Multibody Syst Dyn (2011) 26: 37-55
DOI 10.1007/s11044-011-9246-y

A scalable parallel method for large collision detection
problems

Hammad Mazhar - Toby Heyn - Dan Negrut

Received: 6 July 2010 / Accepted: 14 January 2011 / Published online: 5 February 2011
© Springer Science+Business Media B.V. 2011

Abstract This paper discusses a parallel collision detection algorithm. Implemented us-
ing software executed on ubiquitous Graphics Processing Unit (GPU) cards, the algorithm
demonstrates two orders of magnitude speedup over a state-of-the art sequential implemen-
tation when handling multimillion object collision detection tasks. GPUs are composed of
many (on the order of hundreds) scalar processors that can simultaneously execute an op-
eration; this strength is leveraged in the proposed algorithm, which combines the use of
multiple CPU cores with multiple GPUs. The software implementation of the algorithm can
be used to detect collisions between five million objects in less than two seconds and was
used to detect 1.4 billion contact events in less than 40 seconds. A spherical padding ap-
proach is used to represent surface geometries as large collections of spheres when dealing
with collision detection between bodies with complex geometries. The proposed method-
ology is expected to be relevant in computational mechanics with applications in granular
flow dynamics and smoothed particle hydrodynamics (SPH), where the number of contact
events ranges from millions to billions.

Keywords Collision detection - GPU computing - Multibody dynamics - Friction - Contact

1 Introduction

Collision Detection (CD) is a ubiquitous task performed in computer simulations in a vari-
ety of fields such as computer games, nonlinear finite element analysis, smoothed particle
hydrodynamics (SPH), multibody dynamics analysis, and granular dynamics. An example
application, which draws on the last two fields and aims at gauging the mobility of tracked
vehicles on granular terrain [1], is shown in Fig. 1. The purpose of the collision detection
task is to understand whether two geometries are in contact, and if so, to quantify the nature

H. Mazhar - T. Heyn - D. Negrut ()

Simulation Based Engineering Lab, Department of Mechanical Engineering,
University of Wisconsin-Madison, 1513 University Avenue, Madison, WI 53706, USA
e-mail: negrut@engr.wisc.edu

@ Springer

mailto:negrut@engr.wisc.edu

38 H. Mazhar et al.

Fig. 1 The model of a tracked
vehicle operating on granular
material has close to 300,000
bodies leading at each simulation
time step to a collision detection
task that found on average more
than 1 million collision events [1]

Fig.2 Light ball floating on 1 million rigid bodies moving around in a tank while interacting through friction
and contact. The simulation setup is discussed in [3]; the parallel implementation of the dynamics solution
is presented in [2]. The collision detection stage found on average more than 3 million contacts at each time
step of the simulation

of the contact; i.e., depth of penetration, volume of penetration, center of mass, and nor-
mal vectors to the contact surface (if applicable). For the dynamics analysis of the double
tracked system in Fig. 1, a problem with 2 x 10° to 4 x 10° elements, the collision detection
can become a significant computational bottleneck. For instance, when the time-stepping
(numerical integration) component of the simulation was solved using a GPU parallel im-
plementation in [2], the sequential implementation of the collision detection stage prevented
any significant speedup, a consequence of Amdahl’s law. A similar scenario occurred when
simulating the dynamics of granular material; see Fig. 2 [3]. In order to fully leverage the
potential of parallel computing in many-body dynamics problems, it becomes apparent that
parallelizing the collision detection task is mandatory. This paper concentrates on the details
of the parallelization of the collision detection. A discussion of the overall benefit of having
both the dynamics solution and the collision detection implemented in parallel is discussed
elsewhere [4].

In the multibody dynamics community, handling frictional contact dynamics and/or the
task of carrying out collision detection to that end have been topics of intense research; see
for instance [5—8] and references therein. These papers handle problems where the numbers
of contacts at each time step is relatively small, that is, less than thousands of events. Large
collision detection tasks are encountered in granular dynamics; see for instance [9] and ref-
erences therein. However, this and similar many-body dynamics contributions either adopt
sequential computing approaches, or are very focused in nature and fall short of presenting a
solution that can address industrial applications of general interest such as the one in Fig. 1.
A large body of literature addressing the collision detection topic has been compiled by the
computer science community. One of the most widely used collision detection algorithms
draws on a “Sort and Sweep” approach that leverages the properties of Axis Aligned Bound-
ing Boxes (AABBs) in order to detect collisions between objects of varying size [10, 11].
An AABB is a special case of a bounding box that is always aligned to the global reference
frame, simplifying collision detection as the bounding box (box that completely encloses

@ Springer

A scalable parallel method for large collision detection problems 39

Fig. 3 Axis for sorting in CD

\
_ Sorting Axis,

-

B1 B3 El1 B2 E3 E2

the space around an object) cannot rotate. The basic premise of this algorithm is that if two
objects are colliding, their projections/shadows will overlap on all three principal axes (see
Fig. 3). To this end, bounding boxes are generated for all objects and projected onto the
global X, Y, and Z-axes. Each axis is then sorted by position and iterated over in linear
time. A stack-like data structure is used to keep track of collision pairs; a collision will be
recorded only if two bodies overlap on all three axes. The approach is simple to implement
and ideally suited to execute sequentially on the Central Processing Unit (CPU). Three par-
allel threads are used to sort and traverse the axes sequentially and only one thread can be
used to compare the three lists to detect collisions thus limiting this method’s effectiveness
on parallel architectures. One salient feature of this algorithm is its ability to take advantage
of temporal coherence. Since objects in a dynamics simulation rarely move large distances
in one time step (the positions are temporally coherent), updates can be made to the sorted
axes easily and with relatively little cost. This characteristic was exploited in I-Collide [12].

Parallel collision detection approaches became tractable with the introduction of easily
programmable Graphics Processing Units (GPUs). Many algorithms that use GPUs rely
on shaders to do computations. Shaders, which are instruction sets designed to perform
calculations on polygons and textures for graphics processing, can also be used to perform
basic scientific computations. CULLIDE [13], R-CULLIDE [14], and Q-CULLIDE [15] are
three CD algorithms that take advantage of shaders. These algorithms could resolve contacts
between tens of thousands of polygons at near real-time speed and were faster than their
CPU counterparts. More recently, work on large dynamics problems has been reported in
[16], where spheres of constant radius are used to decompose complex geometries in order to
decrease simulation times. Spherical decomposition removed the overhead associated with
the tasks of handling complex geometries represented as triangle meshes and the ensuing
triangle-triangle collision detection. This in turn allowed for real-time collision detection
between thousands of objects composed of spheres.

