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Abstract In practice, the clearances of joints in a great number of mechanical systems are
well under control. In these cases, some of the existing methods become unpractical because
of the little differences in the order of magnitude between relative movements and compu-
tational errors. Assuming that the effects of impacts are negligible, we proved that both
locations and forces of contacts in joints can be fully determined by parts of joint reaction
forces. Based on this fact, a method particularly suited for multibody systems possessing
frictional joints with tiny clearances is presented. In order to improve the efficiency of com-
putation, recursive formulations are proposed based on the interactions between bodies. The
proposed recursive formulations can improve the computation of joint reaction forces. With
the methodology presented in this paper, not only the motion of bodies in a multibody sys-
tem but also the details about the contacts in joints, such as forces of contacts and locations
of contact points, can be obtained. Even with the assumption of impact free, the instants
of possible impacts can be detected without relying upon any ambiguous parameters, as
indicated by numerical examples in this paper.

Keywords Multibody systems · Frictional joints · Recursive formulation

1 Introduction

With significant applications in engineering, multibody system dynamics has become an
important computational tool, which in turn generates a demand for more accurate analysis
of real mechanical systems. Traditionally, dynamic analysis of multibody systems was con-
ducted by assuming that the joints were perfect, that means the effects of collision and fric-
tion in the joints were neglected. Friction is one of the most common physical phenomena in
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everyday life. It is possible to reduce the friction, but impossible to eliminate it completely.
Sometimes it can significantly affect the dynamic response of multibody systems.

Over the past decades, a great deal of research on contact dynamics have been carried out
[1, 2]. The majority of them focused on the general subject such as multiple contacts with
collision between bodies with arbitrary shape. According to the literature, contact modeling
consists of two major parts: evaluating contact forces and detecting locations of contact
points.

In general, there are two different approaches for modeling contact forces. The first ap-
proach, referred to as a discrete method, assumes that there is no penetration between the
contacting bodies and the collision occurs instantaneously [3–7]. As additional variables,
contact forces are introduced into the equations of motion and solved by unilateral contact
conditions and impact laws. However, because too much physical information about the im-
pact is lost, different impact laws do not always produce the same results [8–12], especially
when Coulomb friction is considered. The Coulomb’s law leads to a linear or nonlinear
complementary formulation of the system model depending on the plane or spatial charac-
ter of the contacts [13, 14]. The equations of motion during an impact free phase are quite
different from those during an impact phase. In order to deal with this switching nature,
event-driven and time-stepping numerical schemes are proposed [15, 16].

The second approach, referred to as a continuous method, assumes that two contacting
bodies can penetrate each other whereas the normal contact forces vary continuously with
respect to the penetration and the corresponding rate. With this model, the formulation of
frictional forces can be greatly simplified because the contact forces become an explicit
function of system state variables [17–21]. But the continuous method has two major draw-
backs. One is that the parameters in the force model are not certain and the other one is
that the steps of numerical integration must be very small in order to accurately evaluate the
penetration depths.

One of the most critical aspects in the contact dynamics is to detect precisely the in-
stant and locations of contacts. In spite of obvious differences in contact force models, al-
gorithms for contact detection have little differences in principle. In most of the relevant
methods, a group of gap functions are employed for the computation of distances between
potential contact points, and the values of the gap functions must be kept under control
[2, 22–27]. When multiple contacts take place frequently, the contact detection can be very
time-consuming.

In practice, there is an important class of joints, such as well-made joints, in which the
clearances are so tiny that the effect of collision is negligible. In this case, an explicit closed-
form solution for the normal contact forces at the contact points can be obtained by the
method proposed in [28]. However, instead of becoming a little bit easier, the contact de-
tection becomes unpractical with the aforementioned method because computational errors
and the range of the relative motion between the two bodies linked by such kind of joint
are usually in the same order of magnitude. Paul [29] and Hall [30] described an alterna-
tive methodology for contact detection in their textbooks, based on the relation between
the joint reaction forces and the contact forces in the joint. This relation is dependent on
the contact models. According to Paul and Hall, all possible contact models should be es-
tablished in advance and the real contact model is identified iteratively according to which
model is consistent with the joint reaction forces. Their applications in planar mechanism
were investigated by Haug et al. [31]. The main advantage of this approach is that it does not
require the calculation of the relative motion in joints. However, except for simple contact
scenarios, it is difficult to manually enumerate all possible contact models.

It seems that there is a trade-off between the efficiency of computations and the details
in contacts. Placing emphasis on the computational efficiency, the general purpose software
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ADAMS provides a force model for each classic type of joints, from which the frictional
forces in joints can be calculated by joint reaction forces, but the corresponding forces and
locations of contacts cannot be deduced.

Based on the fact that the locations and forces of contacts in a joint can fully determine
the joint reaction forces and vice versa, which will be shown in this paper, we present a
methodology for the analysis of multibody systems with non-colliding but frictional contacts
in the joints, with which both contact forces and contact locations can be obtained in a
programmable way.

The paper is arranged as follows. In Sect. 2, kinematical recursive relations between two
constrained bodies are reviewed. In Sect. 3, we present a method of recursively reducing a
multibody system with the tree structure to an equivalent system with one of the tree-end
bodies removed. This method serves as a basis of formulating complex multibody systems.
Different from the existing recursive methods [32–36] that primarily focus on the mathe-
matic procedure, the recursive method proposed in this paper attaches much importance on
the physical insight. In Sect. 4, a systematic way to generate constraint equations of cut joints
is described. Section 5 deals with the description of joint reaction forces of frictional joints.
In Sect. 6, recursive formulations of general multibody systems are given by taking the fric-
tional forces and joint reaction forces of cut joints as external applied forces. In Sect. 7,
equations to determine the frictional forces are presented for some typical joints. Finally,
Sect. 8 gives some numerical examples to demonstrate the application of the methodology
presented in this paper. Section 9 concludes this paper.

2 Kinematical recursive relations

In this section, we will briefly review the kinematical recursive relations between a pair
of bodies in a multibody system with an open tree topology. We assume that the number
of bodies and joints are regularly labeled [38], or more exactly, body i is connected to
its inboard body i by joint i, where the inboard body of body i is referred to the lower
adjacent connecting body to body i and its label is denoted by i in this paper, as shown in
Fig. 1, where pi and pi are the joint definition points on body i and body I , respectively;
meanwhile ri and ri are the position vectors of the origins of the reference frame attached
to body i and body I , respectively.

