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Abstract This paper addresses the problem of reducing the constitutive behavior of rel-
atively complex mechanical systems to lumped deformable components that connect two
nodes of a multibody system. It is common practice, both in finite element and multibody
system dynamics analysis, to refer the constitutive properties of lumped components to one
of the nodes they connect. It is shown that this practice, here termed “attached,” could result
in either underestimating or overestimating the couplings related to the finiteness of the rel-
ative rotation between the connected nodes. This work proposes an alternative formulation,
here termed “intrinsic” that allows to correlate very well the behavior of general lumped
deformable components with that resulting from the nonlinear finite element analysis of
three-dimensional models of the components. Numerical examples, including the analysis
of components that are widely used in the mechanical and aerospace industry, show how the
proposed formulation can easily and accurately account for nonlinear geometrical effects,
and thus deliver compact and accurate models suitable for the analysis of the global behavior
of rather complex components.

Keywords Structures · Constitutive equations · Elasticity · Nonlinear dynamics

1 Introduction

In Finite Element Analysis (FEA), it is common practice to separate connectivity and con-
stitutive properties when defining the contribution of structural elements to the equations
that describe the problem. This feature, introduced from the beginning in the most popular
FEA software, like MSC/NASTRAN and Abaqus, just to mention a few, typically had the
purpose of simplifying model preparation by introducing a level of indirection in structural
properties assignment to sets of elements.
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Another common practice in structural modeling consists in synthesizing complex struc-
tural components, whose main purpose consists in connecting larger model portions into
lumped deformable components whenever their detailed analysis is either not strictly re-
quired, or beyond the scope of the analysis. This is especially true when the main focus is
on the global dynamical behavior of complex mechanical systems, where detailed structural
analysis is not required and would unnecessarily increase the computational time and cost.

At the very beginning, multibody dynamics addressed the analysis of rigid mechanisms
undergoing arbitrary finite motion [1]. An outstanding review of the problems and solution
approaches proposed in the early years is presented in [2], along with a discussion on future
challenges. Whenever required, the flexibility of bodies was accounted for by means of
lumped components.

Soon, the need to deal with more detailed models of rather complex structural compo-
nents required the introduction of direct deformable system modeling capabilities in multi-
body analysis software. Many formulations have been proposed in the literature to bridge
the gap between detailed FEA and multibody dynamics. Reviews are presented in [3, 4].
The research in this area was initially biased by the attempt to exploit linear FEA to model
system flexibility, by separating the overall rigid-body motion of mechanism components
from the local motion related to components’ flexibility. This is often termed the floating
frame approach [1, 5]. It is usually based on model reduction techniques to obtain a sim-
ple form of the strain energy, under the assumption of infinitesimal strains, thus resulting
in the linear superimposition of simple deformation shapes, computed by means of linear
FEA. This approach has been also extended to account for nonlinearities, both geometrical,
like prestress (e.g. [6]), and plasticity (e.g. [7]). However, the need to drop the infinitesimal
strain assumption in a consistent manner pushed toward the direct use of nonlinear FEA
[5, 8], also in the form of absolute coordinates [9].

At the same time, considerable attention was given to the problem of synthesizing ac-
curate constitutive properties for the modeling of joints whose behavior is time-dependent,
like bushings, characterized by complex rheological behavior ([10, 11], to mention a few).
It is worth stressing that the literature on this specific subject seldom addresses components
with more than one dimension.

Much like multibody codes, a vast majority of FEA implementations supports the mod-
eling of lumped structural elements. When linear analysis is considered, this procedure
does not pose any specific issue. However, this might be no longer true when nonlin-
ear analysis, encompassing finite displacements and rotations, must be considered. Re-
cent structural analysis software implementations, either specifically intended for multi-
body system analysis, like MSC/ADAMS, or for nonlinear FEA with multibody capabil-
ities, like Abaqus/Standard, allow arbitrarily large absolute displacements and rotations of
the nodes and correctly describe their rigid-body motion. However, they occasionally re-
quire relative displacements and rotations to be limited, although not necessarily infinitesi-
mal, when lumped deformable components modeling is concerned. For example, this occurs
with MSC/ADAMS when using the FIELD element (a linear element based on a constant,
orthotropic constitutive matrix [12]), to implement an orthotropic angular spring. Similarly,
the JOINTC element implemented in Abaqus/Standard, describes the interaction between
two nodes when the second node can “displace and rotate slightly with respect to the first
node” [13], since its formulation is based on an approximate relative rotation measure (see
Appendix A for details).

None of the lumped deformable component formulations and implementations available
in commercial software appears to allow arbitrarily large relative displacements and, sig-
nificantly, rotations. In most cases, moreover, the ordering of the connected nodes matters,
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since the behavior of the lumped deformable component is biased with respect to one of the
nodes. This problem seems to be quite intuitive, and should be well known to experienced
analysts. However, the fact that no specific mention of it can be found in the literature, to
the authors’ knowledge, and little effort has been put into eliminating it from the formula-
tions commercially available software is based on seems to indicate that it has always been
overlooked, although its implications might lead to unexpected results. The problem was
recently anticipated and discussed in [14], in the context of rubber component modeling
within applications in the automotive field.

This work aims at formulating a lumped deformable component, based on a consistent
definition of the nonlinear strain, independent from the constitutive behavior, giving up the
detail provided by direct nonlinear FEA but with much less computational cost. The work
also aims at pointing out the effects of connectivity modeling on the behavior of lumped
components, to allow to decouple them as much as possible from the constitutive behavior.
This is accomplished by:

1. Introducing a rigorous definition of the linear and angular strains as the actual relative
displacement and rotation between the nodes connected by the deformable joint; and

2. Introducing the possibility to arbitrarily refer the constitutive properties to a reference
frame that depends on the relative orientation.

The objective is to either:

(a) Produce a formulation that does not depend on the ordering of the connectivity, for ease
of use and robustness with respect to inexperienced user’s errors or alternatively.

(b) Allow fine-grained tuning of the joint behavior in order to match experimentally or
numerically determined load-strain curves.

A definition of deformable joint is given in Sect. 2, while Sect. 3 presents the deformable
joint formulation termed intrinsic, which in noteworthy cases specializes in the attached and
invariant forms. Section 4 presents and discusses numerical applications that highlight the
issues the intrinsic formulation is intended to overcome. Relevant details are presented in
Appendices.

2 Deformable joint formulation

The term deformable joint is intended to indicate a relationship between the relative config-
uration of two nodes (the relative position and orientation) and the corresponding forces and
moments each node exchanges with the other.