Figure 4 shows an example of the spherical decomposition of a track shoe from a tank
tread. The previously mentioned decomposition algorithm was revisited in [17]. Originally,
when generating the three-dimensional grid, textures were allocated to store the complete
space, and empty bins (bins that contained no bodies at all) used the same amount of mem-
ory as filled ones. In the updated version of this algorithm, bins that were not in use were
trimmed, forming a tighter dynamic grid that saved memory. While optimal for spherical

@ Springer

40 H. Mazhar et al.

Fig. 4 Decomposition of a track shoe for application in Fig. 1

decomposition, this method could not support any additional object types that were not de-
composed into spheres, limiting its usefulness in simulations containing complex shapes
made with boxes, planes, ellipsoids, etc.

With the introduction of NVIDIA’s Compute Unified Device Architecture (CUDA) [18],
GPUs are now able to execute C code instead of relying on shader code. A parallel spatial
subdivision algorithm that uses CUDA to compute interactions between spheres was intro-
duced in [19]. This approach relies on the observation that the objects in a given bin in the
spatially subdivided space can only interact with the 26 surrounding bins in a 3 x 3 x 3
grid. Unlike the method introduced in [16], the CUDA based approach in [19] does not sup-
port spherical decomposition of objects. Moreover, it does not compute collisions; rather
interaction forces between spheres are calculated using equations based on fluid dynamics
principles. One unique feature, discussed at great length in [19], is the radix sort algorithm.
Most collision detection algorithms require a fast sorting algorithm to arrange collision in-
formation into specific data structures. Commonly used sorting methods such as quick sort,
while fast on CPUs, are difficult to parallelize. Radix sort is not hindered by this drawback,
as it is able to sort key-value pairs in parallel extremely efficiently. Additional work in [20]
was done to improve the performance and scalability of the sorting algorithm.

The collision detection approach proposed herein is geared at solving many-body dy-
namics problems. Examples include the dynamics of sand flowing inside an hourglass, a
rover running over sandy terrain, an excavator/frontloader digging/loading granular mater-
ial, etc. In this context, the collision detection task is performed on a rather small collection
of rigid and/or deformable bodies of complex geometry (hourglass wall, wheel, track shoe,
excavator blade, dipper), and a very large number of bodies (millions to billions) that make
up the granular material. On this scale, the collision detection task, particularly when deal-
ing with the granular material, fits perfectly the Single Instruction Multiple Data (SIMD)
computation paradigm. Specifically, the same sequence of instructions needs to be applied
to every individual body and/or contact in the granular material. NVIDIA’s Tesla family of
GPUs was selected as the target hardware for the proposed CD algorithm due to affordabil-
ity and software support. Tesla C1060 has a set of 240 scalar processors. They are organized
in groups of eight, each group, along with associated shared memory (16KB), a register file
that can store 16,384 floats/integers, and a transcendental function unit, making up a stream
multiprocessor (SM) [21]. There are 30 SMs in each GPU card, sharing 4GB of high band-
width (140 GB/s) memory, which is the analog of the RAM in traditional CPU computing.
The hardware is managed by the CUDA runtime Application Programming Interface (API)

@ Springer

A scalable parallel method for large collision detection problems 41

that provides a simple interface against which users can program the GPU. Data exchange
between the CPU (the host) and GPU (the device) takes place over a PCle X16 2.0 con-
nection with an 8 GB/s bandwidth. The CUDA driver can simultaneously manage up to
30,720 computational threads running on the C1060 hardware. While some of these threads
are actively executing instructions, others idle waiting for memory transactions or queue
for access to the 240 scalar processors. This thread-level time slicing, or context switching,
is extremely lightweight in CUDA and hides very effectively the latency associated with
global, texture, and constant memory transactions.

This paper is organized as follows. Section 2 introduces the parallel CD algorithm that
draws on the GPU hardware and CUDA software setup. The section includes a discussion
of the spherical padding approach invoked to perform CD between bodies with complex
geometries. The outcome of several numerical experiments carried out with the proposed
CD algorithm is summarized in Sect. 3. Two tests in Sect. 3.1 validate against and compare
the proposed algorithm with a sequential state-of-the-art CD engine popular in the computer
gaming community. Section 3.2 discusses a many-body dynamics problem whose solution
uses the proposed CD method. The document concludes with final remarks and directions
of future work.

2 Proposed algorithm

The parallel CD algorithm proposed performs a two level spatial subdivision. The first parti-
tioning occurs at CPU level, which leads to a relatively small number of large boxes. A sec-
ond partitioning of each of these boxes occurs at the GPU level, which leads to a large
number of small bins. The collision detection occurs in parallel at the bin level. Specifically,
an exhaustive collision detection process is carried out by one GPU thread to check for col-
lisions between all the bodies that happen to intersect the respective bin. Since the bin size
can be made arbitrarily small, the number of possible collisions inside the bin is kept small.
Figure 5 outlines the software and hardware stack associated with this methodology.

Four OpenMP threads control the four GPUs available on the computer. The coarse grain
partitioning at the CPU level is straightforward: the volume occupied by the objects is par-
titioned into boxes whose edges are aligned with a global Cartesian reference frame. Typi-
cally, this operation results in hundreds of boxes, which are subsequently assigned in a round

Main Data Set
16 GB RAM
Results
A A A
Operates ¥ L 4 ¥
on Boxes
| CPU: Open MP Thread | Thread §| Thread Qulad Cc_\re AMD
E 2 0 1 2 Microprocessor
Operates |
on Bins | Y Y 1 y Tesla C1060
| Gpu:cuba GPU | GPU GPU 4x4 GB Memory
! £ 0 1| 2 4x30720 Threads

Fig. 5 Software and hardware stack showing two levels of parallelism in the proposed CD algorithm: one
takes place at the CPU level, the second one, at the GPU level

@ Springer

42 H. Mazhar et al.

robin fashion to each of the four GPUs. For instance, if there are 125 boxes it is expected that
on average each of the four GPUs will have to process about 31 or 32 boxes. Objects that
span two or more boxes are automatically assigned to each box when the data is sent down
for CD on the GPU. A mechanism has been put in place on the GPU side to avoid double
counting of potential collisions in this case. The specifics of the GPU collision detection are
discussed in detail in the following subsections.

