
Multibody Syst Dyn (2011) 25: 313–334
DOI 10.1007/s11044-010-9238-3

Simulation process of flexible multibody systems
with non-modal model order reduction techniques

Jörg Fehr · Peter Eberhard

Received: 18 November 2009 / Accepted: 12 November 2010 / Published online: 4 December 2010
© Springer Science+Business Media B.V. 2010

Abstract One important issue for the simulation of flexible multibody systems is the re-
duction of the flexible body’s degrees of freedom. In this work, nonmodal model reduction
techniques for flexible multibody systems within the floating frame of reference framework
are considered. While traditionally in the multibody community modal techniques in many
different forms are used, here other methods from system dynamics and mathematics are in
the focus. For the reduction process, finite element data and user inputs are necessary. Prior
to the reduction process, the user first needs to choose boundary conditions fitting the chosen
reference frame before defining the appropriate in- and outputs. In this work, four different
possibilities of modeling appropriate interface points to reduce the number of inputs and
outputs are presented.

The main model reduction techniques to be considered in this context are moment-
matching by projection on Krylov-subspaces, singular vaule decomposition (SVD)-based
reduction techniques and combinations of those which are also compared to traditional
modal approaches. All these reduction techniques are implemented in the model order re-
duction code Morembs. In addition, an error estimator for Krylov-subspace methods exists
and an a-priori error bound can be calculated if frequency weighted Gramian matrices are
used for the reduction process. This allows a fully automated reduction process. We evalu-
ate and compare these methods in the frequency as well as in the time domain by reducing
the flexible degrees of freedom of a rack used for active vibration damping of a scanning
tunneling microscope.
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1 Introduction

Typical elements of classical multibody systems are rigid bodies which are interconnected
with ideal joints and constraint elements between each other and the surrounding environ-
ment. Due to increased usage of lightweight structures and the increased working speed,
the negligence of elastic effects often is no longer appropriate. If a system consists of rigid
bodies as well as bodies where the deformations have to be considered, one has to deal with
flexible multibody systems. They are used to examine the dynamic behavior of gear-boxes,
robot-arms, crank-shafts, windmills, impact drills, etc. The concept of flexible multibody
systems is described, e.g., in [1] and [2]. This method is especially well suited for prob-
lems with a large movement of the reference frame and only small elastic deformations.
Furthermore, it is possible to reduce the computational burden by using model reduction
techniques; see, e.g. [3–6]. In this work, nonmodal model reduction techniques for flex-
ible multibody systems within the floating frame of reference framework are considered.
The simulation of a flexible multibody system involves some preprocessing steps shown
in Fig. 1.

On the one hand, there is a nonlinear simulation of the motion of rigid bodies consist-
ing of p bodies with f degrees of freedom and q reaction forces. On the other hand, there
are elastic bodies. The deformations of elastic bodies can be described by a set of par-
tial differential equations (PDEs). For general bodies, spatial discretization techniques are
used transforming the PDEs to a set of ordinary differential equations (ODEs). Mostly,
the Finite Element Method (FEM) is used, leading to bodies described by often more
than 100,000 elements. Within the framework of a floating frame of reference formula-
tion, the motion r of points of an elastic body is separated into an usually nonlinear mo-
tion of the reference frame K i and into a linear elastic deformation u with respect to the
reference frame; see Fig. 2. Similarly, the transformation matrix of frame KP with re-
spect to frame K I , is spitted into two transformation matrices AIk(t) = AI i (t) · AiP (t),
in which AI i (t) defines a coordinate transformation from frame K i to frame K I . In this

Fig. 1 Preprocessing for the
simulation of a flexible
multibody system
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Fig. 2 Floating frame of
reference formulation

work, only small deformations are considered and the transformation matrix AiP (t) from
frame K i to frame KP is separated into a constant part Γ ik and a time dependent part
I + ϑ̃ k(t)

AiP (t) = Γ ik · (I + ϑ̃ k(t)
)
, (1)

where ϑ̃ k(t) is the skew-symmetric matrix of the the rotational angles collected in the
vector ϑ k(t). The linear elastic deformation u ∈ R

3 and the small rotations ϑ ∈ R
3

are then approximated by u = Φ · q and ϑ = Φ · q , where q ∈ R
N summarizes the

nodal degrees of freedom of the finite element model and Φ contains the shape func-
tions.

Using Jourdain’s principles of dynamics, the equation of motion for a single body can be
derived, as shown, e.g., in [1], and read

[
M r MT

er

Mer Me

]
·
[
a

q̈

]
=

[
hr

he

]
+

[
0

−Ke · q − De · q̇
]
, (2)

where the submatrix M r ∈ R
6×6 corresponds to the mass matrix known from rigid multi-

body dynamics, Me ∈ R
N×N , De ∈ R

N×N and K e ∈ R
N×N are the flexible mass, damping

and stiffness matrices, whereas Mer ∈ R
6xN provides the coupling between the rigid body

movement and the elastic deformation. The vector a contains the global accelerations of
the floating frame of reference, the vectors hr ∈ R

6 and he ∈ R
N collect generalized inertia

forces, gravitational forces, and forces acting on the body’s surface. This approach leads to
6 + N degrees of freedom per elastic body. Three translational and three rotational degrees
of freedom of the rigid body dynamics plus the N elastic degrees of freedom.