If joint i allows translational degrees of freedom, the vector between pi and pi can be
expressed in matrix form

si = Ps
i qi , (1)

where qi is the vector of the joint coordinates and Ps
i is the matrix whose nonzero columns

are composed of the joint translational axis vectors. If the joint allows rotational degrees of
freedom, the joint angular velocity can be expressed in matrix form

ω̄i = Pr
i q̇i (2)

in which Pr
i is the matrix whose non-zero columns are composed of the joint rotational axis

vectors [32]. Consequently, ωi , the angular velocity of body i and ωi , the angular velocity
of body i are related to each other by the following equation:

ωi = ωi + Pr
i q̇i . (3)
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Fig. 1 A pair of contiguous
bodies

As indicated in Fig. 1, the absolute position vector of the origin of reference frame of body i

is

ri = ri + ci + si − ci, (4)

where ci is the vector from the origin point of body reference frame of body i to the joint
definition point pi , and ci is defined exactly in the same manner. When the joint provides
both translational and rotational degrees of freedom, the rotational center of the joint around
which the two connected bodies rotate with respect to each other should be defined. Con-
ventionally, the rotational center is located at either point pi or point pi , and its position
vector is given by di = ri + ci or di = ri + ci accordingly.

The time derivative of (4) shows the recursive relations between the translational veloci-
ties of body i and body i. It can be expressed as

ṙi = ṙi + (r̃i − r̃i )ωi + (
Ps

i + (d̃i − r̃i )Pr
i

)
q̇i , (5)

where the tilde operator is defined as follows: it acts on a vector a to produce the skew-
symmetric matrix ã such that a × b = ãb. Equations (3) and (5) can be written together in
compact form as

Zi = �iZi + �i q̇i , (6)

where

Zi =
[

ṙi

ωi

]
, Zi =

[
ṙi

ωi

]
, �i =

[
I r̃i − r̃i

0 I

]
, �i =

[
Ps

i + (d̃i − r̃i )Pr
i

Pr
i

]
.

(7)
According to (6), the relationship between the virtual velocities of two consecutive bodes is
given as

δZi = �iδZi + �iδq̇i . (8)

Differentiating (3) with respect to time yields

ω̇i = ω̇i + Pr
i q̈i + σ i , (9)
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where σ i is the angular velocity of body i when ω̇i and q̈i are zero vectors. For examples,

σ i = ωi × ω̄i +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0

for revolute, cylindrical and prismatic joints,

pr
i1 × pr

i2q̇i1q̇i2 for universal joints,

pr
i1 × pr

i2q̇i1q̇i2 + q̇i3q̇i1pr
i1 × pr

i3 + q̇i2q̇i3pr
i2 × pr

i3 for spherical joints,
(10)

where pr
ik is the vector of the kth rotational axis of joint i and q̇ik is the time derivative of

the kth joint coordinate of joint i. The translational acceleration of body i can be expressed
as

r̈i = r̈i + (r̃i − r̃i )ω̇i + Ps
i q̈i + (d̃i − r̃i )Pr

i q̈i + γ i , (11)

where γ i is the translational acceleration of body i when ω̇i , r̈i , and q̈i all vanish. If point
pi is the rotational center of joint i, then

γ i = ω̃iω̃i (di − ri ) − (σ̃ i + ω̃iω̃i )(di − ri ) + 2ω̃iPs
i q̇i . (12)

If point pi is the rotational center of joint i, then

γ i = ω̃iω̃i (di − ri ) − (σ̃ i + ω̃iω̃i )(di − ri ) + 2ω̃iPs
i q̇i . (13)

Equations (9) and (11) can be written in a compact form as

Żi = �iŻi + �i q̈i + wi , (14)

where wi = [γ i σ i]T . The recursive kinematic relations represented by (6) and (14) are the
basis of almost all the recursive formulations of multibody systems [31–37].

3 Dynamic decoupling of multibody systems with tree topology

In a multibody system with tree topology, the equations of motion of a single body i can be
written as

MiŻi − F0
i − Fa

i − Fc
i = 0 (15)

in terms of its matrix of mass Mi , velocity dependent force F0
i , applied force Fa

i composed
of resultant force and torque acting on the body i, and joint reaction force Fc

i exerted by all
the joints attached to the body i, where

Mi =
[

miE −mi r̃ci

mi r̃ci Ji

]

(16)

and

F0
i = −

[
miω̃iω̃irci

ω̃iJiωi

]

. (17)

In these equations, rci is the vector from the origin of the reference frame to the mass center
of body i, and Ji is its rotational inertia with respective to the origin of the reference frame.
In accordance with (15), the joint reaction force Fc

n on the tree-end body n yields

Fc
n = MnŻn − F0

n − Fa
n. (18)
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Fig. 2 Reaction forces of the
joint connected to the tree-end
body

Since joint n is the only joint that connected to the tree-end body n,Fc
n results solely from

the joint reaction force fn and torque mn of joint n, as shown in Fig. 2. Therefore, the virtual
power of Fc

n is equal to the summary of the virtual power of fn and the virtual power of mn,
i.e.,

δZT
n Fc

n = δvT
pn

fn + δωT
n mn, (19)

where, vpn is the velocity of the point pn, and ωn is the angular velocity of the tree-end
body n. By the same principle, the virtual power of the joint reaction force fn and torque mn

acting at the point pn should obey the following equation:

δZT
n Fc

nn = δvT
pn

fn + δωT
n mn, (20)

where

Fc
nn =

[
fn

cn × fn + mn

]

. (21)

Assuming that the joint reaction forces are workless, one can conclude that

δZT
n Fc

nn + δZT
n Fc

n = 0. (22)

According to (8), δZn can be expressed in terms of δZn and δq̇n. Consequently, (22) can be
rewritten as

δZT
n

(
Fc

nn + �T
n Fc

n

) + δq̇T
n �T

n Fc
n = 0. (23)

Since the variations, δZn and δq̇n are independent to each other, the corresponding coeffi-
cients matrices in (23) must vanish; that is,

�T
n Fc

n = 0, (24)

Fc
nn = −�T

n Fc
n. (25)

Applying of (18) and (14), one can expand (24) as

(
�T

n Mn�n

)
q̈n + (

�T
n Mn�n

)
Żn − �T

n

(
Fa

n + F0
n − Mnwn

) = 0 (26)

from which q̈n is solved:

q̈n = Hz
nŻn + Hf

n Fa
n + y0

n, (27)
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where

Hz
n = −(

�T
n Mn�n

)−1(
�T

n Mn�n

)
, (28)

Hf
n = (

�T
n Mn�n

)−1
�T

n , (29)

y0
n = (

�T
n Mn�n

)−1
�T

n

(
F0

n − Mnwn

)
. (30)

Substituting (27) into (14), results in a new form of recursive kinematical relationship:

Żn = Cz
nŻn + Cf

n Fa
n + z0

n, (31)

where

Cz
n = �n + �nHz

n, (32)

Cf
n = �nHf

n , (33)

z0
n = wn + �ny0

n. (34)

With the combination of (25), (18), and (31), Fc
nn can be formulated as

Fc
nn = −(

�MnnŻn − �F0
nn − �Fa

nn

)
, (35)

where

�Mnn = DnnMn�n, (36)

�Fa
nn = DnnFa

n, (37)

�F0
nn = Dnn

(
F0

n − Mnwn

)
, (38)

Dnn = (
Cz

n

)T
. (39)

Because Fc
nn is the generalized interaction force between the tree-end body n and its inboard

body n, the dynamic behavior of the subsystem generated by removing the tree-end body n

and applying the force Fc
nn on its inboard body n is the same as that of its counterpart in the

original system. Therefore, as shown in Fig. 3, the system can be reduced to the subsystem
in which the tree-end body n and the joint n are removed, as long as the mass matrix of body
n and the forces acting on body n are modified as

M̄n = Mn + �Mnn, (40)

F̄a
n = Fa

n + �Fa
nn, (41)

F̄0
n = F0

n + �F0
nn. (42)

Being also a system with tree topology, the reduced system can be further reduced to a
subsystem with fewer bodies and joints by the application of the described method. In this
way, a subsystem with only one body can be obtained. It is worth noting that (40)–(42) have
been presented by Featherstone [37, 39] and employed by some other authors [32–36], but
they mainly focused on the relevant mathematic procedure.