Consider a deformable joint connecting two nodes, respectively indicated with subscripts
a and b. When strained by a relative rotation vector θ and a change in relative position d
(respectively defined in Sects. 2.2 and 2.3), the joint can apply to each node the respective
forces and moments indicated in (1):

fi = fi (θ ,d), (1a)

mi = mi (θ ,d), (1b)

where i = a, b refers to each node. The forces and moments of (1) are conjugated to the
nodes’ virtual displacements and rotations, as resulting from the virtual work related to the
structural component,

δL =
∑

i=a,b

(δxi · fi + θ iδ · mi ). (2)
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The rotation perturbation vector θ δ results from perturbing a rotation matrix1 R,

δRRT = θ δ × . (3)

In some configurations, a deformable joint may not contribute to the dynamics equations
with all combinations of forces and moments, or it may only depend on the relative orienta-
tion (angular strain) or position (linear strain), resulting in a lumped deformable component
that is a specialization of the most general one.

2.1 Connectivity and constitutive properties

When implementation issues are considered, significant advantages can be obtained by sep-
arating the connectivity from the constitutive properties of a deformable joint.

The term connectivity is used here in the sense of determining how the measurement
of the straining of the joint is computed from the relative configuration of the connected
nodes. In the case of an angular joint, it determines how a suitable measure of the change
in relative orientation is extracted from the orientations of the two nodes connected by the
joint, whereas in the case of a linear joint it determines how a suitable measure of the change
in relative position is extracted from the positions and orientations of the nodes connected
by the joint.

The constitutive properties, in turn, represent the relationship between the selected strain
measure and the corresponding forces and moments exchanged between the nodes con-
nected by the joint.

By separating these two aspects of the formulation of deformable joints, a software im-
plementation of a multibody formalism can arbitrarily couple different connectivities and
different constitutive relationships with minimal code duplication and development effort.
This consideration is per se by no means novel; in fact, it is deeply rooted in most of the
FEA formulations.

What this work intends to highlight is the fact that the separation between connectivity
and constitutive properties may not be trivial when finite relative rotations take place. Based
on the assumption that the actual behavior of a deformable component cannot be altered by
the choice of the reference frame used to express its constitutive properties, it is observed
that the choice of that reference frame may affect the way in which the joint’s constitutive
properties have to be formulated, and actually allow to decouple constitutive from connec-
tivity aspects of that behavior.

Relevant properties of angular and linear joints connecting two nodes are discussed in
the following. Unless otherwise stated, no bias toward a specific node is assumed.

2.2 Angular deformable joint

Within this work, the term angular joint refers to a deformable component whose strain
measure is a change in the relative orientation between the nodes it connects.

This type of deformable component introduces a moment m that depends on the relative
rotation between two nodes. Without significant loss in generality,2 the relative rotation is

1A rotation matrix is orthonormal, i.e., RRT = RT R = I. Its perturbation yields δRRT = −RδRT =
−(δRRT )T , which implies that matrix δRRT is skew-symmetric; thus, it can be represented as θδ × .
2The main limitation introduced by the definition given in (4) is in the magnitude of θ , ‖θ‖ < π . This
limitation can be removed, if required, by considering an incremental formulation, not pursued in the present
work essentially for clarity.
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described by the rotation matrix

Rrel = RT
a Rb, (4)

where Ri , i = a, b, are the orientation matrices of nodes a and b. The relative orientation,
in turn, can be described by the vector3 θ , defined as

θ = ax
(
exp−1(Rrel)

)
. (5)

The operator exp−1(·) in (5) is the inverse operator4 of the exponential map operator exp(·),
while operator ax((·) × ) is the inverse of the cross-product operator, (·)×. A numerically
stable algorithm for (5) is presented in Appendix 2.4 of [18]. The direction of vector θ

describes the axis about which the rotation indicated by Rrel occurs, while its modulus de-
scribes the magnitude of the rotation.

This strain measure is intrinsic, because it is based only on the relative orientation of the
two bodies, regardless of its representation. It is also invariant, in the sense that vector θ ,
defined by (5) in the reference frame of node a, does not change when it is projected in that
of node b: (5) implies that

θ = Rrelθ

= RT
relθ , (6)

which can be restated by noticing that θ is parallel to the eigenvector associated with the
unit eigenvalue of matrix Rrel.

2.3 Linear deformable joint

Within this work the term linear joint refers to a deformable component whose strain mea-
sure is a change in the relative position between the nodes it connects. What makes this
connectivity model more complicated than the angular one is that both the connectivity and
the constitutive properties may also depend on the relative orientation between the connected
nodes.

This type of deformable component introduces a force f that depends on a change in
the relative position between two nodes. The point where this force is applied depends on
the way its connectivity is formulated, and thus may result in a moment with respect to
the points xa and xb used as references for the position of the nodes. The strain measure is
described by the vector that represents the distance between two reference points pa and pb

d = pb − pa, (7)

which vanishes when the joint is unloaded. These points may be offset from the reference
positions of the nodes by the vectors oa and ob ,

pi = xi + oi , (8)

3This vector is often termed “rotation vector,” a name widely used in the literature to indicate the Euler vector;
see, for instance [15–17].
4In the literature, the operator exp−1(·) is also indicated as log(·), e.g. [18, 19].
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with i = a, b as before. The offsets oi are assumed to be constant in the reference frames of
the respective nodes. As a consequence, the distance of (7) is

d = xb + ob − xa − oa. (9)

This strain measure is also intrinsic, because it is based only on the relative position of the
two bodies, regardless of its representation.

Although by definition this component only associates the strain measure to the relative
position of the bodies, the relative orientation comes into play because it can affect not only
the way in which the strain measure is related to the constitutive properties in the case of
anisotropy, but also the virtual point the straining is supposed to occur at, when oi �= 0.

2.4 Linear/angular deformable joint

Within this work, the term linear/angular joint refers to a deformable component whose
strain measure is a change in both the relative position and orientation between the nodes
it connects. What distinguishes the linear/angular joint from a mere combination of a linear
and an angular joint is the fact that its constitutive law may arbitrarily depend on both strain
measures. However, the formulation of this latter component is not discussed in detail per se,
since apart from additional implementation issues it does not add significant insight into the
subject of this work. On the contrary, its application lends itself to interesting and detailed
considerations that will be illustrated in Sect. 4.2.

In principle, this joint is analogous to a two-node beam element. Its constitutive proper-
ties result from the integration of the strain energy associated to the relative motion of the
two nodes. However, there is no slenderness nor smoothness requirement in the direction
loosely identified as the beam axis. A formal proof of this statement, in case of a beam-like
structure, is beyond the scope of this work.