In the following, all flexible bodies are considered simultaneously which yields the same
structure of the equation with merely different dimensions. As a consequence, transient sim-
ulations, endurance tests or design problems of such huge systems are often hardly feasible.
Because of this, it is necessary to reduce the flexible degrees of freedom (dof) of every elastic
body, e.g., by a Petrov–Galerkin projection of the flexible coordinates q on an appropriate
subspace span(V ) ∈ R

N×n by q = V · q̄ , with n = dim(q̄) � dim(q) = N and requiring
the residual to be orthogonal to the right projection space span(W ) ∈ R

N×n. A projection
is called orthogonal if V = W and otherwise oblique. This procedure leads to the reduced
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equations of motion
[

M r MT
er · V

W T · Mer W T · Me · V

]

·
[
a

q̈

]

=
[

hr

W T · he

]
+

[
0

−W T · Ke · V · q − W T · De · V · q̇
]
. (3)

For model reduction, the question of how to choose appropriate projection subspaces
span(V ) and span(W ) is of interest. With the projection matrices V and W the standard
data can be calculated as explained, e.g., in [1] and [2]. The elastic shape functions Φel

are the global shape functions times the projection matrix Φel = Φ · V . In state of the art
reduction methods like modal reduction, the projection spaces span(V ) = span(W ) consist
of the dominant eigenvectors plus some additional modes. The component mode method
developed in [7] was utilized in [4] for the reduction of flexible multibody systems. A com-
bination of fixed boundary modes plus some “constraint modes” which account for local
effects at boundaries are utilized. However, the convergence of modal reduction can be slow,
e.g., because the spatial distribution of loads is not considered. In addition, no information
about the error introduced by model reduction can be gained if modal reduction techniques
are used and a tuning of the reduced model for certain frequency ranges is not possible.

Concerning model reduction methods from system dynamics and mathematic on the con-
trary, like moment-matching or SVD-based reduction, they have rigorous error bounds and
can be tuned in a certain frequency range. These methods are utilized in this work to find
better elastic ansatz functions and gain information about the error introduced by model
reduction. If all the reaction and applied forces acting on the elastic body are considered
as inputs Be · u(t) and the most important displacements of the elastic body as outputs
y(t) = Ce · q(t) to the elastic body, where Be ∈ R

N×p and Ce ∈ R
r×N , then the elastic part

of the body can be considered as a linear time-invariant second-order multi input multi out-
put (MIMO)-system Me · q̈(t) + De · q̇(t) + K e · q(t) = Be · u(t), y(t) = Ce · q(t). The
projection spaces span(V ) and span(W ) are then yielding the reduction space of the second-
order MIMO-system reduction and can be found with methods like moment-matching based
on projection on Krylov-subspaces, SVD-based reduction techniques and combinations of
those. It must be emphasized that now V and W no longer contain eigenmodes belonging
to certain eigenfrequencies but mathematically determined ansatz functions with convincing
properties. The reduced order system reads

M̄e · ¨̄q(t) + D̄e · ˙̄q(t) + K̄e · q̄(t) = B̄e · u(t),

y(t) = C̄e · q̄(t)
(4)

with the reduced order input matrix B̄e = W T · Be and output matrix C̄e = Ce · V . Due
to the physical fact that Me is not singular, the second-order model can be written as an
equivalent state-space model

[
q̇(t)

q̈(t)

]

︸ ︷︷ ︸
ẋ(t)

=
[

0 I

−M−1
e · Ke −M−1

e · De

]

︸ ︷︷ ︸
A

·
[

q(t)

q̇(t)

]

︸ ︷︷ ︸
x(t)

+
[

0
M−1

e · Be

]

︸ ︷︷ ︸
B

·u(t),

y(t) = [
Ce 0

]

︸ ︷︷ ︸
C

·
[

q(t)

q̇(t)

]
,

(5)
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where the state-space matrices A,B,C, and the state vector x are introduced. Using the
Laplace transformation, the transfer matrix of the system H (s) = Ce · (s2Me + sDe +
Ke)

−1 · Be is obtained. Using the Laplace transformation, the transfer matrix of the reduced
system H̄ (s) = C̄e · (s2M̄ e + sD̄e + K̄e)

−1 · B̄e is obtained.
In Fig. 1, the necessary steps involved in the simulation of a flexible multibody system

are shown. It is neither intended to change the preprocessing methods for obtaining the
elastic description of a flexible body nor to write a new flexible multibody code. Instead,
we concentrate on the reduction process which is one of the integral parts of the simulation.
The reduction process for every flexible body involves three crucial steps. First, choosing
of boundary conditions fitting to the chosen reference frame. Secondly, the definition of
appropriate inputs and outputs. Thirdly, the reduction of the linear time-invariant second-
order system. Our aim is, e.g., to calculate the so-called standard input data of an elastic body
(SID); see [8]. Based on the standard input data the equation of motion of a single elastic
body (4) is assembled and solved by the commercial elastic multibody system code. With
the previously calculated projection matrices V and W the standard data can be calculated
as explained, e.g., in [1] and [2]. The improvement is represented by the application of new
and more sophisticated reduction techniques to find the best approximation of the full elastic
body with only a few ansatz functions and by the use of new metrics for the evaluation of
the state of the art reduction method.

In Sect. 2, we introduce an example on the bases of which we compare and explain
the necessary steps involved in the reduction process. We then shortly recapitulate the two
essential reference frames used in the floating frame of references formulation before con-
tinuing with explanations about appropriate definitions of interface nodes. We finish this
section with some notes about implementation issues. In Sect. 3, we give a short introduc-
tion of the different model reduction techniques implemented by the authors in recent years.
Afterward, the used programs and the data flow is explained in Sect. 4. These different re-
duction techniques are evaluated with the example in the frequency as well as in the time
domain in Sect. 5. This work is completed by some conclusions in Sect. 6.

2 Example

One example used in former work (see [9, 10]) was the finite element model of a rack
consisting of two rigid plates and beam elements; see Fig. 3. The model used in this context
has about 4000 elastic degrees of freedom. The two rigid plates are modeled as rigid bodies
connected via constraint equations to the rods; see Fig. 3. The beam model served as an
initial example for testing the different possible interface definitions, different reduction
techniques and the efficient implementation of these methods. One goal of this work is the
application of the new reduction methods to industrial size problems. In this paper, the full
model, serves as an example from which the simplified academic beam model was derived.
The rack is used for active vibration damping of a scanning tunneling microscope (STM) as
shown in Fig. 4 and explained in [11]. The geometric information about the rack is given as
CAD data. As a further step, the finite element model is obtained by meshing the CAD data
with an appropriate FE Program, leading to a model with about 35,000 degrees of freedom.