In the process of system reduction, the mass matrix and the acting forces of each body
change at least once and the final values of them are of great physical significance. When
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Fig. 3 Decoupling of systems with tree topology

a tree-end body is removed from a multibody system, the motion of the rest of bodies will
change in every aspect because of the coupling effect between bodies. From the above analy-
sis, it is seen that the coupling effect can be taken into account explicitly by modifying the
mass matrices and the acting forces of the remainder bodies according to (36)–(42). The
final values of the modified mass matrix M̄i and acting forces F̄a

i and F̄0
i of body i are the

equivalent mass matrix and acting forces that enable the dynamic behavior of the subsystem
unchanged, when body i becomes one of the tree-end bodies in the subsystem. The joint
reaction force Fc

i of the joint i can be easily solved from (15) provided the mass matrix,
velocity dependent force and applied force are substituted by M̄i , F̄a

i , and F̄0
i , respectively.

From this point of view, (36)–(42) should be considered as the rules of inertia and forces
transmission, instead of merely as mathematical formulas. It is also noted the matrix Dnn

in (39) is independent to accelerations and plays an important role in the transmission of
inertia and forces.

4 Constraint equations of cut joints

In a multibody system with closed loops, there are multiple choices of joint coordinates.
As a common methodology, each closed loop in the system is opened by cutting a joint
to construct a system with tree topology and make the system variables clear. The joint
coordinates in the generated system are no longer independent to each other, and must obey
the cut joint constraint equations which should be generated automatically.

4.1 Rotational constraint equation

The relative rotation between a pair of joint frames associated with a cut joint i, as shown in
Fig. 4, can be described in terms of Cardan angles α,β , and γ [38, 39]. Conversely, Cardan
angles can be related to the product of two axis vectors of the joint frames in the following
way:

h3
i · h1

i = sinβ, (43)

h2
i · h1

i = − sinγ cosβ, (44)

h3
i · h2

i = − sinα cosβ. (45)

Cardan angles corresponding to the specific joint should satisfy certain conditions. For ex-
ample, a revolute joint requires that β = 0 and γ = 0. This requirement can be represented
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Fig. 4 A pair of joint frames

by the equations h3
i · h1

i = 0 and h2
i · h1

i = 0, respectively, in accordance with (43) and (44).
Selecting h1

i and h2
i as the two rotational axes of a universal joint, one can rewrite the cor-

responding constraint equation γ = 0 as h1
i · h2

i = 0. In summary, each rotational constraint
equation of a joint takes the form of

hm
i · hk

i = 0 k,m ∈ (1,2,3). (46)

Differentiating (46) with respect to time, results in the corresponding velocity and accelera-
tion constraint equations:

(ωi − ωi ) · (hm
i × hk

i

) = 0, (47)

(ω̇i − ω̇i ) · (hm
i × hk

i

) + (ωi − ωi ) · ((ωi × hm
i

) × hk
i + hm

i × (
ωi × hk

i

)) = 0, (48)

where ωi and ωi are the angular velocities of the two bodies linked by the cut joint i, as
shown in Fig. 4.

4.2 Translational constraint equations

Generally, joint translational axes can be assigned among the axes of joint frames. As an
example, h1

i is usually selected as the translational axis vector of a prismatic joint. Therefore,
each translational constraint equation can be expressed as

(rpi
− rpi

) · hk
i = 0, (49)

where rpi
= ri + ci , rpi

= ri + ci and the vector hk
i is perpendicular to the sliding axis

vectors of joint i. The associated velocity and acceleration constraints are given by

(ṙpi
− ṙpi

) · hk
i + ωi · (hk

i × (rpi
− rpi

)
) = 0, (50)

(r̈pi
− r̈pi

) · hk
i + ω̇i · (hk

i × (rpi
− rpi

)
) + 2(ṙpi

− ṙpi
) · (ωi × hk

i

)

+ (rpi
− rpi

) · (ωi × (
ωi × hk

i

)) = 0, (51)

where the velocity of joint definition points can be expressed as

ṙpi
= ṙi − ci × ωi , (52)

ṙpi
= ṙi − ci × ωi (53)
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and the acceleration of joint definition points can be formulated as

r̈pi
= r̈i − ci × ω̇i + ωi × (ωi × ci ), (54)

r̈pi
= r̈i − ci × ω̇i + ωi × (ωi × ci ). (55)

In summary, acceleration constraint equations of the joint i can be written in matrix form:

n∑

k=1

GikŻk + ξ i = 0, (56)

where the coefficient matrices Gik and vector ξ i are defined by (51), (54), and (55). They
are independent of accelerations.

As compared with that in the traditional form [38, 39], the joint constraint equations
expressed in terms of axes of the joint frames, as proposed in this paper, are more convenient
to be generated in a programmable manner.

5 Joint reaction forces of frictional joints

When body i and body i are linked by a joint i as shown in Fig. 4, the joint exerts joint
reaction force fi and torque mi at the inner joint definition point pi on body i as well as
joint reaction force fi and torque mi at the outer joint definition point pi on body i. It
is a misunderstanding that those reaction forces are the contact forces acting at the joint
definition points. One of the reasons is that the joint definition points are not necessarily
contact points. For example, the two definition points of a prismatic joint are not coincident
in position. In general, body i and its inboard body i can be in mutual contact which result
in two systems of contact forces acting at many pairs of points on the contiguous bodies.