3 The “intrinsic” formulation

A common choice of the reference frame for the formulation of the constitutive properties
of a deformable joint consists in a frame that is rigidly attached to one of the parts con-
nected by the joint. The joint itself can be experimentally characterized by measuring the
forces and moments related to imposed changes in the relative position and orientation of
the connected parts, and by expressing those measures in that reference frame. This is par-
ticularly practical when the loads are measured by balances or gages connected to one of
the parts. Of course, the use of those constitutive properties needs to be consistent with the
way they have been defined or measured. Hence, the constitutive law in the model needs to
be referred to a reference frame that is rigidly attached to the same part that was used for the
characterization.

However, (6) suggests that any relative orientation described by a vector parallel to θ ,
and whose magnitude is comprised between 0 and that of θ , represents an intermediate
orientation resulting from the weighting of the orientations of the two nodes. This approach
is common practice, for example, in many applications that need to interpolate orientations
for visualization purposes [20]. It has been used for the formulation of beam finite elements
[21, 22]. It has also been generalized to the interpolation over more than two orientations
as required, for example, in shell elements, and in solid elements when used in conjunction
with polar continua [19].
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Consider a vector

θ̃(ξ) = ξθ , (10)

with ξ ∈ R, yielding an orientation matrix

R̃
(
θ̃(ξ)

) = exp
(
θ̃(ξ) × )

= exp
(
(ξθ) × )

. (11)

When ξ ∈ [0,1], this matrix allows to define an intermediate orientation between those of
the two nodes; this is not strictly required, as illustrated in the numerical examples. This
matrix also possesses the property of (6), since it is constructed from a vector parallel to θ .

The relative orientation between the connected nodes can be expressed as

Rrel = R̃
(
θ̃(ξ)

)
R̃

(
θ̃(1 − ξ)

)
. (12)

Matrix R̃(θ̃(ξ)) of (11) is used to project the constitutive properties in a reference frame
resulting from the consistent weighting of the orientations of the connected nodes. The re-
sulting formulation has been termed “intrinsic” since it depends on an intrinsic measure
of the linear and angular strains, despite the degree of arbitrarity introduced by the choice
of ξ . This section and the numerical examples of Sect. 4 show how this arbitrarity can be
exploited.

When ξ = 0, the constitutive properties are referred to the first node connected by the
joint. This case has been termed “attached.” The case of ξ = 1 results from reversing the
order of the connected nodes, thus it is not explicitly dealt with.

A special case occurs when ξ = 1/2; the resulting intrinsic element is also termed “in-
variant,” since its behavior does not depend on the ordering of the element’s connectivity.
In the following, when the argument is omitted the entities under a tilde ˜(·) are evaluated
for ξ = 1/2, namely θ̃ = θ/2 and thus R̃ = exp(θ̃ × ). In this case, the relative orientation
matrix of (12) can be represented as

Rrel = R̃R̃ = R̃
2
. (13)

When the orientation R̃ is used, the constitutive properties are intrinsically expressed in the
reference frame defined by θ̃ , which is halfway in between the relative orientation of the
nodes.

Interestingly enough, a similar approach has been proposed for conservative time inte-
gration of rotations [23], where the selection of the orientation halfway in between the initial
and the final orientations of a body during a time step is used to construct a vectorial rep-
resentation of the finite rotation over the time step, essentially based on Cayley’s transform
and its properties.

3.1 Angular deformable joint

The moment m exchanged by the two bodies is indicated as m(θ). The same moment, in the
reference frame of nodes a and b, is

m(θ)|a = R̃
(
θ̃(ξ)

)
m(θ), (14a)

m(θ)|b = R̃
(
θ̃(1 − ξ)

)T
m(θ). (14b)
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It is clear from (14) that the definition of the moment with respect to both nodes can be the
same only when the moment m(θ) is structurally parallel to θ . This can only occur when
the constitutive law is isotropic, and thus

m(θ) = m(θ)
θ

‖θ‖ . (15)

When ξ = 0, (14) result in

m(θ)|a = m(θ), (16a)

m(θ)|b = RT
relm(θ). (16b)

These equations clearly show how the moment applied to the connected nodes is biased
toward the orientation of the first node.

When ξ = 1/2, (14) result in

m(θ)|a = R̃m(θ), (17a)

m(θ)|b = R̃
T

m(θ), (17b)

which clearly show how the re-orientation of the constitutive property m(θ) from the in-
termediate relative orientation to that of either node is characterized by the same relative
rotation R̃, in opposite directions.

The contribution of the intrinsic angular strain joint to the equations of the problem re-
sults from the virtual work contribution

δL = θ δ · R̃
(
θ̃(ξ)

)
m(θ). (18)

The contributions to the moment equilibrium equations of nodes a and b are

ma = −R̂
(
θ̃(ξ)

)
m, (19a)

mb = R̂
(
θ̃(ξ)

)
m, (19b)

where

R̂
(
θ̃(ξ)

) = RaR̃
(
θ̃(ξ)

)
(20a)

= RbR̃
(
θ̃(1 − ξ)

)T ; (20b)

when ξ = 1/2, R̂ = R̂(θ̃).

3.2 Linear deformable joint

The force f exchanged by the two bodies, indicated as f(d), is expressed in the weighted
relative orientation of (20a). The relative position d, which is expressed in the same reference
frame, is

d(ξ) = R̂
(
θ̃(ξ)

)T
d. (21)

The force, in the reference frames of the nodes, is

f
(
d(ξ)

)∣∣∣
a
= R̃

(
θ̃(ξ)

)
f
(
d(ξ)

)
, (22a)
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f
(
d(ξ)

)∣∣∣
b
= R̃

(
θ̃(1 − ξ)

)T
f
(
d(ξ)

); (22b)

when the relative position is written in the same reference of the forces,

f(d|a)|a = R̃
(
θ̃(ξ)

)
f
(
R̃

(
θ̃(ξ)

)T
d|a

)
, (23a)

f(d|b)|b = R̃
(
θ̃(1 − ξ)

)T
f
(
R̃

(
θ̃(1 − ξ)

)
d|b

)
. (23b)

Since no particular relationship exists between the relative displacement d and the relative
orientation θ that characterizes Rrel, the two representations of the force f always differ.