The volume body is meshed with a 20 node structural solid element. All the nodes be-
longing to the structural solid element have three degrees of freedom. From the Finite El-
ement data, the standard-data of an elastic body can be calculated as described in [1]. The
interesting frequency range for this problem is between fmin = 0 Hz and fmax = 1000 Hz.
The upper part of the system weights about 1.2 kg; the lower plate weights about 0.2 kg.
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Fig. 3 Model of the academic
rack consisting of two rigid
bodies and beams

Fig. 4 Model of the rack

Forces are acting on the lower plate and at the hole in the upper plate in all three translational
directions. The upper plate is the interface to the remaining part of the system. The lower
plate is assumed to be a rigid body rigidly connected to the beams. The exact method of
how the upper interface is appropriately modeled is investigated in Sect. 2.2. The following
points need to be considered when calculating the standard data: Location and appropriate
boundary conditions for the reference frame, modeling of interface nodes and master slave
relations between the nodes.

2.1 Choice of reference frame

In the floating frame of reference approach twelve variables are used for describing the loca-
tion rP and orientation AP of an arbitrary frame. Six of the twelve variables are redundant.
This redundancy is eliminated by using special reference conditions. The use of principle
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axes as a reference frame is described in [12]. The origin of the reference frame must re-
main at the instantaneous mass center and the three products of inertia must remain zero as
the body deforms. This condition is imposed by adding constraint equations at the position,
velocity, and acceleration level. In our work, commercial multibody system codes should
be utilized for solving the dynamic system. Because the use of principle axes is not imple-
mented in the commercial multibody system codes, different reference frames need to be
utilized. Three additional methods are describe in [5]. The user’s responsibility is the appro-
priate choice of the reference frame. Mostly, a tangent frame or a Buckens frame is chosen.
The tangent frame imposes a kinematic constraint on the body by identifying the reference
system K i with the frame of the body having the material coordinate R0 = 0. The Buckens
frame, however, imposes a dynamical constraint on the body and is located in the center of
gravity of the undeformed body. The dynamical constraint is defined as

∫

V

u(R, t) · u(R, t) dm
!= min. (6)

The choice of the Buckens frame leads to the smallest elastic deformation possible. For ar-
bitrary shape functions, condition (6) must be enforced by imposing an algebraic constraint
while solving the system’s equations of motion. However, it was shown, e.g., in [1] that
by using eigenfunctions of unsupported structures, so called free-free modes, and deleting
the six rigid body modes, constraint (6) is automatically met. Although the Buckens frame
leads to the smallest elastic deformation possible, a situation can arise that causes a reference
frame with kinematic constraints to be favored. Comparison of the different approaches can
be found in [5]. For general model reduction approaches, the following points need to be
considered for fulfilling the floating frame of reference formulation. The shape function of
the elastic body needs to fulfill the kinematic boundary conditions, e.g., Φ(R0) = 0 for the
tangent frame. This implies implicitly that the projection spaces also fulfill these boundary
conditions. This means that the user first has to translate the global coordinate system of the
FE body into the node where the reference frame is located. Secondly, the elastic degrees
of freedom of the reference nodes get bounded by setting them to zero. The columns of
the projection matrices corresponding to this dof contain zeros only. For a Buckens frame,
the global coordinate system of the FE body is translated into the center of gravity of the
undeformed body. In addition, it is necessary to project the system with projection spaces
span(V ) and span(W ), which are orthogonal to the rigid body modes of the body.

2.2 Definition of interface nodes

Another important step previous to the model reduction step is the definition of appropriate
interfaces which are necessary to reduce the number of inputs and for efficient coupling be-
tween bodies. Usually, forces or boundary conditions are not acting on a single node. They
are acting within a specific area or on a specified user interface. In order to prepare the
FE model for model reduction usually additional nodes so-called interface nodes are intro-
duced; compare, e.g. [13]. In this example, one additional interface node is in the center of
the upper hole; see Fig. 4 node 2. In a next step, a relation between the degrees of freedom
of the interface nodes qI and the degrees of freedom qS of the nodes at the interface surface,
in this example, the plane of the inner cylinder, are introduced by FE constraint equations;
see Fig. 5. Such constraints are standard FE modeling capability and offer the option to de-
fine rigid regions that are associated to the interface node. The experienced user utilizes the
correct interface definitions for correct simulation results. The user manual of ANSYS [14]
suggests an improvement by adding a small mass to the node and then coupling the various
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Fig. 5 Different possibilities to define an appropriate interface node

Fig. 6 Influence of different
interface definitions

FE constraints to the additional point mass. Other possibilities for interface definitions are
additionally shown in Fig. 5. One alternative, is the usage of beams instead of constraints.
As a second example, 15 round steel beams, with a diameter of 1 mm are used for coupling
the interface node with the hole in the upper plate. It is necessary that the eigenfrequen-
cies of the additional beams are remote to the interesting frequency range. For a fixed-fixed
Bernoulli beam, the first eigenfrequencies are calculated from

fi = Λi

2π

√
EI

ρAl4
(7)

with E being Young’s modulus, I the second moment of inertia, ρ the density, A the area and
l the length of the beam. The Λi are resulting from the solution of the characteristic equation
in the eigenproblem of fixed-fixed beam and can be found in tables; see, e.g. [15]. For the
steel beam, the first two eigenfrequencies are at 4326 Hz and at 7182 Hz. The additional steel
beams add a mass of mbeams = 1.38 mg. If the diameters of the beams are reduced a lower
mass is introduced. However, the eigenfrequencies are proportional to the diameter of the
steel beams. If beams with d = 0.1 mm diameter are used, the first eigenfrequency of a single
beam is at at 433 Hz, which is in the interesting frequency range. In Fig. 6, the Frobenius
norm of the frequency response matrix ‖H‖F is plotted depending on the different interface
definitions. We see that if steel beams are used, the frequency response is different from
the response with constraints coupling. The frequency response is constant for frequencies
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Fig. 7 Influence of different
interface definitions