2.1 Stages of GPU collision detection algorithm

A high-level overview of the GPU-based collision detection is as follows. The collision de-
tection process starts by identifying the intersections between objects and bins. The object-
bin pairs are subsequently sorted by bin id. Next, each bin’s starting index is determined
so that the bins’ objects can be traversed sequentially. All objects inside of a bin are sub-
sequently checked against each other for collisions by one GPU thread. This high level
process is implemented in a sequence of nine stages, each of which is discussed next. Fig-
ure 6 shows what a typical set of data used for collision detection looks like and will be used
in what follows to explain the proposed approach.

Stage 1. The collision detection process begins by identifying all object-to-bin intersec-
tions. As shown in Fig. 7, an object (body) can “touch” more than one bin; there is no limit
to how many intersections take place. The stage commences by determining the bounds of
the simulation space. Both the largest and outermost objects are determined, allowing the
required bin size to be calculated. In order for the grid and bins to remain uniform, each
side of the grid, like a cube, has equal length. The bin size is set to be twice as large as the
radius of the largest object, which ensures that each sphere can touch a maximum of eight
bins. Optimal bin size will be further discussed in Sect. 2.2.1 as it relates to efficient use of
the GPU. Finally, the number of bins used in the collision detection process is determined
based on the bin size.

Fig. 6 Two-dimensional
example used to introduce the
nine stages of the collision
detection process. The grid is
aligned to a global Cartesian
reference frame

Fig. 7 Minimum and maximum
bounds of object. Based on
spatial subdivision in Fig. 6

@ Springer

A scalable parallel method for large collision detection problems 43

Fig. 8 Array T with N entries.

1213 5
Based on spatial subdivision in i i
Fig. 6
4 3 4 4 5 T
N
4_?_11_15_20_---_ +~——5

Fig. 9 Result of prefix sum operation on T, based on spatial subdivision in Fig. 6. Each entry represents an
object’s offset based on the number of bins it touches

Next, the minimum and maximum bounding points of each object are determined and
placed in their respective bins. For example, Fig. 7 shows that object 4’s minimum point lies
in B4 and its maximum point lies in AS. The entire object must fit between the minimum and
maximum points, therefore, the number of bins that the object intersects can be determined
quickly by counting the number of bins between the two points in each axis and multiplying
them, in this case the number is 4. This number is then saved into an array, T (see Fig. 8),
which is the size of the number of objects N. As a result of this stage, array T contains at
index i the number of bins that object i touches.

Stage 2. An inclusive parallel prefix sum is next performed on T, which was created in
Stage 1. A parallel prefix sum (scan) operation takes an array of N elements and returns a
second array in which element i is the sum of the first i entries of the original array [22].

lag, a1, az, ...,ay—1] —> Prefix Scan —> [ag, (ap + ay), ..., (@ +a1+ar+...+ay_1)]

ey

The CUDA-based Thrust library implementation of the scan algorithm was used in this
stage [23]. The inclusive scan performed on T returns an array S (see Fig. 9) where each
entry is the memory offset for each object in T. Therefore, if one needs to determine what
bins object b intersects, one would first go to S[b — 1] (in the C language indexing begins at
zero) and get the memory offset @ which can be used in Stage 3. The total number of bins
that object b intersects can be determined as S[b] — S[b — 1] or as T[b].

Stage 3. In this stage, an array B (see Fig. 12) is allocated of size equal to the value of the
last element in S. This value is equal to the total number of object-bin intersections in the
uniform grid. Each element in B is a key-value pair of two unsigned integers. The key in
this pair is the bin number and the value is the object number. The bin number is calculated
as described in the pseudocode of Fig. 11, where [i, j, k], in 3D, are the coordinates of the
bin in the uniform grid. This process is equivalent to a 3D geometric hash function and
ensures that each bin number is unique. Additional checks make sure that the bin number is
within the valid bounds of the uniform grid. As Fig. 10 shows, objects not fully contained
within the outer edge of the grid are restricted so that their maximum bound cannot be
greater than the bounds of the uniform grid. The process used to determine the intersections
is essentially the same as in Stage 1 with the caveat that intersections are written rather than
just being counted. In this stage, the memory offsets contained in S are used so that the
thread associated with each body can write data in parallel to the correct location in B.

Stage 4. In this stage, the key-value array B is sorted by its key, that is, by bin id. This
stage utilizes a GPU based radix sort from the Thrust library [23]. Radix sort is an efficient

@ Springer

44 H. Mazhar et al.

Fig. 10 Max bound is 4 | 5 SarEd
constrained to bin AS u erl ge
A Max
B
Fig. 11 Pseudocode: Bin SIDE: number of bins on side of uniform grid (stages 1 and 3)
number computation BinNumber =i+ j* SIDE.x + k * SIDE x* SIDE.y
B-array The Value

1 1 1 1 2 2 2 3 3 3 3 4
BL [B2 [c1 | c2 [A2 | A3 [B2 [AL [A2 [B1 [B2] A |

The Key
Fig. 12 Array B, based on spatial subdivision in Fig. 6
Fig. 13 Radix sort example Sorted
110 110 100 001
101 100 101 011
100 110 101 100
101 101 001 101
111 = 101 =101 =101
110 111 110 101
011 011 110 110
001 001 111 110
101 101 011 111

Initial Data Digit 0 Digit 1 Digit 2

B-array {— The Value

L 3 | 2 | 3 | 2 5 | 7 | 4 | 7 4 7 | 1 | 3

Al | A2 A2 A3 | A3 A3 A4 A4 A5 A5 Bl Bl
The Key

Fig. 14 Sorted array B, based on spatial subdivision in Fig. 6

parallel sorting algorithm that relies on the individual bits of the numbers it is sorting rather
than on the actual values. Figure 13 shows the general procedure used during radix sort. Bit
zero-based sorting is carried out first, followed by bit one, and so on, until the numbers are
completely sorted. Figure 14 shows array B after sorting. In this radix sort, 32 bit keys are
used, and lower order bits are sorted before higher order ones. This means that the sort is
stable and values that have already been sorted will not lose their order. This stage effectively
inverts the body-to-bin mapping to a bin-to-body mapping by grouping together all bodies
in a given bin for further processing.