The contribution of the intrinsic linear strain joint to the equations of the problem results
from the virtual work contribution

δL = δd(ξ) · f
(
d(ξ)

)
. (24)

Vector θ̂ δ(ξ), resulting from the perturbation of matrix R̂(θ̃(ξ)), is

θ̂ δ(ξ) = Î(ξ)θbδ + Î(1 − ξ)T θaδ, (25)

with

Î(ξ) = ξ R̂
(
θ̃(ξ)

)
�

(
θ̃(ξ)

)
�(θ)−1R̂

(
θ̃(ξ)

)T
. (26)

Tensor � is defined by the relationship (see for example [24])

θ δ = �(θ)δθ . (27)

As proved in Appendix B,

Î(ξ) + Î(1 − ξ)T = I, (28)

thus the perturbation of the linear strain measure is

δd(ξ) = R̂
(
θ̃(ξ)

)T (
δd − d × θ̂ δ(ξ)

)

= R̂
(
θ̃(ξ)

)T
(
δxb − (

ob × − Î(ξ)
)
θbδ − δxa + (

oa × + Î(1 − ξ)T
)
θaδ

)
. (29)

As a consequence, the contribution of this component to the force and moment equilibrium
equations of nodes a and b, in the global reference frame, is

fa = −R̂
(
θ̃(ξ)

)
f, (30a)

ma = −(
oa × + Î(1 − ξ)d × )

R̂
(
θ̃(ξ)

)
f, (30b)

fb = R̂
(
θ̃(ξ)

)
f, (30c)

mb = (
ob × − Î(ξ)T d × )

R̂
(
θ̃(ξ)

)
f. (30d)

When ξ = 0, matrix Î(ξ) vanishes and Î(1 − ξ) = I, so (30) become

fa = −Raf, (31a)

ma = −(oa + d) × Raf, (31b)
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fb = Raf, (31c)

mb = ob × Raf. (31d)

When ξ = 1/2, matrix Î(ξ) can be written as

Î = R̂(I + R̃)−1R̂
T
, (32)

so (30) become

fa = −R̂f, (33a)

ma = −(oa × + Îd × )R̂f, (33b)

fb = R̂f, (33c)

mb = (
ob × − Î

T
d × )

R̂f. (33d)

Matrix Î possesses interesting invariance properties, detailed in Appendix C.
An interesting graphical interpretation of the linear strain in the proposed formulation is

given in Fig. 1. Figure 1(i) shows that when the joint strains, points a and b are separated by
the distance d, the linear strain defined in (9). Figures 1(ii–iii) illustrate the cases of constitu-
tive properties respectively attached, in terms of orientation, to the reference frames of nodes
a and b. The unit vectors e1 and e2 represent the reference frame the constitutive properties

Fig. 1 Sketch of the
linear/angular deformable joint:
(i) node a and b orientation,
linear strain d; (ii) attached to
node a (dÎa = d × , dÎb = 0);
(iii) attached to node b (dÎa = 0,
dÎb = d × ); (iv) generic intrinsic
case
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are expressed in, respectively parallel to that of node a, Fig. 9(ii), and b, Fig. 9(iii). Accord-
ing to (31b) and (31d), the force is applied in the opposite node. The generic intrinsic case,
illustrated in Fig. 1(iv), corresponds to evaluating the constitutive properties with reference
to a weighted orientation that depends on the fraction ξ of the relative orientation between
the nodes. The resulting moment cannot be simply expressed by defining a virtual point P

where the force is applied, since tensors

dÎa = Î(1 − ξ)d × , (34a)

dÎb = Î(ξ)T d × , (34b)

that premultiply the force in (30b) and (30d) are not skew-symmetric. As a consequence,
the generalized internal moments conjugated to the virtual rotation of the nodes cannot be
interpreted only in terms of the cross-product of physical arms by the internal force. For this
reason, point P in Fig. 1(iv) has been placed outside segment d for pictorial representation
purposes, but dÎa and dÎb have not been represented as regular arrows.

3.3 Linear/angular deformable joint

As anticipated in Sect. 2.4, the linear/angular joint basically consists in the union of a linear
and an angular joint, where both the force and the moment simultaneously depend on the
linear and angular strain. As a consequence, its formulation does not differ from those of the
components presented so far.

4 Numerical results

This section presents selected numerical results that show how the proposed formulation
addresses the issues related to connectivity ordering and decoupling between connectivity
and constitutive properties. The formulation has been implemented in the free multibody
analysis software MBDyn [25] since version 1.3.1, released in August 2007.

4.1 Simple angular strain joint

In the following, a simple problem is considered. A couple is applied to a node grounded
by a deformable hinge, thus Ra = I. The node orientation with respect to the ground is
represented by matrix Rb . In all cases, a constitutive law that is linear in the material frame,
namely

m = Kθ , (35)

is considered, where K is a constant, symmetric, positive definite matrix, and

θ = ax
(
exp−1

(
RT

b

))
(36)

is the vector that describes the rotation of the node with respect to the ground. This choice
is only used for simplicity and clarity of exposition; in fact, it is intended to highlight how
the proposed formulation allows to capture geometrical nonlinear effects related to finite
rotations that other approaches would overlook.

The constitutive properties are generically expressed in a reference frame that is rotated
from the ground node by an arbitrary fraction ξ of the relative rotation θ , as indicated
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in (10), resulting in the orientation matrix R̃(θ̃(ξ)). The moment, in the reference frame
of the ground, is

m = R̃
(
θ̃(ξ)

)
m. (37)

Three different configurations are considered:

– “ground”: the constitutive law is attached to the ground (ξ = 0); the moment that the joint
transmits to the ground, in the reference frame of the ground itself, is

m = Kθ; (38)

the orientation of the constitutive law does not change when the joint strains.
– “node”: the constitutive law is attached to the node (ξ = 1); the moment that the joint

transmits to the ground, in the reference frame of the ground itself, is

m = RbKθ; (39)

the orientation of the constitutive law changes when the joint strains.
– “invariant”: the constitutive law is referred to an orientation that is halfway in between

that of the node and that of the ground (ξ = 1/2). The moment that the joint transmits to
the ground, in the reference frame of the ground itself, is

m = R̃Kθ; (40)

also in this case the orientation of the constitutive law changes when the joint strains.

4.1.1 Angular strain joint invariance verification

This section illustrates the use of deformable joints in well-known structural dynamics soft-
ware with respect to their connectivity bias when anisotropic constitutive properties are
considered.

As a reference, a highly orthotropic linear constitutive matrix,

K =
⎡

⎣
k′′

1 0 0
0 k′′

2 0
0 0 k′′

3

⎤

⎦ , (41)

is considered, with k′′
1 = 1.0, k′′

2 = 10.0, and k′′
3 = 100.0 Nm/radian. This matrix is

used to model an angular joint with MBDyn’s deformable hinge element, with
Abaqus/Standard’s JOINTC element, and with MSC/ADAMS’ FIELD element for com-
parison purposes. Results are reported in Table 1, and discussed in the following.