higher than 350 Hz which is not fitting the experimental data. Better results are achieved
if non physical beams are used instead of steel beams. The nonphysical beams are stiffer,
using Young’s modulus E = 1018 N/m2 instead of Esteel ≈ 2.1 × 1011 N/m2, and lighter
using density ρ = 100 kg/m3 instead of ρsteel ≈ 8000 kg/m3. This coupling is better than
coupling with steel beams and the coupling with constraint equations. Another possibility
for coupling the interface node is is the usage of a spring damper element. At the moment,
an appropriate parameterization of the spring damper elements for this problem is not yet
done and the authors are working on defining appropriate interface definitions in a way that
the FE results fit the measurement results. In this example, the usage of a spring damper
combination is not a good choice because the spring damper combination cannot distribute
forces in z-direction because no forces act in this direction due to the orientation of the spring
damper element. The wrong interface behavior can be seen in the frequency response plot;
see Fig. 6. However, the developed model reduction tools can handle without additional
user input all the different interface definitions in a mathematically correct way. The best
interface definition depends on the actual system and needs verification by measurement.
Our goal is to give the user the freedom of defining different interfaces and then using the
different reduction techniques, but we want to emphasize that correct interface definition is
crucial for good reduction results. In Fig. 7 a Krylov-subspace based reduction technique
and a SVD-based reduction technique were applied to the different interface models. Model
reduction for the spring-damper interface does not make sense because the parameterization
is not yet satisfying. Because of that, we do not show these results in Fig. 6. For all the
reduced models, the relative error ε(ω) = ‖H (ω) − H̄ (ω)‖F /‖H (ω)‖F in the Frobenius
norm is small meaning Morembs can handle the different interfaces definitions.

2.3 Implementation issues for model reduction

In the FE model different degrees of “freedom” families exist. Some degrees of freedom
are dependent qd , some are constraint qc and some are independent q i dofs. The system
dynamics of the elastic body is partitioned into the following form:

⎡

⎢
⎣

M ii
e M id

e M ic
e

Mdi
e Mdd

e Mdc
e

Mci
e Mcd

e Mcc
e

⎤

⎥
⎦ ·

⎡

⎣
q̈ i

q̈d

q̈e

⎤

⎦ +
⎡

⎢
⎣

Dii
e Did

e Dic
e

Ddi
e Ddd

e Ddc
e

Dci
e Dcd

e Dcc
e

⎤

⎥
⎦ ·

⎡

⎣
q̇ i

q̇d

q̇e

⎤

⎦

+
⎡

⎢
⎣

K ii
e K id

e K ic
e

Kdi
e Kdd

e Kdc
e

Kci
e Kcd

e Kcc
e

⎤

⎥
⎦ ·

⎡

⎣
q i

qd

qe

⎤

⎦ = Be · u(t),

y = Ce · q.

(8)
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The motion of the dependent degrees of freedom can be expressed with the movement of
the independent degrees of freedom. The relation between the dependent degrees qd(t) and
the independent degrees of freedom q s(t) are expressed by a constraint equation

qd(t) = GM · q i (t) + g. (9)

The motion of the constraint degrees of freedom are bounded by a boundary equation

qc = 0. (10)

By inserting (9) and (10) into (8) the dynamics of the elastic body is described with the
equation of motion of the independent degrees of freedom

M∗
e · q̈ i (t) + D∗

e · q̇ i (t)M
∗
e · q i (t) = B∗

e · u(t) + f ∗, (11)

y = C∗
e · q(t), (12)

with

M∗
e = M ii

e + GT
M · Mdi

e + GT
M · Mdd

e · GM + M id
e · GM, (13)

D∗
e = Dii

e + GT
M · Ddi

e + GT
M · Ddd

e · GM + Did
e · GM, (14)

K∗
e = K ii

e + GT
M · Kdi

e + GT
M · Kdd

e · GM + K id
e · GM, (15)

f ∗ = −GT
M · Kdd

e · g − K id
e · g. (16)

From the FE programs, the assembled elastic mass, stiffness and damping matrix can be
extracted. Usually M∗

e ,D
∗
e ,K

∗
e , and not M ii

e ,Dii
e ,K ii

e are extracted. In addition, also the
force vector f ∗ is extracted.

As the input, respectively, the output matrices B∗
e and C∗

e , are assembled in the model
reduction step. For the reduction process, the user has to define which node i is an input
or output, respectively, and in which degrees of freedom directions li forces respective mo-
ments are acting on input node i. The FE program provides the user the node number of the
input node. However, the node number in the FE program ni is usually not the same number
as the internally used node number nSi . Whenever a user defines input degrees of freedom
at a specific node i the global degrees of freedom qglobal_inputs has to be looked up ex ante
in the dof table dof _table. After the global dof of the inputs qglobal_inputs are known, ones
are inserted at the corresponding places at the input matrix, i.e., Be(qglobal_inputs(j), j)) = 1.
However, due to the usage of constraints in the FE Model it is likely that an input acts on a
dependent degree of freedom. Then with the help of (9) it is ensured that all inputs act at the
independent dof by distribution of the input forces from dependent dofs to independent dofs
with

B∗
e = (

(Qd · GM)T + QT
i · Qi

) · Be. (17)

Here, Qd is a localization matrix which localizes the dependent dof qd(t) in their position in
the global dof vector q(t) and q i (t) is a localization matrix which localizes the independent
dof q i (t) to their position in the global dof vector q(t). The same procedure also needs to
be done for the outputs. All this information dof _table, GM , . . . needs to be extracted from
the different FE packages in order to reduce the FE model with the developed methods in
Morembs. If some information is missing, it is necessary to calculate the missing data with
the available data or determine it by additional user definitions.
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The projection spaces are then calculated with the system of the independent dof (12);
see Sect. 3 for the different reduction approaches.