@ Springer

A scalable parallel method for large collision detection problems 45

Fig. 15 Pseudocode: Bin For each thread index:
starting index computation If index<number of active Bins:
if index > 0:
if Current bin number != Previous bin number

Bin start = index
else if index=0:
Bin start = @

Fig. 16 Array C, based on
spatial subdivision in Fig. 6

The Value — Al A2 A3 A4 AS Bl
C-array $ t $ $ $ $
Thekey —eOxfff| 1 | 3 | 6 | 8 | 10

Fig. 17 Sorted array C, based

tial subdivision in Fie. 6 The Value —e A2 E4 Al E5
on spatial subdivision in Fig. Sorted C-array § 4 :) ')
The Key —e 1 45 | Oxfff Oxfff

Stage 5. Once the key value pairs are sorted by bin id, stage 5 determines the start of each
bin, that is, the offset of the bin in the B array. The total number of elements in this array is
known and equal to the total number of object-bin intersections. The process for this stage
is outlined in the pseudocode of Fig. 15. Each element in the array is processed in parallel
by one thread. Each of these threads reads the current and previous bin value. If these values
differ, then the start of a bin has been detected. The first thread only reads the first element
and records it as the initial value. The starting positions for each bin are written into an array
C of key-value pairs of size equal to the number of bins in the 3D grid. When the start of
a bin is found in array B, the thread and bin id are saved as the key and value respectively.
This pair is written to the element in C indexed by the bin id. Not all bins are active. Inactive
bins, i.e., bins touched by zero or one bodies, are set to Oxfffftfff, the largest possible value
for an unsigned integer on a 32bit, X86 architecture. This simplifies the sorting process in
the next stage as such bins cannot host any contacts. Figure 16 shows the outcome of this
stage.

Stage 6. 1In this stage, the inactive bins are pushed to the end of the array. To accomplish
this, array C is sorted by key, a process that concentrates all inactive bins (the Oxffffffff
entries, represented for brevity as Oxfff in the figure) to the end of the array; see Fig. 17.
This stage allows C to be traversed sequentially, so that the number of active bins can be
determined for the next stage. To this end, a second radix sort is utilized. Once sorted, the
array is processed in parallel and the index of the last valid entry in the array is determined.
No bins after this index will be processed.

Stage 7. One GPU thread is assigned to each active bin in Stage 7 to perform an exhaustive,
brute-force, bin-parallel collision detection. This is effective since the number of objects
being tested for collisions has become relatively small. First, the total number of active
bins is determined by finding the index in the sorted C array where the bin value is a valid
number and the next value is an invalid Oxffffffff. Because the values were sorted in the
previous stage, there is only one place in the array where this can occur. Determining this
value allows memory and thread usage to be allocated accurately. In this stage, each thread
computes the total number of collisions in its bin and writes that number to an array D of
unsigned integers with a size equal to the number of active bins. The bin starting number

@ Springer

46 H. Mazhar et al.

Fig. 18 Center of collision 3 4 5
volume. Based on spatial Bs

subdivision in Fig. 6 A
4
’j@
7
-___/

Fig. 19 Pseudocode: Determine For each thread index:
number of collisions If index<last:
For posA=bin start &% posA<bin end:
For posB=posA+1 && posB<bin end:
centerDist = distance between center of A and B
rAB =Radius of A plus Radius of B
if centerDist<=rAB:
if centerDist+radius of A)<radius of B):
collision center=bin of object A
if centerDist+radius of B)<radius of A):
collision center=bin of object B
if(current bin=collision center)
D[index]++;

(from Stage 5) is read for the current and next bins; the starting value for the next bin being
the ending value for the current one, allowing the list of objects to be iterated through.

The algorithm used to check for collisions between spheres does so by calculating the
distance between both objects. Because all objects are spheres, contacts can only occur when
the distance between each objects’ centroid is less than or equal to the sum of their radii.
Because one object could be contained within more than one bin, caution was required
to prevent repeated detection of the same collision. For example, if two objects intersect
within two separate bins, each thread processing its respective bin should not find the exact
same collision pair. Therefore, several conditions need to be satisfied in order to guarantee
unique collisions. The principle used is simple; the midpoint of a collision volume can only
be contained within one bin. Therefore, only one thread would find a collision pair. For
example, in order to obtain the midpoint of the collision volume, the vector going from
centroid of object 4 to the centroid of object 7 is determined; see Fig. 18. Then the point
where this vector intersects each object is obtained. The midpoint between these two points
is used as the midpoint of the collision volume. If one object is completely inside of the
other, the midpoint of the collision volume is the centroid of the smaller object. Using this
process, the number of collisions are counted for each bin and written to D. This stage is
outlined in the pseudocode of Fig. 19.

Stage 8. Once the number of collisions per bin is returned, an inclusive prefix scan opera-
tion is performed upon it [23]. This stage returns an array E whose last element is the total
number of collisions in the uniform grid, which allows the right amount of memory to be
allocated in the next and final stage of the algorithm.

Stage 9. The final step of the collision detection algorithm is to write the contact infor-
mation to the contact pair array. Concretely, an array of contact information structures F is
allocated with a size equal to the value of the last element in E. The collision pairs are then
found using the algorithm outlined in Stage 7. At this point, instead of simply counting the

@ Springer

A scalable parallel method for large collision detection problems 47

Fig. 20 Pseudocode: Computing ~ ObjectA=A

collision data ObjectB=B
Normal=-midpoint/centerDist
Collision point on B(x)= B.x+(B.w/centerDist)*(A.x-B.x)
(repeat for y and z)..
Collision point on A(x)= A.x+(A.w/centerDist)*(B.x-A.x)
(repeat for y and z)..