For the case of a joint attached to the ground, when a unit moment slightly skewed by an
angle α = 0.01 radian from the principal direction 1 is applied, namely

m =
⎧
⎨

⎩

0
sinα

cosα

⎫
⎬

⎭ , (42)

an analytical solution is readily available. No attached analytical solution could be found for
a joint attached to the floating node when a unit moment about global axis 3 is applied. The
numerical solution of (39) with the moment of (42) is thus reported as reference. Similarly,
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Table 1 Simple angular strain joint: comparison between skewed torque results (components of Euler vector
in radians)

“ground” “node” “invariant”

analytical, MSC/ADAMS analytical, MSC/ADAMS

MBDyn, MBDyn analytical,

Abaqus Abaqus MBDyn

θx 0. 0.00000500 0.00082223 0.00082268 0.00043958

θy 0.00099998 (sinα/k′′
2 ) 0.00099997 0.00091817 0.00091403 0.00097812

θz 0.00999950 (cosα/k′′
3 ) 0.00999950 0.00999958 0.00999920 0.00999952

no invariant analytical solution could be found for a joint whose constitutive properties are
referred to the halfway orientation between the nodes when a unit moment about global axis
3 is applied. Therefore, the numerical solution of (40) with the moment of (42) is reported
as reference.

The attached angular spring element considered in this application is implemented in
MBDyn, with the limitation described in footnote 2, by adding, on top of a spherical joint
(a spherical hinge joint element of MBDyn’s library), a standard (i.e., attached) de-
formable hinge joint element with a linear elastic generic (i.e., linear and
anisotropic) constitutive law using the matrix of (41). Results obtained for the three different
cases are coincident with those of the “analytical” columns of Table 1. The analysis confirms
that the very same result is obtained after inverting the order of the connected nodes in the
multibody model definition. Note that the invariant solution lies somehow in between the
two attached cases.

The JOINTC element yields a rotation essentially coincident with the analytical and
numerical solutions obtained by the proposed formulation in the invariant case. This result
is expected, in view of the discussion presented in Appendix A, since the magnitude of the
resulting angle, θ = 0.01005686 radian, is limited.

The attached angular spring element can be obtained in MSC/ADAMS by adding a
FIELD element on top of a spherical hinge joint. The documentation warns the reader that
the element assumes small relative rotations, and the software sometimes warns the user
when this assumption is violated. This clearly indicates that the FIELD element is not in-
tended to withstand large relative rotations. There is no mention of the non-invariance of
this element with respect to connectivity. No invariant formulation is available to the au-
thors’ knowledge. MSC/ADAMS results show a very good agreement5 in the “ground” and
“node” attached cases. This allows to infer that MSC/ADAMS’ FIELD element implements
angular springs in the attached form.

4.1.2 Angular strain behavior of homogeneous isotropic parallelepiped

A solid 3D model of a simple parallelepiped, shown in Fig. 2, is considered. The points
indicated with A and B in the figure represent the locations of the nodes of the corresponding
multibody model, a and b in the formulas. The side centered by each point is constrained to
move rigidly.

5The difference on the last digits with respect to the reference results is possibly related to the fact that the
relative orientation vector was computed from the Euler’s parameters output by MSC/ADAMS with 6-digit
accuracy.
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Fig. 2 Parallelepiped: sketch of
the problem

Table 2 Properties of the parallelepiped model

Property Value Units

Base width (axis 1) a 5.0 m

Height (axis 2) b 30.0 m

Base length (axis 3) c 5.0 m

Young’s Modulus E 1.0 N/m2

Poisson’s Modulus ν 0.3

Principal linear compliance 1 1/k′
1 2.92620 × 10−2 m/N

Principal linear compliance 2 1/k′
2 9.14059 × 10−2 m/N

Principal linear compliance 3 1/k′
3 1.26005 × 10−1 m/N

Principal angular compliance 1 1/k′′
1 1.59343 × 10−3 radian/(Nm)

Principal angular compliance 2 1/k′′
2 1.43837 × 10−2 radian/(Nm)

Principal angular compliance 3 1/k′′
3 4.00635 × 10−4 radian/(Nm)

The geometrical and constitutive properties of the model are illustrated in Table 2. The
parallelepiped is made of homogeneous isotropic material. The model has been analyzed
with Abaqus/Standard, to obtain a static characterization in terms of linear and angular
strain measures as functions of the applied force and moment. Table 2 also illustrates the
resulting compliance properties. The simple manipulations required to obtain the decoupled
linear and angular compliances shown in the table are detailed in Sect. 4.2. The orthotropy of
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Fig. 3 Parallelepiped:
component θ2 of rotations
obtained by different angular
strain joint models and nonlinear
3D FEA for a moment not
aligned with the principal axes (0
to 1 Nm). “Ground” and “node”
refer to the attached case,
respectively connected to the
grounded and to the floating node

the structural component appears to be quite pronounced. This problem is not representative
of any real artifact; it is only provided as a simple example of how the features of the pro-
posed formulation can capture the details of the behavior of a nontrivial elastic deformable
component.

Thanks to its symmetries, the principal axes can be easily identified as the axes orthog-
onal to the sides, intersecting the sides in their center. A side normal to axis 1 is grounded,
and the opposite one is constrained to act as a rigid body, connected to a free node.

When a nonlinear 3D FE analysis of the same problem is performed, applying to the
unconstrained side a moment about an axis nearly parallel to axis 1 (the one with the in-
termediate stiffness), but with a minimal component about axis 3 (the one with the largest
stiffness), namely

m =
⎧
⎨

⎩

cosα

0
sinα

⎫
⎬

⎭ , (43)

with tanα = 0.01, the rotation reported in Fig. 3 is obtained for component θ2 of the rotation
vector. As expected, the other components, θ1 and θ3 (not shown in the figure), which cor-
respond to the non-null components of the moment m, are indistinguishable from the linear
case. The figure shows that the nonlinear analyses exhibit a nearly parabolic perturbation
about axis 2, which is not directly loaded by the moment of (43), with the notable excep-
tion of the attached case when the constitutive properties are referred to the grounded node
(indicated as “MBDyn ground”).

When the invariant connectivity is used along with the linear constitutive properties of
Table 2, the 3D FEA results are coincident with the curves obtained by the proposed angular
joint implementation. Note that a purely linear analysis, also shown in Fig. 3, would have
entirely missed the rotation about axis 2, which is small compared to those about axes 1
and 3 (between 1 and 4 orders of magnitude within the load range showed in the figure).
Also, note that in case the attached formulation is used, but the constitutive properties are
related to the orientation of the floating node (indicated as “MBDyn node” in the figures),
the rotation component θ2 would be approximately twice that resulting from the 3D FEA.

It is also worth mentioning that the results obtained with Abaqus/Standard’s JOINTC
element, not shown in Fig. 3, are coincident with those obtained with the 3D FEA and with
the proposed invariant formula. The formulation of the JOINTC element is presented in
Appendix A.