To avoid ambiguousness, joint reaction force fi and torque mi should be understood
as a force system that is equivalent to the contact force system imposed on the body i;
meanwhile the joint reaction force fi and torque mi should be understood as a force system
that is equivalent to the contact force system imposed on the body i. Since the resultant of
the two contact force systems are in equilibrium, the resultant of forces fi and fi as well as
torques mi and mi should be in equilibrium; that is to say

fi = −fi , (57)

mi = −mi − si × fi , (58)

where si is the vector of the point pi relative to the point pi , as indicated in Fig. 4. Due to
the joint constraint, the relative translation and rotation between body i and body i must be
confined to the subspace ST and SR respectively, where ST is the linear span of translational
axis vectors of the joint and SR is the linear span of rational axis vectors of the joint. We
assume that the rotational center of the joint is at the point pi . In this case, joint reaction
force fi can be divided into two parts: f n

i the force that is perpendicular to the subspace ST

and f t
i the force that belongs to the subspace ST . For example,

f n
i =

{
h1

i λ1 + h2
i λ2 + h3

i λ3 for revolute, universal and spherical joints,

h2
i λ1 + h3

i λ2 for cylindrical and prismatic joints,
(59)
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f t
i =

{0 for revolute, universal and spherical joints,

h1
i η1 for cylindrical and prismatic joints,

(60)

where λk and ηk are multipliers representing the magnitudes of forces. In the same manner,
joint reaction torque mi can be written as mi = mn

i + mt
i , where mn

i is perpendicular to the
subspace SR and mt

i belongs to the subspace SR . For example,

mn
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for spherical joints,

h2
i λ̄1 + h3

i λ̄2 for cylindrical and revolute joints,

h1
i × h2

i λ̄1 for universal joints,

h1
i λ̄1 + h2

i λ̄2 + h3
i λ̄3 for prismatic joints,

(61)

mt
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h1
i η̄1 + h2

i η̄2 + h3
i η̄3 for spherical joints,

h1
i η̄1 for cylindrical and revolute joints,

h1
i η̄1 + h2

i η̄2 for universal joints,

0 for prismatic joints.

(62)

In accordance with (57) and (58), joint reaction force fi and torque mi can be also divided
into two parts

f n
i = −f n

i , (63)

f t
i = −f t

i , (64)

mn
i = −mn

i − si × f n
i , (65)

mt
i = −mt

i − si × f t
i . (66)

As a whole, reaction forces of joint i can be taken as a force system made up of two parts.
The first part consists of forces f n

i and f n
i together with torques mn

i and mn
i and the second

part consists of forces f t
i and f t

i together with torques mt
i and mt

i . The virtual power of the
first part is

δpn
i = δv̄T

i f n
i + δω̄T

i mn
i , (67)

where the joint angular velocity is ω̄i = Pr
i q̇i and the joint relative sliding velocity is

v̄i = vpi
− vpi

− ωi × si = Ps
i q̇i . (68)

Since v̄i and ω̄i are perpendicular to the joint reaction force f n
i and torque mn

i , respectively,
the virtual power δpn

i = 0 which means that the first part of the joint reaction forces is
workless. The virtual power of the second part

δpt
i = δv̄T

i f t
i + δω̄T

i mt
i . (69)

It is seen from (69) that δpt
i is not necessarily zero if f t

i− and torque mt
i− do not vanish.

Therefore, the second part of joint reaction forces results from friction and should be treated
as applied forces.

When joint i is cut off to form a system with tree topology, the joint reaction forces are
treated as applied forces. The generalized force Ni on body i caused by fi and mi can be
solved from the following virtual power equation

δvT
p fi + δωT

i mi = δZT
i Ni . (70)
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By substituting (59)–(62) into (70), one can obtain that

Ni = ŴN
i λi + ŴF

i ηi . (71)

In the same manner, the generalized force Ni on body i caused by fi and mi can be written
as

Ni = ŴN
i λi + ŴF

i ηi . (72)

In (71) and (72), the coefficient matrices ŴN
i ,ŴF

i , ŴN
i , and ŴF

i are independent of system
accelerations but dependent on the type of the joint.

6 Recursive formulations of general multibody systems

A multibody system with frictional joints can be regarded as an ideal system as long as
frictional forces and torques are treated as applied forces, and a multibody system with
closed loops can be transformed into a system with tree topology if joint reaction forces and
torques of the cut joints are regarded as applied forces, as shown in Fig. 5.

Based on (71) and (72), the augmented external forces on body i can be expressed in the
form as follows:

F̄a
i = Fa

i + WN
i λ + WF

i η. (73)

Accordingly, (27) and (31) are rewritten as

q̈n = Hz
nŻn + Hλ

nλ + Hη
nη + ȳ0

n, (74)

Żn = Cz
nŻn + Cλ

nλ + Cη
nη + z̄0

n, (75)

where

Hλ
n = Hf

n WN
n ; Hη

n = Hf
n WF

n ; ȳ0
n = y0

n + Hf
n Fa

n, (76)

Cλ
n = Cf

n WN
n ; Cη

n = Cf
n WF

n ; z̄0
n = z0

n + Cf
n Fa

n. (77)

By replacing the original external force Fa
i with the augmented external force F̄a

i , the trans-
mission of inertias and forces of a multibody system with frictional joints and closed loops
can be carried out by the method as introduced in Sect. 3. According to (37), when the tree-
end body n is removed, coefficient matrices WN

n and WF
n of its inboard body n should be

modified as

W̄N
n = WN

n + DnnWN
n , (78)

W̄F
n = WF

n + DnnWF
n . (79)

Recursive application of the method for decoupling an ideal system with tree topology can
finally yield a reduced system with only one body. Its equation of motion can be written in
the form as

q̈1 = Hλ
1λ + Hη

1η + y0, (80)

where

y0 = Hz
1Ż0 + ȳ0

1. (81)

However, more equations are required to determine the multipliers λ and η.
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Fig. 5 Equivalence between general systems and ideal systems with tree topology

Partial equations are supplied by the constraint equations of closed loops. Initially, these
constraint equations can be formulated in the following form:

n∑

k=1

GkŻk + Gλλ + Gηη + ξ = 0, (82)

where Gλ and Gη are zero matrices in accordance with (56). By means of (75), Żn can be
removed from (82), provided the coefficient matrices are modified as

Gn = Gn + GnCz
n, (83)

Gλ = Gλ + GnCf
n WN

n , (84)

Gη = Gη + GnCf
n WF

n , (85)

ξ = ξ + Gn

(
z0
n + Cf

n Fa
n

)
. (86)

From now on, matrices Gλ and Gη become nonzero. In the same manner, all terms of Żk with
k > 1 can be eliminated from (82) recursively while Gλ,Gη,Gk , and ξ change according to
(83)–(86). Finally, the constraint equations can be converted into the form as

G1Ż1 + Gλλ + Gηη + ξ = 0. (87)

Considering (14), this equation can be rewritten as

Gq q̈1 + Gλλ + Gηη + ξ 0 = 0, (88)

where

Gq = G1�1; ξ 0 = ξ + G1(�1Ż0 + w1). (89)

From (80) and (88), multipliers λ can be solved as

λ = λ0 + Sλη, (90)

where

λ0 = −(
Gλ + GqHλ

1

)−1
(Gqy0 + ξ 0), (91)

Sλ = −(
Gλ + GqHλ

1

)−1(
Gη + GqHη

1

)
. (92)
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Substituting (90) into (80) yields

q̈1 = aq

1 + Aq

1η, (93)

where

aq

1 = y0 + Hλ
1λ0, (94)

Aq

1 = Hη

1 + Hλ
1Sλ. (95)