After the reduction, the projection spaces need to be enlarged in a way that the dependent
and constraint dof are also contained in the projection space. First, the projection spaces
V i and W i are enlarged by the number of dependent plus constraint dofs by adding zero
columns

V =
⎡

⎣
V i

V d

V c

⎤

⎦ , W =
⎡

⎣
W i

W d

W c

⎤

⎦ . (18)

Now the constraint dof are set according to the boundary conditions V c = W c = 0. Second,
because the back projection for dependent dof would still be zero, the projection space for
the depend dof is built with the constraint equation (9) to V d = GM · V i − g and W d =
GM · V i − g. With this procedure, it is ensured that the dependent dof move as a linear
combination of the independent dof. For oblique projection techniques, i.e., V �= W , a block
diagonalization, as described in [16] of the reduced system is done which ensures that the
final reduced system simulated in the commercial multibody system codes is diagonal with
an unit mass matrix and the square root of the eigenvalues ω̄i of the reduced system are on
the diagonal of the reduced stiffness matrix. Such a block-diagonal structure is important
for the performance of the simulation process of the reduced system. After the projection
matrices are calculated the standard data of an elastic body (see [8]) can be reconstructed
as explained in [1, 17, 18]. Afterward, the elastic body can be simulated with a standard
multibody system simulation tool. In the multibody system simulation tool, the user has to
choose joint conditions fitting the chosen reference frame.

3 Model reduction techniques

During the last decades, a number of model order reduction techniques have been pro-
posed. An excellent overview of the different reduction techniques is given in [19]. The main
model reduction techniques are modal reduction, moment-matching based on projection on
Krylov-subspaces, SVD-based reduction techniques and combinations of those. Whereas
modal reduction can easily be extended to a second-order system by solving the quadratic
eigenproblem, moment-matching and SVD-based model reduction have originally been de-
veloped for first-order ODEs. However, for the model order reduction process in flexible
multibody systems the preservation of the second-order structure is important. Moment-
matching for second-order systems can be achieved by projection on a second-order Krylov-
subspace [20]. Also, for SVD-based reduction techniques extensions to second-order sys-
tems exist [21]. Each of these methods is characterized by certain advantages and disadvan-
tages. The following points are of special interest for the user:

– computability for large scale systems,
– stability preservation,
– quality of the reduced order model,
– knowledge about the error induced through reduction methods,
– preservation of the second-order structure during the reduction, and
– emphasizing a certain frequency range.

In this paper, modal reduction is only used for comparing the results.
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3.1 Krylov-subspace based reduction techniques

Krylov-subspace based reduction is an efficient method to impose that certain moments be-
tween the original transfer function H (s) and the reduced transfer function H̄ (s) match.
Overview articles about Krylov-subspace reduction are, e.g. [22] or [23]. These methods are
widely used as a tool for the reduction of large scale systems, e.g., in simulation of Micro-
Electro-Mechanical Systems (MEMS) [24]. The fact that Krylov-subspace reduction meth-
ods are iterative methods and can be applied to large scale models represents their decisive
advantage whereas they become inflexible for systems with many inputs if a small model
is required. Recently, Krylov-subspace based reduction techniques have also been used for
the reduction of mechanical systems [25]. In this work, moment matching for second-order
systems is used. The projection with second-order Krylov-subspaces keeps the second-order
structure of the system. The conservation of the second-order structure is necessary for the
calculation of the standard data of an elastic body because only with the standard data a
simulation of the elastic body in a flexible multibody system simulation environment, e.g.,
Simpack, is possible. Second-order Krylov-subspace methods are necessary if the system is
not proportionally damped [17]. In [26], a second-order Krylov-subspace is defined as

Gr (A1,A2,G) = colspan{P 0,P 1, . . . ,P r−1} with (19)
{

P o = G, P 1 = A1,

P i = A1 · P i−1 + A2 · P i−2, i = 2,3, . . . , r − 1.
(20)

The input and output second-order Krylov-subspace of a second-order system around the
zero expansion point sk = 0 are GrI (−K−1

e · De,−K−1
e · Me,−K−1

e · Be) and GrO(−K−T
e ·

DT
e ,−K−T

e · MT
e ,−K−T

e · CT
e ), respectively. Moment matching can be achieved at arbi-

trary expansion points sk by projection on the Krylov-subspaces Gk

rkI
(−Ǩ

−1

k · Ďk,−Ǩ
−1

k ·
Me,−Ǩ

−1

k ·Be) and Gk

rkO
(−Ǩ

−T

k ·ĎT

k ,−Ǩ
−T

k ·MT
e ,−Ǩ

−T

k ·CT
e ) where Ďk = 2skMe +De

and Ǩk = s2
k Me + skDe + K e are used instead of K e and De , respectively. If the projection

spaces span(V ) and span(W ) span the union of the different second-order Krylov-subspaces
at different expansion points sk , i.e.,

span(V ) =
k̂⋃

k=1

Gk
rI

(−Ǩ
−1

k · Ďk,−Ǩ
−1

k · Me,−Ǩ
−1

k · Be

)
, (21)

span(W ) =
k̂⋃

k=1

Gk
rO

(−Ǩ
−T

k · ĎT

k ,−Ǩ
−T

k · MT
e ,−Ǩ

−T

k · CT
e

)
, (22)

it is ensured that 2rk moments are matched at every expansion point, meaning 2
∑k

i=0 rk

moments are matched in total. For proportionally damped systems, the calculation of the
projection spaces span(V ) and span(W ) can be done with first-order Krylov-subspaces [20].
If only the first moments are matched at si = 0+ iωfrm with first-order techniques, a Krylov-
subspace based reduction is equivalent to the usage of frequency-response modes. How
many moments are considered and at which expansion points the moments match, is in the
responsibility of the user and needs to be chosen as input.

Error estimation is one of the important features for model order reduction techniques.
An error bound for reduced systems obtained by moment matching was introduced in [27]
for a Padé approximation via the Lanczos process. The performance of Krylov-subspace
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based reduction methods clearly depends on the choice of expansion points sk . Recently
in [28], a method was proposed where the H2-norm of the error H e is minimized if the mo-
ment matching conditions are chosen in an optimal way. Also, by using Laguerre functions,
it is possible to find a single optimal expansion point [29, 30]. These two applications are
under current research for their applicability to big industrial problems. Another error esti-
mator as well as an expansion point selection strategy were shown in [31] and were extended
to second-order systems by the authors, see [32]. In this method, called Second-Order Adap-
tive Global Arnoldi (SOAGA), the error estimator and automated selection of appropriate
expansion points is based on the global Arnoldi process; see [33]. The calculation starts
with a given set Ŝ = {s1, s2, . . . , si} of expansion points. By minimizing the error in every
iteration step, the algorithm builds a new basis at that expansion point with the maximum
output error.