Fig. 21 Cases related to optimal bin size. (a) Grid is too fine. (b) Grid is adequately sized to the radius of the
bodies within. (¢) Bins could be optimized to be slightly larger. (d) Worst case scenario, difficult to optimize
the bin size in this scenario

number of collisions, actual contact information is written to its respective place in F; see
pseudocode of Fig. 20. Additional contact information can be computed if necessary in this
stage.

2.2 Optimizations

Optimizations can be performed in several stages of the parallel algorithm to increase speed
and reduce memory usage. They range from tuning the collision criterion to computing
the optimal occupancy of the GPU and the number of threads associated with it. With the
multi-GPU version of the collision detection algorithm, there are additional criteria that can
decrease time taken to determine collisions.

2.2.1 Bin size

This collision detection algorithm is currently based on a uniform three dimensional grid
structure, therefore, all bins are of equal physical size. As the size of objects in the algorithm
is allowed to vary, it is important that an optimal bin size be chosen so that one object
does not intersect many bins, thus wasting memory and computation time. However, it is
important that the number of bins remains relatively large so none of the processors on the
GPU become idle as there would not be enough work to fully saturate the GPU. Figure 21
shows the various scenarios related to bin and object size. For scenarios (b) and (c), the
optimal value for bin size was found to be two to three times the radius of the largest sphere
in the grid. Scenario (a) is not optimal as one sphere intersects many bins, and the bin size
should be increased in this case. However, as in scenario (d), if the differences in radii are too
large, it is difficult to determine an optimal size. As the amount of GPU memory available to
process each bin is limited, if the size of a bin is too large there will be too many spheres in
that bin leading to severe load imbalance. For cases like (d), the solution is to pick a bin size
that is two or three times larger than the average size of all spheres in the grid. Consequently,
as bins with only one object are trimmed during Stage 6, larger objects will not have a major
effect on collision detection time.

@ Springer

48 H. Mazhar et al.

2.2.2 Efficient memory usage

One technique considered to improve performance was the efficient use and reuse of mem-
ory available on the GPU. Two areas were looked at, namely, GPU constant memory use
and reduction in unnecessary computations. There are many constants used in the proposed
collision detection algorithm. Variables such as the bin dimension, dimensions of the grid,
and number of objects are guaranteed not to change during the collision detection process.
Rather than storing the variables in global memory or as shared memory in a kernel func-
tion, it is much more efficient to store them in the GPU’s constant memory. Unlike the global
memory, constant memory on the GPU is cached. Additionally, unlike the shared memory,
it does not need to be copied for each kernel call. Constant memory is copied once to the
GPU and then can be read by any kernel with very low latency. Second, reducing the amount
of repeated computations is a basic step that can be used to reduce computation time. For
example, the distance between two bodies is repeatedly used in the contact determination
kernel: rather than recomputing it, it is stored in a local variable. The downside is that addi-
tional registers need to be used. However, no more than 32 registers per thread were required
during any kernel call used to implement the proposed collision detection algorithm.

2.2.3 Register and shared memory usage

The binary file generated during CUDA compilation in combination with the CUDA oc-
cupancy calculator [24] were used to gauge and then fine tune for improved flop rate the
register and shared memory usage. Specifically, in addition to containing the binary code
for each GPU kernel/function, the .cubin file generated by the nvcc CUDA compiler [25]
provides the number of registers used and the amount of shared memory allocated by each
kernel call. The CUDA occupancy calculator uses this information to determine the max-
imum occupancy (percent use) that the GPU will be able to achieve. Occupancy at 100%
means that the stream multiprocessors that make up the GPU are fully utilized. This level
of occupancy is rarely attained, and occupancy hovering in the neighborhood of 50% is
typically what real world applications manage to achieve.

Figure 22 shows occupancy as a function of threads per block, register count per thread,
and shared memory usage per thread. Note that by tuning the amount of threads, it is possible
to increase the occupancy for a given configuration. Finally, Table 1 lists the configuration
of each kernel launched in the algorithm.

2.2.4 Multi-GPU tuning

When using multiple GPUs to compute collision data it was observed that certain configura-
tions are faster than others. First, if the number of objects is relatively small, around one to
five million, multi-GPU collision detection led to only modest efficiency gains, compared to
a single GPU, due to the inherent overhead associated with the implementation. For larger

Table 1 Register usage, shared
memory usage, and occupancy
for each function in the collision

Stage Registers ~ Shared memory Threadsused Occupancy

detection algorithm. Note that the 1,3 17 96 448 87.5%
Tesla C1060 was used to 5 6 48 512 100%
determine the optimal values 6 48 510 100%
reported

79 32 96 512 50%

@ Springer

A scalable parallel method for large collision detection problems 49

Varying Block Size Varying Register Count

1 J/\f“vf\/

e
©
e
©

e
o
e
o

Multiprocessor
% warp Occupancy
o
-y
Multiprocessor
% Warp Occupancy
o
-

—1_

16 80 144 208 272 336 400 464 0 32 64 96 128
Threads Per Block Registers Per Thread

e
N

o
[

4
a b

o

o

Varying Shared Memory Usage

-

e
@

e
o

-
—

&, Z 2] @ %%
) (-} e < % .9,
> % s B

Shared Memory Per Block

e
»

Multiprocessor
% Warp Occupancy

e
[

=]

Fig. 22 Variation of occupancy with changes in threads per block (upper left), register usage per thread
(upper right), and shared memory usage per thread (lower image)

numbers of objects, optimal speed is achieved when data is shared equally between GPUs.
Finally, the size of each box that the grid was separated into had a large effect on overall
speed. For a small number of boxes, and thus a large box size, each GPU will take longer to
process a box and the chances of an uneven distribution of objects between boxes is greater.
As the box size is decreased, the objects become more evenly distributed between GPUs;
however, each box has its own overhead. Having a large number of boxes will therefore de-
crease the performance of the algorithm. In order to achieve optimal work distribution, the
number of boxes that the physical space is divided into needs to be increased as the physical
space gets larger. In this manner, the relative amount of work performed per box remains
constant, only the number of boxes changes.