In conclusion, when linear elastic constitutive properties and linear elastic materials are
considered, and the system is subjected to limited strains, the complexity of the problem is
essentially dominated by the geometrical nonlinearity related to the finiteness of rotations.
In this case, the proposed invariant formulation is consistent with nonlinear 3D FEA. On
the contrary, the attached formulation, commonly used in lumped deformable component
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models, could lead to either underestimating or overestimating the couplings introduced by
the finiteness of rotations, depending on which node the constitutive properties are referred
to.

When strains are no longer limited, the behavior of the proposed formulation departs
from that of the nonlinear 3D FEA. To be able to yield more accurate results, the constitutive
properties of the lumped component need to account for the nonlinear behavior of the actual
component. This aspect is beyond the scope of the present work, and will be the subject of
future activity.

Buckling may arise when a moment about a direction of larger stiffness can be resisted by
the joint by twisting about a direction orthogonal to that moment, so that a lower energy state
can be reached by the system by actually bending about a direction with smaller stiffness.

The perturbation of the moment of (37) yields

δm = R
(
θ̃(ξ)

)(
K − ξ(Kθ) × �

(
θ̃(ξ)

)T )
δθ , (44)

where the property

R(θ)T �(θ) = �(θ)T (45)

of matrix � has been exploited (see [26]). The occurrence of buckling is indicated by

det
(
K − ξ(Kθ) × �

(
θ̃(ξ)

)T ) = 0. (46)

In configuration “ground,” there is no possibility of buckling. On the contrary, config-
urations “node” and “invariant” are potentially prone to buckling. The analytical solution
for the buckling of an orthotropic angular spring has been obtained by means of a symbolic
manipulator when the moment is applied about a principal axis. The limit moment values in
the node and invariant cases of this problem are 830.4555 and 415.2378 Nm, respectively.

Figure 4 illustrates the components of the rotation of the floating node when a static
analysis is performed with MBDyn. The perturbation in the orientation of the moment, (43),
triggers the instability while avoiding the singularity in the stiffness matrix. The rotation
about axis 1 remains almost linear until buckling occurs; from that point on it almost settles.
The rotation about axis 3 quickly departs from linearity, initially diverging while approach-
ing buckling, and eventually settling to a nearly linear shape with much larger slope. The
rotation about axis 2, which started as nearly parabolic according to Fig. 3, after the buck-
ling eventually settles to a nearly constant value. It is worth noticing that the rotation about
axis 2 obtained by the invariant connectivity at some point overcomes that obtained by the
connectivity model that refers the constitutive properties to the floating node, and almost
doubles it. No buckling occurs when the constitutive properties are attached to the ground.
The numerical experiment confirms that for the invariant case the buckling occurs at twice
the moment required by the attached case.

The different formulations show a radically different qualitative and quantitative behav-
ior. As a consequence, the choice of the most appropriate connectivity model could be of
paramount importance for the correct simulation of dynamical systems.

4.1.3 Angular strain behavior of homogeneous isotropic frustum

In order to assess the suitability of the proposed formulation in case the layout of the ac-
tual component is not symmetric with respect to the two nodes it connects, the (pyramidal)
frustum illustrated in Fig. 5 has been modeled. Its properties are summarized in Table 3.
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Fig. 4 Parallelepiped: rotations
obtained by different angular
strain joint models for a large
moment not aligned with the
principal axes (0 to 1800 Nm).
“Ground” and “node” refer to the
attached case, respectively
connected to the grounded and to
the floating node

Fig. 5 Frustum: sketch of the problem
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Table 3 Properties of the frustum model

Property Value Units

Height (axis 1) a 10.0 m

Base length (axis 2) b 30.0 m

Base width (axis 3) c 5.0 m

Top length (axis 2) b′ 10.0 m

Top width (axis 3) c′ 5.0 m

Young’s Modulus E 1.0 N/m2

Poisson’s Modulus ν 0.3

Principal angular compliance 1 1/k′′
1 6.39502 × 10−2 radian/(Nm)

Principal angular compliance 2 1/k′′
2 1.08390 × 10−1 radian/(Nm)

Principal angular compliance 3 1/k′′
3 1.28715 × 10−2 radian/(Nm)

Fig. 6 Frustum: component θ2
of rotations obtained by different
angular strain joint models and
by nonlinear 3D FEA for a
moment not aligned with the
principal axes (0 to 1 Nm).
“Ground” and “node” refer to the
attached case, respectively
connected to the grounded and to
the floating node

Figure 6 shows the result of the nonlinear 3D FEA compared to the results obtained by the
proposed formulation. Note that when the invariant form is considered, a slight difference
appears with respect to the nonlinear 3D FEA. However, a much better correlation can be
found by fine tuning the parameter ξ that determines what weighted orientation the linear
elastic constitutive properties of the lumped deformable component are referred to. In this
case, a value ξ = 0.55 (namely, biased toward the top of the frustum) yields the expected
results.

4.2 Simple linear/angular strain joint

Consider the 6D (linear and angular strain) compliance matrix F of a generic joint, obtained
by independently loading with unit forces and moments one end, while keeping the other
clamped, namely

F =
[

Fuf Fum

Fψf Fψm

]
. (47)

The antidiagonal blocks Fum, Fψf(= F
T
um) couple moment to linear strain and force to an-

gular strain. An attempt to decouple the linear from the angular behavior requires a linear
transformation that redefines the moments in terms of the applied forces, namely

{
f

m

}
=

[
I 0
A I

]{
f∗

m∗

}
, (48)
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which, according to the virtual complementary work principle, implies that

{
u∗
ψ∗

}
=

[
I AT

0 I

]{
u
ψ

}
. (49)

According to (48) and (49), the compliance matrix becomes

F
∗ =

[
I AT

0 I

][
Fuf Fum

F
T
um Fψm

][
I 0
A I

]
. (50)

The transformation matrix A is computed by setting to zero either of the antidiagonal blocks
of the transformed compliance matrix, namely A = −F

−1
ψmF

T
um. Only in case A is skew-

symmetric, and thus A = x × , the transformation corresponds to moving the joint location
by x from the free node, in order to decouple forces and moments. The resulting compliance
matrix is block-diagonal.

This procedure is not required since the implementation allows fully coupled 6D de-
formable components; however, it might be desirable in order to highlight the subtleties of
the joint’s behavior.