Based on (74) and (75), accelerations Żi and q̈i can be written in the form

Żi = az
i + Az

i η, (96)

q̈i = aq

i + Aq

i η, (97)

where the coefficient matrices in the above two equations are obtained in a recursive manner
as follows:

az
1 = Cz

1Ż0 + Cλ
1λ0 + z̄0

1; Az
1 = Cλ

1Sλ + Cη

1, (98)

aq

2 = Hz
2az

1 + Hλ
2λ0 + ȳ0

2; Aq

2 = Hz
2Az

1 + Hλ
2Sλ + Hη

2, (99)

. . .

az
i = Cz

i a
z
i + Cλ

i λ0 + z̄0
i ; Az

i = Cz
i A

z
i + Cλ

i Sλ + Cη

i , (100)

aq

i+1 = Hz
i+1az

i+1 + Hλ
i+1λ0 + ȳ0

i+1; Aq

i+1 = Hz
i+1Az

i+1 + Hλ
i+1Sλ + Hη

i+1, (101)

. . .

aq
n = Hz

naz
n + Hλ

nλ0 + ȳ0
n; Aq

n = Hz
nAz

n + Hλ
nSλ + Hη

n. (102)

In the case that the frictional joint is a cut joint, all the associated joint reaction forces
have been expressed as the function of multipliers η as shown by (59)–(62) and (90). In the
case that the frictional joint i is not a cut joint, the frictional forces are formulated by (60)
and (62). Meanwhile, its workless part of joint reaction forces can be given by

NN
i = MiŻi − (

F0
i + Fa

i + WN
i λ + WF

i η
)
. (103)

It should be noted that the mass matrix, forces and coefficient matrices at the right side
of (103) must be evaluated under the condition that body i becomes a tree-end body in one
of the reduced systems given by the decoupling procedure described in Sect. 3. Substitut-
ing (90) and (96) into (103), one can express NN

i as the linear function of η.
A group of complement equations for solving multipliers η are necessary to complete

the solutions. As shown in the following section, these equations are usually nonlinear with
respect to η. They can be solved by a suitable equation solver such as FSOLVE in the Matlab.

7 Non-colliding contact analysis of joints

Contact analysis varies with the type and geometry of joints and depends on the friction
model. Coulomb dry friction model is most frequently used partly because of its simplic-
ity in the expression. However, its application in multibody systems usually involves many
difficult problems. For example, when the relative velocity between a mating pair is zero,
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Fig. 6 Rooney and Deravi
friction model; vr —Relative
velocity; μ—Friction coefficient

the friction force should be evaluated in the following manner. A constraint of the relative
acceleration being zero is temporarily imposed on the system, and the friction force is cal-
culated accordingly. If the obtained friction force is greater than the static friction force,
then the constraint is released and the friction force is evaluated under this new condition.
Combinatorial problems and switching between sticking and sliding phase involved in such
a procedure may lead to great numerical difficulties. From a mathematical point of view,
Coulomb friction force is a set value function of sliding velocity [40], and its application
may result in non-uniqueness and nonexistence of solutions according to the theory of non-
smooth analysis [41]. On the other hand, it is revealed by the modern tribology that discon-
tinuity of friction force is not a physical fact [42]. Instead of the Coulomb’s friction law,
some smooth friction models can be used. Pennestri, Valentini and Vita [42] presented the
application of the Dahl friction model in planar multibody systems, but the model is too
complicated for general multibody systems.

In this paper, a simple continuous friction model:

μ =
{

μ0, |vr | ≥ vε,
|vr |
vε

μ0, |vr | < vε

(104)

proposed by Rooney and Deravi [43] is adopted. As qualitatively illustrated in Fig. 6, this
model can greatly weaken the negative effect of sticking-sliding switch, at the cost that zero
friction force is predicted at the zero relative velocity. If no adhesion between any mating
pair is maintained for a long time, this model is acceptable in practice.

Although the effects of collisions are assumed to be negligible, joint clearances are taken
in to account qualitatively in this paper. In fact, joint clearances are necessary to enable
relative movements. Due to clearances, no joint can make its designed kinematic constraint
perfectly. But they are usually kept under control by the construction of joints to restrict
the undesired relative motion. In this paper, we assume that joint clearances exist but are
infinitely small. In this case, constraint violations and collisions are negligible, but con-
tact forces and contact positions still play an important role in the formulation of frictional
forces. In order to describe positions of possible contact points, a group of parameters, such
as the normal vector at the contact point on the ball of a spherical joint, the two orientation
angles of the contact points on the lateral surface of the shaft of a cylindrical joint, etc.,
are introduced depending on the type of joints. These parameters cannot be evaluated in
terms of joint coordinates since they are compatible with joint constraints. However, they
are closely related to the joint reaction forces. Based on such kind of relations, equations
for multipliers η can be given. Moreover, locations of contact points and associated contact
forces can also be obtained, as shown in the following sections.
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Fig. 7 Contact in a spherical
joint

7.1 Spherical joints

A spherical joint consists of a socket and a ball. As illustrated in Fig. 7, on the ball there
is only one possible contact point, and the normal contact force exerted on the ball can be
written as

fn = −fnn, (105)

where fn is the norm of fn and n is the unit outward normal vector at the contact point.
Without loss of generality, the ball is assumed to be fixed on the inboard body of the joint.
As a result, the relative angular velocity of the ball with respect to the socket is equal and
opposite to the joint angular velocity ωr , and the relative velocity of the contact point with
respect to the socket is written as

vr = −rωr × n, (106)

where r is the radius of the ball. Based on the Coulomb law of friction, the frictional force
exerted on the ball is given by

ft = kf ωr × n, (107)

where

k = μ

‖ωr × n‖ = μ
√

ωr · ωr − (ωr · n)2
(108)

and μ is the coefficient of friction. Because the contact force system is statically equivalent
to the joint reaction force system, the joint reaction force fc and torque mc at the center of
the ball can be formulated as

fc = fn(kωr × n − n), (109)

mc = rfnn × (kωr × n). (110)

From (109), the magnitude of the normal contact force is solved:

fn =
√

fc · fc
1 + μ2

(111)

and the dot product of fc and ωr is given by

fc · ωr = −f ωr · n. (112)
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Fig. 8 Contacts in a cylindrical
joint

Substitution of (112) into (108) yields

k = fnμ√
f 2

n ωr · ωr − (fc · ωr )2
. (113)

Rewriting (109) in matrix form, one can obtain

n = 1

fn

(kω̃r − E)−1fc, (114)

where E is the 3 × 3 unit matrix. It is seen from (111), (113), and (114) the outward normal
vector at the contact point can be formulated in terms of the joint reaction force fc .

In summary, both of the location and the forces of the contact in a spherical joint can be
fully determined by the joint reaction force fc which is the known function of the multipliers
η as shown by (103). As a result, (110) implies something new about the multipliers η, and is
just the required complement equation for spherical joints. Since fn is a nonlinear function
of fc , the complement equation is nonlinear with respective to the multipliers η.