2.3 Spherical padding

The proposed CD algorithm belongs to the general class of multilevel spatial subdivision
approaches. Rather than optimizing for spheres of equal radius like in [16], a broader view
was adopted in the algorithmic design. As such, it can be modified to accommodate sev-
eral other primitive geometries such as cylinders, ellipsoids [26], cones, and boxes. When
dealing with complex geometries, such as the case for the tracked vehicle in Fig. 1, one of
two possible courses can be adopted. The simple solution is to perform a decomposition of
the surface of the bodies with complex geometry by using simple primitives. The alternative
solution is to perform collision detection between the exact collision geometries in their na-
tive form or in a high-accuracy mesh form, which is much more challenging. The primitive
decomposition approach was adopted in this work and further simplified to include only
sphere-sphere collisions. Herein, it is referred to as spherical padding [1].

@ Springer

50 H. Mazhar et al.

Fig. 23 Example of output from
re-meshing step 2

Fig. 24 Top and side views of
how a sphere fits a triangle on a
meshed surface

Side

The spherical padding algorithm can be divided into several steps: meshing, sphere-
fitting, and refining. In the meshing step, the triangulated three-dimensional mesh is sub-
divided so that it becomes finer and has a higher density of triangles per unit area. Meshing
followed by remeshing generates a Delaunay triangulation of each surface in the object. It
guarantees that triangles will, on average, have equal aspect ratio, and long skinny triangles
will not be generated. Figure 23 shows an example of such a triangulation. Once the object
has been re-meshed, the next step is to use the new triangles to fit spheres.

A sphere is fit to a triangle by using its three vertices as shown in the top view of Fig. 24.
However, a unique sphere cannot be generated using this method, as the radius of the sphere
is not constrained. Therefore, a depth ratio is used to specify how far above the surface
of the triangle the sphere protrudes. This allows more control over the radii of the spheres
while also allowing the smoothness of the surface to be controlled. Once the tessellated
surfaces are covered with spheres, refining needs to be done close to the edges so that spheres
generated during the previous step do not protrude out on edges where two surfaces meet.
A special edge-finding algorithm was implemented to refit spheres along every edge in order
to create a better approximation in [1].

To use the new spherically padded surface with the proposed collision detection algo-
rithm, one modification was made. Because spheres making up one object should not col-
lide with each other, each sphere was assigned two specific identifiers. The first specifies the
family, or object, that a group of spheres represents. This number can be specific to each
object or several similar objects. If two different colliding spheres have the same family
identifier, the collision will be ignored. The second number specifies a collision mask; this
mask identifies what family identifiers should not collide. In this manner, different family
identifiers can be grouped together to allow more control over how objects collide.

3 Numerical experiments
3.1 Validation against and comparison with state of the art sequential collision detection

A first set of experiments was carried out to validate the implementation of the algorithm
using various collections of spheres that display a wide spectrum of collision scenarios: dis-

@ Springer

A scalable parallel method for large collision detection problems 51

Table 2 Error is computed by taking the Euclidean norm of the difference between the collision data from
Bullet Physics Library and the algorithm presented above. We defined contact point error for each contact as
the maximum location error of the two points associated with that contact

Spheres Contacts Contact dist. error [m] Contact normal error [m] Contact point error [m]

Avg Error Std Dev Avg Error Std Dev Avg Error Std Dev
1,000,000 462108 1.46E-7 2.48E-4 8.24E-11 2.21E-7 2.73E-6 2.98E-3
2,000,000 1015556 7.40E-8 291E-4 1.91E-10 2.15E-7 2.37E-6 3.35E-3
3,000,000 1379397 1.69E-7 3.52E-4 2.75E-10 2.26E-7 3.58E-6 4.09E-3
4,000,000 1530309 5.49E-7 4.14E-4 2.33E-10 2.24E-7 1.94E-6 4.78E-3
5,000,000 1995548 6.35E-7 4.38E-4 1.09E-10 2.23E-7 3.10E-6 5.09E-3

joint spheres, spheres fully containing other spheres, spheres barely touching each other,
spheres that are in contact but not full containment. In the first column, Table 2 reports the
number of objects in the test for five scenarios. For each test, the error between the refer-
ence algorithm and the implemented algorithm is reported for the total number of contacts
identified, the average error and standard deviation of the contact distance, contact unit nor-
mal, and point of contact. The reference algorithm used for validation was the sequential
(non-parallel) collision detection implementation available in the open source state-of-the-
art Bullet Physics Engine [27]. The Bullet collision detection solution was designed for
speed, making it ideally suited to compare against when gauging the performance of the
proposed parallel algorithm. It also relies on spatial subdivision but, unlike in [19], it is not
limited to spheres.

Results showed in Table 2 indicate that the error in the proposed algorithm, when com-
pared to the CPU implementation, is minimal and is due to floating point error. The CPU-
based algorithm relies on double precision while the GPU algorithm relies on single preci-
sion. While this had an effect on the overall contact data, the number of contacts was the
same. Furthermore, the small errors reported above show that no collisions were missed by
the algorithm.

A second set of numerical experiments was carried out to gauge the efficiency of the
parallel CD algorithm developed. The reference used was the same sequential CD imple-
mentation from Bullet Physics Engine. The CPU used in this experiment (relevant for the
Bullet implementation) was AMD Phenom II Black X4 940, a quad core 3.0 GHz processor
that drew on 16GB of RAM. The GPU used was NVIDIA’s Tesla C1060. The operating sys-
tem used was the 64 bit version of Windows 7. Three scenarios were considered. The first
one measured the relative speedup gained with respect to the serial implementation. This test
stopped when dealing with about six million contacts (see horizontal axis of Fig. 25), when
Bullet ran into memory management issues. The plot illustrates that the relative speedup is
up to 180. The second scenario determined how many contacts a single GPU could deter-
mine with this algorithm before running short on memory. As Fig. 26 shows, approximately
22 million contacts were determined in less than 4 seconds. This was followed by a third
scenario, where the problem size was increased up to 1.6 billion contacts; see Fig. 27. This
experiment relied on the software/hardware stack outlined in Fig. 5. Specifically, the test
combined the use of OpenMP, for multiple GPU management, with CUDA, for GPU-level
computation management.