4.2.1 Linear/angular strain behavior of homogeneous isotropic parallelepiped

Consider again the parallelepiped of Fig. 2; the 6D compliance matrix, obtained by inde-
pendently loading with unit forces and moments the free side normal to axis 1 of the finite
element model, is

F =

⎡

⎢⎢⎢⎢⎢⎢⎣

2.926e−2 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.000e+0
0.000e+0 9.391e−2 0.000e+0 0.000e+0 0.000e+0 1.002e−3
0.000e+0 0.000e+0 0.216e+0 0.000e+0 −3.596e−2 0.000e+0
0.000e+0 0.000e+0 0.000e+0 1.593e−3 0.000e+0 0.000e+0
0.000e+0 0.000e+0 −3.596e−2 0.000e+0 1.438e−2 0.000e+0
0.000e+0 1.002e−3 0.000e+0 0.000e+0 0.000e+0 4.006e−4

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(51)

The transformation matrix A is skew-symmetric (it is not, for example, in the case of the
frustum); the position that decouples forces and moments appears to be x = {−2.5,0.0,0.0}
m with respect to the point on the free side the compliance matrix was initially referred to,
corresponding to the centroid of the parallelepiped, as one would expect. The corresponding
principal compliance values have already been presented in Table 2.

The subsequent analysis shows the behavior of the parallelepiped when loaded at this
special point. When a combination of compression in direction 1 and shear in direction 3,
of equal magnitude, are applied to the problem, the system strains in the direction of the
load, and the behavior is essentially linear, since the forces yield relatively small strains.
Also, due to the orthotropy of the problem, the parallelepiped appears to bend about axis 2,
as shown in Fig. 7, where the abscissa contains the magnitude of the force. This bending,
however, is absent when the constitutive properties are attached to the ground, or excessive
when the constitutive properties are attached to the floating node. Only the proposed formu-
lation seems to capture the correct amount of bending. Note that even Abaqus/Standard’s
JOINTC element (not shown in the figure) either misses or overestimates the behavior of
the component, resulting in the same behavior of the attached formulation, as opposed to
the case of pure moment discussed in Sect. 4.1.2.
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Fig. 7 Parallelepiped:
component θ2 of rotations when
loaded by a force that is
compressing in direction 1 (u1),
and shearing in direction 3 (u3)

Fig. 8 Elastomeric bearing: sketch of the problem

4.2.2 Elastomeric bearing

This application addresses the model of an elastomeric bearing, illustrated in Fig. 8. It con-
sists in two rigid spherical bowls, whose interstice is filled with isotropic material. A typical,
critical application of this bearing occurs in the helicopter industry to connect helicopter ro-
tor blades to the hub.

In terms of configuration- and history-dependent constitutive laws, this example does
not address the requirements to model the behavior of real elastomeric bearings, which
is far from linear elastic. However, the validity of what follows is not diminished by this
consideration, given the clear separation between connectivity and constitutive properties
pursued by the proposed formulation.

Because of its design, the linearized characterization of the component presents or-
thotropic constitutive properties. As a consequence, an incorrect modeling of the connec-
tivity of the lumped deformable component would suffer from the problems highlighted
in this work. To the authors’ knowledge, none of the rotorcraft aeromechanics nor of the
general-purpose multibody software typically used for this type of analysis, except MB-
Dyn since version 1.3 [25], can model this type of lumped deformable components with the
intrinsic connectivity properties proposed in this work.

The compliance matrix obtained from the 3D FEA, decoupled as illustrated in Sect. 4.2,
yields the compliance properties of Table 4. The reference point lies along the joint’s sym-
metry axis, slightly below the cut plane (14.7488 m from the plane tangent to the outer
spherical bowl at the intersection with the symmetry axis). The constitutive properties of
the structural component are isotropic in the plane normal to axis 2, and the orthotropy is
not quite pronounced. Nonetheless, the component’s behavior differs significantly from that
of the parallelepiped considered in Sect. 4.2.1, due to its intrinsic lack of planar symmetry
normal to the axis that connects the two nodes.

Figure 9 illustrates the unexpected bending behavior of the elastomeric bearing when
subjected to simultaneous compression and shear: the nonlinear bending about axis 3 cou-
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Table 4 Properties of the elastomeric bearing model

Property Value Units

Young’s Modulus E 1.0 × 105 N/m2

Poisson’s Modulus ν 0.4

Principal linear compliance 1 1/k′
1 4.9357 × 10−8 m/N

Principal linear compliance 2 1/k′
2 3.4801 × 10−8 m/N

Principal linear compliance 3 1/k′
3 4.9357 × 10−8 m/N

Principal angular compliance 1 1/k′′
1 6.3072 × 10−10 radian/(Nm)

Principal angular compliance 2 1/k′′
2 5.7187 × 10−10 radian/(Nm)

Principal angular compliance 3 1/k′′
3 6.3072 × 10−10 radian/(Nm)

Fig. 9 Elastomeric bearing:
component θ3 of rotations
obtained by different
linear/angular strain joint models
and by nonlinear 3D FEA for
shear in principal direction 1 and
compression in principal
direction 2

pled to the applied forces is completely missed by all formulations, either attached or in-
variant. However, the intrinsic formulation allows to capture the behavior predicted by the
nonlinear 3D FEA by selecting a rather unusual ξ = −0.435917, which means that the orien-
tation in which the constitutive properties are evaluated must be significantly biased toward
the first node, on the opposite side with respect to the second node. Moreover, the virtual
point where the constitutive forces are applied when the component is strained, with the
caveat of (34), moves beyond the second node, along the direction of the relative distance d,
by an amount that is almost half the length of d itself.

The presented behavior has been assessed by analyzing different orientations of the ap-
plied force, resulting in different ratios between the compression and the shear force com-
ponents. The value of ξ that allows the proposed formulation to match the results predicted
by the 3D FEA is insensitive to the orientation of the force, thus appearing as an invariant
property of the structural component. The bending rotation associated to the simultaneous
presence of compression/tension and shear loads is proportional to the product of the two
components of the loading force. In fact, a bending moment about axis 3 results from the
product of the shear force along axis 1 by the arm represented by the displacement along
axis 2 caused by the compression/tension force, which is essentially linear. This causes the
observed parabolic behavior of the bending rotation component θ3 with respect to the mag-
nitude of the force, which vanishes in the case of pure compression/tension or shear.

The proposed results, although interesting, clearly show that the magnitude of the ro-
tation induced by this second-order coupling in most cases can be considered negligible.
This, however, is related to the choice of the geometrical and mechanical properties of the
component.
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5 Concluding remarks

This work illustrates how the formulation of lumped deformable components may depend
on the reference the constitutive properties are expressed in when finite rotations need to be
accounted for, as in nonlinear multibody dynamics.

A formulation of generic lumped linear and angular strain deformable components, that
intrinsically does not depend on the order in which the element’s connectivity is expressed,
is presented. The proposed formulation has been implemented in the free general-purpose
multibody analysis software MBDyn.

