly combined output in the coordinate transformation approach,
a tracking error of 0.4 mm occurs. In contrast, using the servo-constraint approach the end-
effector point is used directly. Therefore, a smaller tracking error of 0.002 mm is achieved,
which is mainly due to numerical errors. For this trajectory, the computation time is again
approximately 3.5 times faster using the coordinate transformation approach compared to
the servo-constraint approach. The vibrations seen in the control inputs at the beginning and
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Fig. 4 Desired end-effector trajectory

Fig. 5 Computed control inputs and end-effector trajectory error (solid: with coordinate transformation;
dashed: servo-constraints)

after ending of the trajectory tracking at 1.5 s result from the internal dynamics. It shows
again that the optimization yields a design whose internal dynamics have good damping
properties. It should be noted, that with the obtained design the feedforward control can
also be computed for the case of no physical damping in the passive joint, i.e., d = 0. How-
ever, than the internal dynamics is nearly undamped and yields strong oscillations in the
unactuated coordinates and control inputs.

6 Conclusions

Two approaches for feedforward control design of minimum phase underactuated multi-
body systems are presented. The first method is based on the nonlinear coordinate transfor-
mation of the equation of motion into the nonlinear input–output normal-form from which
the inverse model is deducted. The second method is based on the description of the de-
sired output trajectory tracking problem using servo-constraints, resulting in a DAE system.
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In both cases, the inverse model consists of a chain of differentiators, driven internal dy-
namics and an algebraic equation. For minimum phase systems, forward time integration
can be used in both approaches to compute the feedforward control. The first feedforward
control design approach requires larger symbolic manipulations for the coordinate transfor-
mation, for which an approximation of the desired output might be necessary. In contrast,
the servo-constraint approach can be easily applied to arbitrary outputs and requires less pre-
computations. However, due to the required solution of a DAE, this approach is numerically
less efficient and might be numerically more sensitive. Both feedforward control approaches
can be used for the optimization based design of minimum phase underactuated multibody
systems. These design approaches are based on the optimization of the zero dynamics, and
yields stable internal dynamics with good damping properties. Design parameters are the
mass distributions or geometric dimensions of the unactuated bodies. Due to the discontinu-
ous optimization criteria, a stochastic particle swarm optimization algorithm is used. Then,
for trajectory tracking of the optimal designs, the two presented feedforward control design
approaches can be used. The two approaches agree very well and their accuracy is demon-
strated by simulation using a planar underactuated manipulator with two passive joints.
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