3.2 Collision detection scaling for relevant dynamics application

This numerical experiment illustrates how the proposed parallel algorithm performs when
interfaced with a physics based dynamics simulation package. The simulation consisted in

@ Springer

52 H. Mazhar et al.

U | R T pTTT T)
R s — i s fvarcaenn :

Q 1 1 1 1 1
=] 1 1 1 1 1 1
° 1 1 1 1 1 1
L oSN B— o
w 1 1 ' 1 ' 1
x : : : : : :
50 pf---mmmos promemees jmmTe T oot o '

0 i i i i i i
0.0 1.0 2.0 3.0 4.0 5.0 6.0

Contacts [Millions]

Fig. 25 Opverall speedup when comparing the CPU algorithm to the GPU algorithm. The maximum speedup
achieved was approximately 180 times

Contacts [Millions]

Fig. 26 Collision time vs. contacts detected, this graph shows that when the algorithm is executed on a single
GPU it scales linearly

50.0 po--m-m-mmmmmemmeomnees e GEee e R LR e |
40.0 F----mmmmmmmmmoooeaoes R EOGREEEETEEEEEEPES Ao T 4
B 30.0 fo-mnmmmmmmmnmneas T s .
o : ! !
e = S IRty 1
10.0 F--mmmmmsoee T oo oo B RCREEEEN 4
0.0 i i i

0.0 500.0 1,000.0 1,500.0

Contacts [Millions]

Fig. 27 Collision time vs. contacts detected, this graph shows that the multi-GPU algorithm scales linearly
and can detect more than a billion contacts in less than a minute

the filling of a cylindrical tank (silo) that had a constant height and a radius varying with
the number of spheres in the tank; see Fig. 28. The number of spheres in the tank was
increased with each simulation from 100,000 to 1,000,000, without increasing the height
of the tank. Instead, the radius of the cylinder, which had to increase, was determined for
each simulation using the number of spheres and their packing factor. Each test was run
using an NVIDIA Tesla C1060 until the number of collisions and thus the simulation time
per time step reached steady state; i.e., the dynamics of the pile of spheres settled and the

@ Springer

A scalable parallel method for large collision detection problems 53

Fig. 28 Example illustrating the
use of the parallel CD algorithm
in conjunction with a dynamics
simulation engine. The
simulation captures the dynamics
of a granular material with up to
1 million bodies as it settles
inside a silo

Table 3 Total time taken per time step at steady state and the number of contacts associated with it

Objects Total time [s] GPU collision detection [s] GPU solver [s] Contacts
100,000 6.1972 0.5436 5.4243 361,440
200,000 12.1190 1.0758 10.5881 718,377
300,000 18.2708 1.6183 15.9482 1,080,069
400,000 23.2806 1.9746 20.4606 1,403,784
500,000 29.2565 2.4568 25.7773 1,765,772
600,000 35.0433 2.9785 30.7971 2,124,639
700,000 40.5938 3.4695 35.6405 2,439,241
800,000 46.9516 4.0234 41.2297 2,838,832
900,000 52.6227 4.5272 46.1909 3,178,228

1,000,000 58.1518 4.9473 51.1686 3,548,594

-l L__J

Time [s]

Contacts [Millions]

Fig. 29 Collision time as the number of contacts increases

time required to advance the simulation by one time step was practically constant. The open
source dynamics engine, Chrono::Engine, was used for this dynamics simulation [28] in
conjunction with an inelastic contact model.

Given the significant reduction in the collision detection time reported in the previous
subsection, it can be expected that collision detection will stop representing a computational
bottleneck of the overall parallel simulation approach. The results presented in Table 3 and
graphed in Figs. 29 and 30 confirm this expectation. Moreover, they indicate that even in a
dynamics application, the collision detection algorithm scales linearly. The results show that

@ Springer

54 H. Mazhar et al.

R

40 e [O b - H
@ : : : : !
- . ! ! !
E 5 i : i i
720 preee- R bommmmoeeee oo oo :
0.0 i i j i i
0.0 0.2 0.4 0.6 0.8 1.0

Objects [Millions]

Fig. 30 Collision time as the number of objects increases

the amount of time required to advance the simulation by one time step was spent primarily
on the GPU dynamics solver portion of the simulation, with a small amount of time taken
up by the collision detection step. These times are larger than the raw collision detection
times presented earlier due to the pre and post processing required by the physics engine as
it transfers and organizes data for use between the solver and collision detection.

4 Conclusions

This paper proposes a spatial subdivision based approach for parallel collision detection on
the GPU. The algorithm combines two paradigms, CPU computing and GPU computing, to
enable in an open source code effective and scalable parallel collision detection for scenarios
with billions of collision events. On the CPU side, the proposed approach draws on OpenMP
software support. On the GPU, it relies on the CUDA toolkit. The proposed algorithm sig-
nificantly enlarges the solvable problem size: from 6 million collision events with the Bullet
Physics Engine, to either billions of events in a multi-GPU configuration, or to approxi-
mately 23 million collision events when using only one GPU card. Moreover, when com-
pared to Bullet, the proposed algorithm was two orders of magnitude faster and eliminated
the collision detection as a computational bottleneck in the physics based simulation of gran-
ular material dynamics. Ongoing work aims at streamlining the implementation to leverage
the Message Passage Interface (MPI) standard for cluster simulation setups, which repre-
sents a more challenging undertaking due to load balancing issues. In terms of geometries
handled, an ongoing effort concentrates on collision detection for ellipsoids and cylinders.
The collision detection framework outlined herein should accommodate these geometries
with minimal implementation changes. More complex in scope and methodology, a second
investigation/implementation effort should aim at large scale collision detection of geome-
tries defined through Delaunay triangulations.

Acknowledgements Financial support that enabled this research comes from NSF grant CMMI-0840442,
NVIDIA Corporation, and Function Bay, Inc.
References

1. Heyn, T.: Simulation of tracked vehicles on granular terrain leveraging GPU computing. M.S. The-
sis, Department of Mechanical Engineering, University of Wisconsin—-Madison. http://sbel.wisc.edu/
documents/TobyHeynThesis_final.pdf (2009)

@ Springer

http://sbel.wisc.edu/documents/TobyHeynThesis_final.pdf
http://sbel.wisc.edu/documents/TobyHeynThesis_final.pdf

A scalable parallel method for large collision detection problems 55

2.

10.
11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

. NVIDIA Corporation. Compute unified device architecture software development kit (2009)
26.

217.

28.