7.2 Cylindrical joints

A cylindrical joint consists of a guide and a shaft. On the shaft, there are two possible contact
points, as illustrated in Fig. 8 where θ1 and θ2 are orientation angles of the contact points
respectively, and 2c is the length of the shaft. We also assume that the shaft is fixed on the
inboard body of the joint.

The relative velocities of the contact points with respect to the guide can be formulated
in terms of the joint angular velocity ωre1 and sliding velocity ṡe1 as follows:

v1 = −ṡe1 − ωre1 × r(cos θ1e3 + sin θ1e2), (115)

v2 = −ṡe1 − ωre1 × r(cos θ2e3 + sin θ2e2), (116)

where r is the radius of the shaft. The normal contact forces exerted on the shaft can be
expressed in terms of their magnitudes f1 and f2 as

fn1 = −f1 cos θ1e3 − f1 sin θ1e2, (117)

fn2 = −f2 cos θ2e3 − f2 sin θ2e2, (118)

where f1 and f2 must be positive in order to make the orientation angles unambiguous.
According to the Coulomb law of friction, the corresponding frictional forces can be written
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as

ft1 = f1(kse1 − kr cos θ1e2 + kr sin θ1e3), (119)

ft2 = f2(kse1 − kr cos θ2e2 + kr sin θ2e3), (120)

where

kr = μωrr√
ṡ2 + ω2

r r
2
; ks = μṡ

√
ṡ2 + ω2

r r
2
. (121)

The reaction force and torque at the shaft center, expressed as fc = fc1e1 +fc2e2 +fc3e3 and
mc = mc1e1 + mc2e2 + mc3e3, respectively, form a force system that is statically equivalent
to the contact force system; that is,

fc = ft1 + ft2 + fn1 + fn2, (122)

mc = (r cos θ1e3 + r sin θ1e2 −ce1)× (fn1 + ft1)+ (r cos θ2e3 + r sin θ2e2 +ce1)× (fn2 + ft2).
(123)

In scalar form, they are six equations, and four of them can be rewritten in matrix form as

⎛

⎜
⎜
⎝

fc2

fc3

mc2

mc3

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

−kr −1 −kr −1

−1 kr −1 kr

ksr − c krc c + ksr −krc

krc c − ksr −krc −ksr − c

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

f1 cos θ1

f1 sin θ1

f2 cos θ2

f2 sin θ2

⎞

⎟
⎟
⎠ (124)

from which, f1 and f2 can be solved. The other two equations represent the frictional reac-
tion force and torque in terms of f1and f2:

fc1 = ks(f1 + f2), (125)

mc1 = krr(f1 + f2). (126)

Since the both sides of (125) and (126) are functions of multipliers η, these two equations
serve as the complement equation for solving the multipliers η.

7.3 Revolute joints

A revolute joint consists of a pair of bearing and a journal as illustrated in Fig. 9. Compared
to a cylindrical joint, the revolute joint has two additional possible contact points located
respectively at the centers of two end cross sections of the journal, to prevent the journal
from relative sliding with respect to the bearing. The associated horizontal contact forces
exerted on the journal can be expressed as

gn3 = g3e1; gn4 = −g4e1, (127)

where g3 and g4 are magnitudes of the contact forces indicated in Fig. 9. Because of the axial
clearance, the journal cannot contact the left and right wall of the bearing simultaneously.
Therefore, contact forces g3 and g4 should satisfy the complementary condition:

0 ≤ g3⊥g4 ≥ 0. (128)
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Fig. 9 Contacts in a revolute
joint

Under the assumption that the journal is fixed on the inboard body of the joint, the relative
velocities of the lateral contact points with respect to the bearings are given respectively as

v1 = −ωr e1 × r(cos θ1e3 + sin θ1e2), (129)

v2 = −ωr e1 × r(cos θ2e3 + sin θ2e2), (130)

where ωre1 is the joint angular velocity, θ1 and θ2 are orientation angles of the contact points
as shown in Fig. 9 and r is the radius of the journal. The associated normal contact forces
exerted on the journal can be expressed as

fn1 = −f1 cos θ1e3 − f1 sin θ1e2, (131)

fn2 = −f2 cos θ2e3 − f2 sin θ2e2. (132)

Based on the Coulomb law of friction, the corresponding frictional contact forces exerted
on the journal are given as

ft1 = f1kr(− cos θ1e2 + sin θ1e3), (133)

ft2 = f2kr(− cos θ2e2 + sin θ2e3), (134)

where the general coefficient of friction is

kr = μ sign(ωr). (135)

The reaction force fc = fc1e1 + fc2e2 + fc3e3 and the torque mc = mc1e1 + mc2e2 + mc3e3

at the center of the joint are equivalent to the contact forces system, which yields

⎛

⎜
⎜
⎝

fc2

fc3

mc2

mc3

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

−kr −1 −kr −1

−1 kr −1 kr

−c krc c −krc

krc c −krc −c

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

f1 cos θ1

f1 sin θ1

f2 cos θ2

f2 sin θ2

⎞

⎟
⎟
⎠ . (136)

Substituting the solution of f1 and f2 into the following equation,

mc1 = μr(f1 + f2) (137)

gives the complement equation for solving the multipliers η.
If the horizontal contact forces are required for some purpose, they can be solved by the

combination of the complementary condition (128) and the following equation:

fc1 = g3 − g4. (138)
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Fig. 10 Contacts in a universal
joint

The solution is easily obtained:

g3 = fc1; g4 = 0 (when fc1 > 0), (139)

g4 = −fc1; g3 = 0 (when fc1 < 0). (140)

In practice, there are various types of revolute joints. Some of them are much more com-
plicated in construction than the simplest one studied in this paper. The contact analysis
about such joints is beyond the scope of this paper.

7.4 Universal joints

A universal joint can be taken as the combination of a horizontal revolute joint and a vertical
revolute joint, as illustrated in Fig. 10 where r1 and r2 are the radius of the two journals. The
horizontal joint is assumed to be fixed on the inboard body.