The development of general a-priori error bounds independent from the choice of ex-
pansion points is still an active field of research. However, following [34] error estimation
can be achieved within a given frequency range [ωmin, ωmax] by using two different sets of
expansion points in compliance with the frequency range condition. Another error estimator
was introduced by [35] but its applicability to EMBS requires additional research.

3.2 SVD-based reduction techniques, reduction with Gramian matrices

For first-order systems, the well-known balanced truncation as explained in [36] has a-priori
error bounds [37] and asymptotic stability is preserved in the reduced-order system. The
controllability and observability Gramian matrices, P and Q, of a system in the state-space
form (5) are strongly related to balanced truncation techniques and are important matrices
for model reduction. For second-order systems, Gramian matrices also play the decisive
role in the development of a-priori error bounds. According to [38], second-order Gramian
matrices identify the important positions and the important velocities in the input/output
(I/O) map of a second-order system. For first-order systems, the Gramian matrices P and
Q tell what are the most controllable and observable states of the system. For second-order
systems, more than two Gramian matrices exist. The position controllability Gramian ma-
trix P p identifies the most easily controllable positions whereas the velocity observability
Gramian matrix Qp tells which are the most easily observable velocities. The most easily
controllable position coordinates can be calculated by solving the minimization problem

J ∗ = min
q̇0∈RN

min
u(t)∈L2[−∞,0]

{
J �=

∫ 0

−∞
uT (t) · u(t)dt

}
(23)

subject to

{
Me · q̈(t) + De · q̇(t) + Ke · q(t) = Be · u(t),

q(−∞) = q−∞.

The result J ∗ is the minimal energy needed to steer the system from initial position q−∞
at time t = −∞ to zero position q0 = 0 at time t = 0. This optimization problem does
not depend on the velocities q̇(t). The optimum solution is J ∗ = qT

0 · P −1
p · q0 where

P p = [I 0] · P · [I 0]T is the N × N upper left block of P . A similar result can be ob-
tained for the position observability Gramian matrix Qp by using the dual system; see [17,
38]. In (23), the necessary energy to reach a given position q0 = 0 over all past inputs and
initial velocities is minimized. If the system is balanced, i.e., P p = Qp = diag(σp), the
previously defined Gramian matrices describe how the I/O energy is distributed among the
positions. Analogously, the velocity Gramian matrices P v and Qv can be found by a slight
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modification of the optimization problem; see [38]. These matrices describe how the I/O
energy is distributed among the velocities and can be considered as the N × N lower right
block of the controllability and observability Gramian matrices. Another important second-
order Gramian matrix is Qpv = M−T

e ·Qv ·M−1
e , which is the position controllable Gramian

matrix of the dual system if CT
e is used as input matrix to the dual system. For the important

special case, if input equals output, i.e., B = C , the matrix Qpv is equal to P p . In [39] the
different approaches for balanced truncation of second-order systems are described. How-
ever, not all of the proposed methods keep the reduced systems symmetric and stable. In
addition, they only evaluate their methods in the frequency domain and the reverse transfor-
mation of their projector, which would allow an application to second-order systems, is still
an unsolved problem; see [40]. In our approach, we do not explicitly balance the system but
project it with the dominant eigenraum of the Gramian matrices.

Frequently, in mechanical systems, a certain frequency range is of special interest. The
information about the interesting frequencies can be included in the reduction process by
projecting the system with the dominant frequency-weighted version of the Gramian ma-
trices P ω

p and Qω
pv . Frequency weighted Gramian matrices are defined in [17, 19]. In [17,

32] it is shown that if the projection space span(V ) consists of the dominant eigenvectors
span(V 1) of P ω

p + Qw
pv , which are associated with the largest eigenvalues σ

PQ
i of the sum

of frequency-weighted position Gramian matrices then the frequency-weighted H2-error of
the reduced system can be written as

∥
∥HE(s) · W i (s)

∥
∥2

H2
≤ 1

2π
max(κ, κT )

N∑

j=n+1

σ
PQ
j . (24)

In (24), κ and κT are constants and W i (s) is a frequency filter matrix of an ideal band
pass filter (see [19]) which is used to emphasize a certain frequency range. The fact that
the sum of neglected eigenvalues can be calculated as soon as the eigen decomposition of
the Gramian matrices is known and causes the upper bound of the error to be known before
the reduced system is obtained. The sum of neglected eigenvalues

∑
j σ

PQ
j can be used to

determine the size m of the reduced order model because the error is bounded below the sum
of the neglected eigenvalues. Usually, the eigenvalues of the Gramian matrix decay rapidly
in mechanical systems. As a consequence, the first neglected eigenvalue is the dominant
share in the sum of neglected eigenvalues and allows a fully automated reduction process;
see [10].

For small asymptotically stable systems, the Gramian matrices P w
p and Qw

pv can be cal-
culated by evaluating a matrix logarithm in addition to the solution of a suitable Lyapunov
equation; see [19]. Direct solution of the Lyapunov equation is only possible for small-
to medium-scale models because the solution requires O(n3) operations and the storage
requirement is O(n2). For large-scale models, somehow the subspace of dominant eigen-
vectors of the Gramian matrix has to be generated.

One approach uses the two-step approach explained in [9]. According to this approach,
a medium-scale model is acquired in a first step with the help of modal or Krylov-subspace
based methods. Subsequently, the Gramian matrix of the medium-scaled model is calculated
and then used as an approximation for the Gramian matrix of the original system.

A second approach for approximating the Gramian matrix is introduced in [17]. Accord-
ing to this method, the Gramian matrix is numerically approximated by a POD based pro-
cedure. However, because the Gramian matrix is approximated some heuristics is included
and the strict error bound is lost but the approximated error estimator usually is close to the
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correct one. That is why in all our examples the estimated error and the real error coincide
well.

A third approach is the calculation of the second-order Gramian matrices with iterative
methods like the LR-ADI or Smith algorithm; see, e.g. [40, 41]. These methods are under
current research for their applicability to the reduction of flexible multibody systems.