Tasora, A., Negrut, D., Anitescu, M.: Large-scale parallel multi-body dynamics with frictional contact on
the graphical processing unit. Proc. Inst. Mech. Eng., Proc. Part K, J. Multi-Body Dyn. 222(4), 315-326
(2008)

. Tasora, A., Negrut, D., Anitescu, M.: GPU-based parallel computing for the simulation of complex

multibody systems with unilateral and bilateral constraints: An overview. In: Blajer, W., Arczewski,
K., Fraczek, J., Wojtyra, M. (eds.) Multibody Dynamics: Computational Methods and Applications, pp.
45-55. Springer, Berlin (2010)

. Negrut, D., Tasora, A., Mazhar, H., Heyn, T., Hahn, P.: Leveraging parallel computing in multibody

dynamics. Multibody system dynamics. Under review (2011). This paper was submitted in December
with manuscript number MUBO-10-79

. Gonthier, Y., McPhee, J., Lange, C., Piedbuf, J.-C.: A regularized contact model with asym-

metric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209-233 (2004).
10.1023/B:MUBO0.0000029392.21648.bc

. Forg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multi-

body Syst. Dyn. 14, 137-154 (2005). 10.1007/s11044-005-0725-x

. Najafabadi, S.M., Kovecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments.

Multibody Syst. Dyn. 20, 163-176 (2008). 10.1007/s11044-008-9117-3

. Choi, J., Ryu, H., Kim, C., Choi, J.: An efficient and robust contact algorithm for a compliant con-

tact force model between bodies of complex geometry. Multibody Syst. Dyn. 23, 99-120 (2010).
10.1007/s11044-009-9173-3

. Fleissner, F., Gaugele, T., Eberhard, P.: Applications of the discrete element method in mechanical engi-

neering. Multibody Syst. Dyn. 18, 81-94 (2007). 10.1007/s11044-007-9066-2

Baraff, D.: Dynamic simulation of non-penetrating rigid bodies. Ph.D. Thesis, Cornell University (1992)
Baraff, D.: An introduction to physically based modeling: rigid body simulation II6Nonpenetration con-
straints. In: An Introduction to Physically Based Modelling, SIGGRAPH’97 Course Notes (1997)
Cohen, J.D., Lin, M.C., Manocha, D., Ponamgi, M.: I-COLLIDE: An interactive and exact collision
detection system for large-scale environments. In: Proceedings of the 1995 Symposium on Interactive
3D Graphics, p. 189. ACM, New York (1995)

Govindaraju, N.K., Redon, S., Lin, M.C., Manocha, D.: CULLIDE: Interactive collision detection be-
tween complex models in large environments using graphics hardware. In: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 25-32. Eurographics Associa-
tion, Geneve (2003)

Govindaraju, N.K., Lin, M.C., Manocha, D.: Fast and reliable collision culling using graphics hardware.
In: IEEE Transactions on Visualization and Computer Graphics, pp. 143-154 (2006)

Govindaraju, N.K., Lin, M.C., Manocha, D.: Quick-CULLIDE: fast inter-and intra-object collision
culling using graphics hardware. In: ACM SIGGRAPH 2005 Courses, p. 218. ACM, New York (2005)
Harada, T.: Real-time rigid body simulation on GPUs. GPU Gems 3, 611-632 (2007)

Harada, T., Koshizuka, S., Kawaguchi, Y.: Sliced data structure for particle-based simulations on gpus.
In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques
in Australia and Southeast Asia, pp. 55-62. ACM, New York (2007)

NVIDIA. CUDA Programming Guide. Available online at http://developer.download.nvidia.com/
compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf (2009)

Le Grand, S.: Broad-phase collision detection with cuda. GPU Gems 3, 697-721 (2007)

Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for manycore GPUs. In: Paral-
lel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium, pp. 1-10. IEEE Press,
New York (2009)

NVIDIA Corporation. Tesla c1060 datasheet. Available online at http://www.nvidia.com/docs/10/
43395/NV_DS_Tesla_C1060_US_Jun08_FINAL_LowRes.pdf (2008)

Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. GPU Gems 3(39), 851—
876 (2007)

Hoberock, J., Bell, N.: Thrust: a parallel template library. Available online at http://code.google.com/
p/thrust/ (2009)

NVIDIA Corporation. Compute unified device architecture occupancy calculator (2009)

Pazouki, A., Mazhar, H., Negrut, D.: Parallel ellipsoid collision detection with application in contact
dynamics-DETC2010-29073. In: Fukuda, S., Michopoulos, J.G. (eds.) Proceedings to the 30th Com-
puters and Information in Engineering Conference. ASME International Design Engineering Technical
Conferences (IDETC) and Computers and Information in Engineering Conference (CIE) (2010)
BULLET: Physics simulation forum. Bullet physics library. Available online at http://www.bulletphysics.
com/Bullet/wordpress/ (2010)

Tasora, A.: Chrono::Engine, an open source physics—based dynamics simulation engine. Available online
at www.deltaknowledge.com/chronoengine (2006)

@ Springer

http://dx.doi.org/10.1023/B:MUBO.0000029392.21648.bc
http://dx.doi.org/10.1007/s11044-005-0725-x
http://dx.doi.org/10.1007/s11044-008-9117-3
http://dx.doi.org/10.1007/s11044-009-9173-3
http://dx.doi.org/10.1007/s11044-007-9066-2
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C1060_US_Jun08_FINAL_LowRes.pdf
http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C1060_US_Jun08_FINAL_LowRes.pdf
http://code.google.com/p/thrust/
http://code.google.com/p/thrust/
http://www.bulletphysics.com/Bullet/wordpress/
http://www.bulletphysics.com/Bullet/wordpress/
http://www.deltaknowledge.com/chronoengine

	A scalable parallel method for large collision detection problems
	Abstract
	Introduction
	Proposed algorithm
	Stages of GPU collision detection algorithm
	Stage 1.
	Stage 2.
	Stage 3.
	Stage 4.
	Stage 5.
	Stage 6.
	Stage 7.
	Stage 8.
	Stage 9.

	Optimizations
	Bin size
	Efficient memory usage
	Register and shared memory usage
	Multi-GPU tuning

	Spherical padding

	Numerical experiments
	Validation against and comparison with state of the art sequential collision detection
	Collision detection scaling for relevant dynamics application

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