In terms of θ1 and θ2 the orientation angles of the contact points on the lateral surface of
the horizontal journal, the normal contact forces fn1 and fn2 are expressed as

fn1 = −f1 cos θ1e3 − f1 sin θ1e2, (141)

fn2 = −f2 cos θ2e3 − f2 sin θ2e2. (142)

At the geometric center of the universal joint, the reaction force fc = fc1e1 + fc2e2 +
fc3e3 and the torque mc = mc1e1 + mc2e2 + mc3e3 exerted on the horizontal journal, as a
force system, is equivalent to the contact force system on the journal. Following the same
procedure described in Sect. 7.3, one obtains

⎛

⎜
⎜
⎝

fc2

fc3

mc2

mc3

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

−k1 −1 −k1 −1

−1 k1 −1 k1

−c1 k1c1 c1 −k1c1

k1c1 c1 −k1c1 −c1

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

f1 cos θ1

f1 sin θ1

f2 cos θ2

f2 sin θ2

⎞

⎟
⎟
⎠ , (143)

where

k1 = μ sign(ωr1) (144)

and ωr1e1 is the angular velocity of the horizontal revolute joint. The normal contact forces
on the lateral surface of the vertical journal can be written as

fn5 = −f5 cos θ3e1 − f5 sin θ3e3, (145)

fn6 = −f6 cos θ4e1 − f6 sin θ4e3, (146)
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where θ3 and θ4 are the orientation angles of the corresponding contact points. Based on
the common assumption that the cross shaft in a universal joint is massless, the contact
force system exerted on the vertical journal and the contact force system exerted on the
horizontal journal compose a balanced force system. Therefore, replacing fc,mce1, e2, e3

in (122) and (123) with −fc,−mc, e2, e3, e1, respectively, one obtains

⎛

⎜
⎜
⎝

−fc3

−fc1

−mc3

−mc1

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

−k2 −1 −k2 −1

−1 k2 −1 k2

−c2 k2c2 c2 −k2c2

k2c2 c2 −k2c2 −c2

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

f5 cos θ3

f5 sin θ3

f6 cos θ4

f6 sin θ4

⎞

⎟
⎟
⎠ , (147)

where

k2 = μ sign(ωr2) (148)

and ωr2e2 is the angular velocity of the vertical revolute joint. The complement equations
for solving the multipliers η are as follows:

mc1 = μr1(f1 + f2), (149)

−mc2 = μr2(f5 + f6). (150)

8 Numerical examples

In this section, three examples involving different types of joints with friction are given to
demonstrate the application of the methodology presented in this paper.

8.1 Single pendulum with spherical joint

As is shown in Fig. 11, a single pendulum is connected to the ground with a spherical joint
whose ball is 0.05 m in radius and fixed on the pendulum. The pendulum is a rectangular
block with 1.0 m in length, 0.1 m in width and 0.1 m in height. It is made of steel with density
7800 kg/m3. The friction in the spherical joint is taken into account and the coefficient of
friction is assumed to be 0.6. Initially the pendulum is at rest in the horizontal position, and
will swing afterward under the action of gravity.

The motion of the pendulum during the first 10 seconds is simulated respectively with
ADAMS and the software based on the method proposed in this paper. Comparative results
are shown in Fig. 12 and Fig. 13. The results of ADAMS and this paper are consistent in
tendency but not exactly identical.

By careful observation, we found that the joint reaction force at the center of the ball is
treated as the normal contact force by ADAMS, or more precisely, the equation

mc = μrfc × (ωr × fc)√
fc · fc

(151)

is used by ADAMS to calculate the frictional torque, not (110). Since the joint reaction force
fc is greater than the normal contact force in magnitude, as indicated by (111), the frictional
torque approximated by (151) is larger than the actual value and causes more energy dissi-
pation. This is the main reason for the inconsistence shown in Fig. 12 and Fig. 13.

In order to verify our observation, we redo the analysis according to (151). As indicated
in Fig. 14 and Fig. 15, the results of this paper and ADAMS are exactly the same during
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Fig. 11 Single pendulum with spherical joint

Fig. 12 Frictional torque in the
spherical joint

Fig. 13 Angular acceleration of
the spherical joint

the period of the first 7.7 seconds in this case. This shows that ADAMS really uses (151) to
approximate the frictional torque.

At the instant of 7.7 seconds, both of the angular velocity and the acceleration of the
pendulum are close to zero, and the frictional torques given respectively by this paper and
ADAMS begin to depart from each other, while the angular accelerations are still in good
agreement. Such a deviation is caused by computational errors. As illustrated by Fig. 6, the
velocity tolerance vε can change the numerical solution at the moment when the relative
velocity is close to zero. In general, the smaller the vε is, the better the numerical solutions
will be. However, if the velocity tolerance is too small, the speed of solution will be slowed
down significantly. In this paper, vε is 10−4 m/s.
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Fig. 14 Frictional torque
according to (151)

Fig. 15 Angular acceleration
according to (151)

Fig. 16 Frictional torque with
frictional coefficient μ = 0.1

After the instant is close to 10 seconds, the pendulum is in the sticking state, which can
be observed in Fig. 13. The numerical values of the angular velocities are not exactly zeros,
but oscillate around zero with small amplitudes that depend on the velocity tolerance vε .
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Fig. 17 Frictional torque with
frictional coefficient μ = 0.3

Fig. 18 Frictional torque with
frictional coefficient μ = 0.6

Fig. 19 Frictional torque with
frictional coefficient μ = 1

On the other hand, the differences between (151) and (110) may be slight or great de-
pending on the coefficient of friction. It is shown by Fig. 16, Fig. 17, Fig. 18, and Fig. 19
that, with the increase of the frictional coefficient, the differences become greater.

One of the advantages of the method presented in this paper is the capability of obtaining
the details about the contacts in a joint. For example, the history of the normal contact forces
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Fig. 20 Definition of contact
angle

Fig. 21 Orientation of the
contact point

Fig. 22 Normal contact force on
the ball

and the contact positions can be obtained during the simulation of this example. Since the
contact point is always on the XZ plane as shown in Fig. 11, the contact angle β , illustrated
in Fig. 20, is sufficient for the description of the contact orientation. Figure 21 and Fig. 22
describe the variation of the contact position and the normal contact force, respectively.

It can be observed that the normal contact force on the ball decreases continuously but
does not vanish when the pendulum stops moving. That means the static frictional torque
exists in the spherical joint, as shown in Fig. 22.
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Fig. 23 A crank-slider mechanism

As is shown in Fig. 21, at some instants, the values of the contact angle change suddenly.
Therefore, the impacts will occur at these moments, provided the previous impacts have not
made noticeable differences in the dynamics of the system.

It is worth noting that we can learn many things about possible impacts by the method
presented in this paper, in spite of the assumption of noncolliding contacts.

8.2 Crank-slider mechanism

The second example deals with a crank-slider mechanism as shown in Fig. 23. The crank is
0.5 m in length, 0.1 m in width, and 0.1 m in height. The connecting rod is 1 m in length,
0.1 m in width, and 0.1 m in height. The slider is a cube of 0.2 m on each edge. They are
all made of steel with a density of 7801 kg/m3. The coefficient of friction for the revolute
joint Hf that links the connecting-rod and the slider is 0.3. Its journal is 0.01 m in radius
and 0.1 m in length. Other joints in the mechanism are assumed to be ideal joints.

The applied forces consist of force of gravity and the driving moment that make the crank
rotate at a constant angular velocity ω = 10 rad/s. At the initial time, the whole system is in
the horizontal position.

The velocity and the acceleration of the mass center of the slider are plotted in Fig. 24.
Curves with solid line and marker o indicate the results given by this paper and ADAMS,
respectively. As can be seen in Fig. 24, the numerical results obtained in this paper are
almost the same with ADAMS.