3.3 Modal reduction

Modal reduction is currently the widely used state of the art reduction method for flexible
multibody systems. Here, we use modal reduction only to compare the other model reduction
techniques and to discuss the difference to modal reduction. The projection space span(V )

consists of selected eigenvectors of the system. For the calculation of the eigenmodes, the
ansatz q = eλi tΦi is used with λi ∈ C and Φ i ∈ C

n leading to the quadratic eigenproblem
(λ2

i M e + λiDe + K e) · Φ i = 0. If the space spanned by all eigenvectors is considered as
projection space Φ = [Φ1 Φ2 . . . Φn] = V , the flexible part of system (2), after the definition
of appropriate interfaces can be written in modal coordinates q̃(t) as

I · ¨̃q(t) + diag(2ωiξi) · ˙̃q(t) + diag
(
ω2

i

) · q̃(t) = B̃e · u(t),

y(t) = C̃e · q̃(t).
(25)

For the system (25), the transfer matrix is H̃ (iω) = ∑N

i=0[C̃e]∗i[B̃e]i∗/(−ω2 + ω2
i +

2iωωiξi) with [C̃e]∗j [B̃e]i∗, being the dyadic product of the ith column of C̃e and the i-
th row of B̃e . In H̃ (iω), we see that the denominator of every summand of H̃ (iω) near ωi

is getting small and the summand can get high. The approximation idea is to truncate the se-
ries after the kth coefficient and to choose k with the aim of providing enough distance of the
k + 1 eigenfrequency from the largest excitation frequency ωex. Sometimes (see e.g. [42])
the recommendation is given to consider all the eigenmodes up to two times the maximum
excitation frequency. As the transfer function indicates, this procedure leads to inadequate
models taking into consideration that the value of a single summand also depends on the
values of [C̃e]∗j and [B̃e]i∗. As far as the limit case is concerned, i.e., one mode is neither
controllable nor observable, the numerator is zero and the summand can be neglected with-
out changing the transfer behavior of the system. It is well known from balanced truncation
reduction techniques (see e.g. [19]) that the Hankel singular values (HSV) are strongly re-
lated to the error which is induced by reduction. In [43], it is shown that for proportionally
damped systems in modal form it is possible to calculate approximate HSV by

σ̃i = ‖[C̃e]∗i‖2 ‖[B̃e]i∗‖2

4 ωi ξi

, (26)

which are a measurement to which extent a state is involved in the energy transfer from a
given input to a certain output; see [17]. With the approximate HSV, the important modes can
be selected. However, if the approximated HSV are sorted in descending order they have no
steep decay as the HSV of a balanced mechanical system because the spatial distribution of
loads is not considered; see [44]. Modal reduction can be improved by using only the impor-
tant modes and extending the projection space span(V ) with constraint modes or attachment
modes similar to sub-structuring techniques in structural dynamics; see e.g. [45, 46]. The
component mode method developed in [7] was utilized in [4] for the reduction of flexible
multibody system. A combination of fixed boundary nodes plus some “constraint modes”
which account for local effects at boundaries is used in their work. Frequency response
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modes Φ frm := Q = (−ω2
frmM e + K e)

−1 · Be (see [44]) are a generalization of constraint
modes and attachment modes. For fixed systems and an excitation frequency ωfrm = 0, the
inertia relief attachment modes are calculated which are related to the mode acceleration
method [47] and ensure that the static solution is correct, i.e., H̄ (0) = H (0). One problem
is the combination of eigenmodes and correction modes. Sometimes, the combined projec-
tion space do not have numerically full rank. That is why it is not known a-priori which and
how many frequency response modes should be used in combination with the eigenmodes.
In addition, error estimators are not available for modal reduction which makes modal re-
duction difficult to automate.

4 Used programs and data flow

During the last years, an extensive set of new model order reduction techniques has been de-
veloped, implemented, and tested by the authors. Each is characterized by certain advantages
and disadvantages. By giving the user an easy-to-use tool for testing several model order re-
duction techniques and giving assistance how to choose an appropriate reduction space, the
simulation process of EMBS can be improved. In addition, the development of automated
reduction techniques is one essential topic in the development of parametric model reduction
and represents also further goals. The methods are implemented in the C++ code Morembs
and in a Matlab implementation MatMorembs; see Fig. 8. Morembs is able to handle data
from several FE programs. Up to now data from the FE programs Ansys, Abaqus and Per-
mas can be used for model reduction. Morembs provides either an SID-File for Simpack
containing the reduced elastic body or the system matrices of the reduced system as out-
put. In addition, there exist a direct converter to Neweul-M2. The C++ implementation is

Fig. 8 Data flow and programs
used in the simulation process
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based on advanced numeric libraries leading to short computation times and can be used
for the reduction of real industrial problems with more than 100,000 degrees of freedom.
The MatMorembs implementation is appropriate for testing and debugging new algorithms
before the methods are added to Morembs. Moreover, most of the new algorithms developed
by mathematicians are written in Matlab, e.g. [40]. Furthermore, given the steeper learning
curve, the MatMorembs version is easier accessible for students and beginners to become
familiar with the concepts.

5 Example and results

In Sect. 2.2, we concluded that the spider web of beams with light stiff beams is an appro-
priate interface model. We now compare the different reduced models where the interface is
always modeled with light stiff beams. In Fig. 9, the relative error

ε(ω) = ∥∥H (ω) − H̄ (ω)
∥∥

F
/
∥∥H (ω)

∥∥
F

(27)

in the Frobenius norm for modal-based reduction techniques is plotted. By choosing eigen-
modes based on approximated HSV (26), we get a small improvement in comparison to a
reduction where the first 40 eigenmodes are used; see Fig. 9. However, by using the best
40 eigenmodes plus one frequency response mode at ωfrm = 1 Hz a model of size 46 is ob-
tained with which the results are improved, however, the projection space is also extended.
In Fig. 9, the crosses are the results obtained with the C++-implementation of Morembs.
The MatMorembs and the C++ version Morembs lead to the same reduction results which
is a hint for the correct implementation.