The frictional torques of joint Hf obtained by this paper and ADAMS, respectively, are
compared. As shown in Fig. 25, they are generally in agreement with each other. However,
ADAMS computes the frictional torque using the equation

m1
c = μR‖fc‖ (152)

which is different from (137) used in this paper. It can be verified that, when the coefficient
of friction is small, the differences between (137) and (152) will be greatly reduced under
the conditions of the normal contact forces f1 and f2 are equivalent and the contact angles
θ1 and θ2 are also equivalent. These conditions are satisfied in this example, as indicated in
Fig. 26 and Fig. 27.

It can be seen in Fig. 26 and Fig. 28, there are sudden changes in the values of contact
angles. However, some of them do not indicate impacts but result from the manner when
an angle is represented by a real number. For example, an angle of 0° is actually the same
with an angle of 360°. At some points of the curve, such as the point 3 in Fig. 28, the
value of contact angle changes from 360° to 0° instantly, but these sudden changes do not
have specific physical meanings. In order to better understand the dynamic behavior of the
system, we plot the curve of the contact angle and the curve of angular velocity of the
connecting-rod simultaneously on Fig. 28. To make the comparison more clear, the value
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Fig. 24 (a) Velocity of mass
center of the slider.
(b) Acceleration of mass center
of the slider

(a)

(b)

of the angular velocities is amplified by 10 times. It can be observed that, in a period of
rotation, the contact angel changes abruptly at two instants, as shown at point 1 and point 2 in
Fig. 28, when the angular velocity of the connecting-rod reverses its direction, as illustrated
in Fig. 29.

8.3 Double pendulum

As shown in Fig. 30, the double pendulum system consists of two simple pendulums, whose
material and shape are identical with the pendulum introduced in the first example. The first
pendulum is connected to the ground by a frictional cylindrical joint. This cylindrical joint
is fixed on the pendulum with the shaft of 0.05 m in radius and the guide of 0.3 m.

The first pendulum is armed by another pendulum with a frictional universal joint whose
two shaft axles are both 0.01 m in radius and 0.1 m in length. The coefficient of friction
is 0.3. At the initial time, the two pendulums are in the horizontal position and move along
the guide at the velocity v = 10 m/s.

Firstly, the motion of the pivot of the cylindrical joint is studied. It is seen in Fig. 31,
the pivot moves 13.76 m along the shaft and stops at the moment around 4.5 seconds. How-
ever, at this moment, the numerical value of the velocity of the pivot is not exactly zero
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Fig. 25 Frictional torque of
joint Hf

Fig. 26 Contact angles of the
contact points in joint Hf

Fig. 27 Normal contact forces in
joint Hf

because the Coulomb’s law of friction is replaced by the approximated formulas illustrated
in Fig. 6. But the velocity of the pivot never exceeds 0.01 m/s in magnitude after the instant
of 4 seconds as indicated in Fig. 32.
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Fig. 28 Variation of contact
angle in joint Hf with respective
to the angular velocity of the
connecting-rod

(a) (b)

Fig. 29 Two configurations of the crank-slider mechanism associated with two possible impacts

Fig. 30 Double pendulum

Figure 33 shows the numerical results of the angular velocity of the first pendulum. We
can see that, after the pivot is at rest, the first pendulum is still in motion in a manner like
a revolute joint and finally at rest in the vertical position as indicated in Fig. 34, where the
swing angle is defined as the angle between the y axis and the direction along the length
of the first pendulum. During this relative long time (60 seconds) simulation, the numerical
solutions go smoothly. This verifies the method presented in this paper is numerically stable
in this case.
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Fig. 31 Position of the guide of
the cylindrical joint

Fig. 32 Velocity of the guide of
the cylindrical joint

Fig. 33 Angular velocity of the first pendulum

Since the stiff problem involved in the contact detection is avoided, the method presented
in this paper can be applied in the contact analysis of spatial frictional joints. Figure 35 and
Fig. 36 are the frictional forces and torques in the two joints, respectively. It can be seen that,
the frictional force in cylindrical joint lasts about 10 seconds after the pivot is at rest, which
indicates the frictional force in this period is static. This results from the non-vanishing
reaction forces of the universal joint. From Fig. 36, one can see that the friction torques
around x and y axis vanish after about 17 seconds. From then on, the behavior of the whole
system is much like the system with two pendulums linked by revolute joints.
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Fig. 34 Swing angle of the first pendulum

Fig. 35 Frictional forces and torques in the cylindrical joint

Fig. 36 Friction in the universal joint before 30 seconds

The orientation angles θ1 and θ2 of the two contact points in the cylindrical joint are
obtained. As shown in Fig. 37, the movement along the guide makes θ1 and θ2 different from
each other. Figure 38 gives the time history of the normal contact forces in the cylindrical
joint, from which one can observe that they are initially different from each other and then
gradually become consistent. Comparing it with Fig. 37, one can see that, the differences
between contact angles have a significant effect on the normal contact forces.
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Fig. 37 Orientation angles of the two contact points in the cylindrical joint

(a)

(b)

Fig. 38 (a) Time history of the normal contact forces in the cylindrical joint before the 10 seconds. (b) Time
history of the normal contact forces in the cylindrical joint after the 10 seconds

9 Conclusions

Both joint reaction forces and contact forces in the joint can be taken as a force system.
Moreover, the two force systems are equivalent, providing six equations related joint re-
action forces with joint contact forces. Combining these equations and unilateral contact
conditions, one can obtain the contact forces and locations. This important fact has not been
fully realized in the existing methods for contact analysis.

As it is well known, the joint reaction forces of a cut joint, which is usually treated as
part of the unknown applied forces, must be associated with the joint constraint equations
to make the motion equations solvable. In the same principle, the unknown frictional forces
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must be associated with some complement equations. The six equivalence relations between
the joint reaction force system and the contact force system provide such complement equa-
tions. As is shown in this paper, the contact forces and locations at a joint can be described
in terms of a few parameters. In connection with classic joints except prismatic joints, the
number of these parameters is less than six. That is to say, these parameters can be solved by
only part of the equivalence relations, and the remainders are just the required complement
equations for frictional forces.

In the method presented in this paper, the joint reaction forces are calculated frequently.
In order to improve the computational efficiency, a recursive formulation is presented based
on the interactions between bodies in a multibody system. From a mathematic point of view,
the proposed formulation is not new. However, the physical insight behind the traditional
recursive formulation for open loop systems is explored in this paper. We also explained
articulated inertias and employed them in a different manner. In the proposed formulation,
both the inverse and the assembly of system mass matrices are avoided. More importantly,
the joint reaction forces can be obtained easily with the proposed method. In comparison
with some of the existing methods for noncolliding contact analysis, such as the method used
by ADAMS, one of the advantages of presented method is that the details about contacts at a
joint, such as the time history of the contact force, the contact position, etc. can be obtained
during the simulation. In spite of the assumption of impact free, the instants of possible
impacts can be detected without relying upon any ambiguous parameters, as indicated by
the numerical examples in this paper.
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