For testing the Krylov-subspace based reduction method, the newly suggested SOAGA
algorithm from [32] is used. Two medium-scaled systems of order 132 are calculated with
two different expansion point sets S̄ and Š equidistantly spaced between 1 and 1000 Hz.
Both calculations stopped after 12 Frobenius orthonormal bases were calculated for input
and output. Afterward, the Frobenius orthonormal bases were mass orthogonalized to sat-
isfy the dynamic boundary condition. In Fig. 10, the relative error ε(ω) is plotted for the
SOAGA algorithm. Additionally, the error estimator mentioned in Sect. 3.1 is plotted, la-
beled ε̌ SOAGA. The good agreement between estimator for the approximated solution and
the true error can be seen. Besides this, the method stands out due to its low error rate. Due
to the low error of the SOAGA algorithm, it is admissible to use this medium scaled model
for the calculation of a Gramian matrix based reduction. With the SVD based reduction
method it is possible to reduce the medium scale system further to size n = 35. The error,
labeled “Kry. + Gram,” is still small in the whole interesting frequency range. This model

Fig. 9 Comparison between
MatMorembs and C++
implementation of different
reduction methods
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Fig. 10 Relative reduction error
using different reduction
approaches

Fig. 11 Error indicator used for
the reduction process

is much more accurate than the model of size 40 obtained by an improved modal reduction
technique, labeled “imp. modal.” The improved modal reduction method chooses those 40
modes with the biggest approximated HSV (25) and is the optimum modal reduction with
40 modes. The other SVD based reduction method, i.e., numerical approximation of the fre-
quency weighted Gramian matrices with POD is also plotted and labeled “POD.” The size
of the reduced order model n = 36 was automatically determined by the reduction process
and no user input is necessary. Both SVD based reduction methods leads to the same results.

In [17, 32], an error expression based on neglected eigenvalues of the Gramian matrices
is introduced. In Fig. 11, the approximated HSV σ̃i (26), the eigenvalues of the Gramian
matrix P ω

p and the error indicator σi+1/σ1 for the SVD based reduction methods are plotted
over the dimension i of the reduced order model. Both the POD based and the two-step
approach calculate a similar error indicator. The rapid decay of the eigenvalues σi of the
Gramian matrices can be seen. This means that the error indicator σi+1/σ1 used for the
automated reduction procedure is admissible. It can be seen that the approximated HSV σ̃i

decay slower than the eigenvalues of the Gramian matrices.

5.1 Comparisons in the time domain

The time domain is of great importance in flexible multibody dynamics. For this purpose,
dynamic simulations are considered and the different approaches are compared with respect
to accuracy. The body is clamped to the surrounding at node 2 and the body is actuated at
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Fig. 12 Results of the dynamic
simulation

node 1 with a step function force F step and a harmonic force F harm

F step = −100

⎡

⎣
1
1
1

⎤

⎦N, F harm = −100 sin(2 · 10πt)

⎡

⎣
1
1
1

⎤

⎦N.

As a reference frame for the dynamic simulation a Buckens-frame is chosen such that the
origin of the reference frame coincides with the center of gravity; compare Fig. 4 black. The
reduced order models are simulated with the multibody dynamics simulation tool Simpack.
The resulting system of ODEs is solved numerically with the standard solver of Simpack.
In Figs. 12(a) and 12(b), the displacement of the actuated lower plate is shown for models
of different size obtained with different reduction methods.

Furthermore, we compare these results with the translation of the nonlinear finite element
model. The accuracy of the reduced order model is good. It shows approximately the same
response as the nonlinear FEM model with 35,000 degrees of freedom. The reduced order
model of size 35 obtained with the two step frequency-weighted Gramian matrix approach
has the same accuracy as a model of size 36 obtained by a POD based model reduction. As
the error in the frequency response already indicated in Fig. 10, the results from the modal
model of order 40 are worse compared to the others. Besides this, the static response after
the step response does not fit. The simulation of the flexible multibody system in Simpack
is about 90 times faster than the simulation in Ansys.
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6 Conclusion

During the last years, an extensive set of new model order reduction techniques have been
developed, implemented, and tested at our institute. Each is characterized by certain ad-
vantages and disadvantages. The convergence for modal reduction is usually very slow and
an extension of the projection space with constraint or other modes is a crucial task that re-
quires much experience and insight into the specific problem. Moreover, the choice of modes
based on the approximated HSV did not lead to a big improvement. By using reduction tech-
niques based on frequency weighted Gramian matrices, the error of the reduced system is
known a-priori. With these methods, excellent reduction results are obtained. Furthermore,
because the error is known a-priori the necessary order of the reduced model can be chosen
which simplifies and supports the reduction process for the user. However, the calculation
of Gramian matrices is expensive. For large scale models, the dominant eigenspace of the
Gramian matrices is approximated by two different approaches which both showed good re-
sults. For the two-step approach, a new second-order adaptive global Arnoldi algorithm was
used as first reduction step. The SOAGA algorithm further assists the user in the reduction
process by providing an error estimator for Krylov based reduction. By giving the user an
easy-to-use tool for testing several model order reduction techniques and giving assistance
how to choose an appropriate reduction space, the simulation process of EMBS can be im-
proved. This is demonstrated for a demanding technical system in the frequency domain as
well as in the time domain. The use of a flexible multibody system speeds up the calculation
by a factor of 90 compared to the simulation in Ansys.

However, part of the methods are still in the development stage and some time is needed
for improvements and testing. The Matlab implementation MatMorembs speeds up the test-
ing and debugging process for new algorithms. Furthermore, given the steeper learning
curve, MatMorembs is easier accessible for students and beginners to become familiar with
the concepts. However, the C++ implementation Morembs is based on advanced numeric
libraries leading to short computation times and can be used for the reduction of real indus-
trial problems with more than 100,000 degrees of freedom.

Different interface definitions were introduced. Appropriate interface definitions are nec-
essary for good simulation results. However, the model reduction code Morembs can handle
all the different interface definitions in a mathematically correct way leaving the user the
choice. The identification of the most appropriate interface definition always depends on the
actual system and requires verification by measurements.
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