Its application to the modeling of arbitrarily anisotropic structural components is illus-
trated. A consistent approach for the computation of the constitutive properties of lumped
deformable components from nonlinear finite element analysis is proposed and illustrated
by means of examples of increasing complexity.

The outcome of the present work can be summarized in the following points:

1. It is important to have reliable lumped components that mimic the behavior of complex,
detailed 3D systems for use in multibody analysis.

2. Nonlinearities related to geometrical aspects (finite rotations) may be separated from
constitutive ones, when possible; this is the case when strains are small, which does not
imply that the relative displacement and rotation between the connected nodes are small
as well.

3. When strains are no longer small, nonlinearities in the constitutive law, related to strain
finiteness, need to be accounted for; this is outside the scope of the present work, and
will be addressed in future research.

4. The proposed invariant formula, with ξ = 1/2 in (10), allows to naturally deal with the
geometrical nonlinearity of deformable components with symmetric layout.

5. The possibility to use an arbitrary value for ξ allows to tune the behavior of the
lumped component to match the experimental behavior of non-symmetric layouts of
the deformable components, by referring the constitutive properties to a suitably cho-
sen weighted orientation.

6. At the very least, the proposed invariant formula prevents trivial modeling errors, like
swapping the nodes that are connected by the lumped deformable component.

The main advantages of the proposed formulation over existing ones are:

(a) It naturally handles second-order couplings related to the geometry of finite rotations
in anisotropic angular components (like Abaqus/Standard’s JOINTC, but without the
limitation to small rotations).

(b) It naturally handles second-order couplings related to the geometry of finite displace-
ments and rotations in linear/angular components (unlike any other implementation
known to the authors).

(c) It allows to mimic the behavior of components with arbitrary shape, provided the appro-
priate value of ξ can be determined (this feature is considered unique by the authors).

(d) It is based on an intrinsic definition of the linear and angular strains, and thus consistent
nonlinear constitutive laws can be built upon its connectivity for arbitrarily large strain
values.

To the authors’ knowledge, there exists no other implementation of lumped deformable
components that uses the relative rotation as the definition of the angular strain. This choice
allows to separate geometrical from constitutive aspects in the modeling of components that
are subjected to large relative displacements and rotations. This separation is expected to
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ease the identification of appropriate constitutive laws of arbitrary complexity, and thus to
improve the overall fidelity of multibody analysis.
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Appendix A: Abaqus/standard’s JOINTC element

The components of the simplified angular strain ψ used by Abaqus/Standard’s JOINTC
connection element [13] are

ψk = 1

2
(eib − eia) · (ejb + eja) (52)

with i = 1,2,3, j = 2,3,1, k = 3,1,2. This corresponds to

ψ = ax(Rrel) (53a)

= sin θ

θ
θ , (53b)

where θ = ‖θ‖, the so-called linear parametrization (see, for example [17]). Clearly, this
expression can be considered a valid approximation of the relative rotation vector θ only for
small values of θ (strictly speaking, the relationship is invertible only for ‖θ‖ < π/2).

The virtual work related to the rotation allowed by this element consists in

δL = δψ · m, (54)

where

δψk = 1

2

(
(ejb + eja) × eia − (eib − eia) × eja

)
θaδ

− 1

2

(
(ejb + eja) × eib + (eib − eia) × ejb

)
θbδ (55)

is the perturbation of the kth element of vector ψ , the simplified angular strain in node
a’s local reference frame. As such, the moments applied by the component to the nodes it
connects are

mi = ∂

∂θ iδ

δL =
(

∂ψ

∂θ iδ

)T

m, (56)

i = a, b. The gradient of the angular strain ψ with respect to the nodes’ angular degrees of
freedom that left-multiplies the moment m in (56) introduces the coupling that makes this
formulation behave in a manner similar to the 3D analysis in Fig. 3. In fact, it plays the role
of matrix R̂ in (19). The symmetry of (53a) shows that this formulation is not biased towards
any of the nodes connected by the deformable component, so it has invariance properties
similar to those of the proposed formula when ξ = 1/2. As a consequence, a constitutive
law experimentally or numerically derived as a function of the relative rotation vector θ
could be transformed for ψ for relatively small values of θ .

It is worth noticing that with respect to the linear strain, the JOINTC element does not
exhibit the invariance properties of the proposed formulation with respect to node connec-
tivity.
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Appendix B: Proof of (28)

Consider (12); its perturbation yields

δRrelRT
rel = θ δ ×

= δR̃
(
θ̃(ξ)

)
R̃

(
θ̃(ξ)

)T

+ R̃
(
θ̃(ξ)

)
δR̃

(
θ̃(1 − ξ)

)
R̃

(
θ̃(1 − ξ)

)T
R̃

(
θ̃(ξ)

)T

= θ̃ δ(ξ) × + R̃
(
θ̃(ξ)

)
θ̃ δ(1 − ξ) × R̃

(
θ̃(ξ)

)T
, (57)

or

θ δ = θ̃ δ(ξ) + R̃
(
θ̃(ξ)

)
θ̃ δ(1 − ξ)

= ξ�(ξθ)�(θ)−1θ δ + (1 − ξ)R̃
(
θ̃(ξ)

)
�

(
(1 − ξ)θ

)
�(θ)−1θ δ (58)

Define

Ĩ(ξ) = ξ�(ξθ)�(θ)−1; (59)

(58), which is valid for an arbitrary value of θ δ , implies

I = Ĩ(ξ) + (1 − ξ)R̃
(
θ̃(ξ)

)
�

(
(1 − ξ)θ

)
�(θ)−1. (60)

Now, from (12),

R̃
(
θ̃(ξ)

) = RrelR̃
(
θ̃(1 − ξ)

)T
, (61)

and, according to (45),

Rrel = �(θ)−T �(θ), (62)

while

R̃
(
θ̃(1 − ξ)

)T
�

(
(1 − ξ)θ

) = �
(
(1 − ξ)θ

)T
. (63)

Equation (60) becomes

I = Ĩ(ξ) + (1 − ξ)�(θ)−T �(θ)�
(
(1 − ξ)θ

)T
�(θ)−1

= Ĩ(ξ) + (1 − ξ)�(θ)−T �
(
(1 − ξ)θ

)T
�(θ)�(θ)−1

= Ĩ(ξ) + Ĩ(1 − ξ)T . (64)

Appendix C: Special properties of matrix R̃

The proposed formulas, in their practical implementation, will eventually need to be per-
turbed in order to compute the components’ contribution to the Jacobian matrix of the prob-
lem, if they are incorporated in an implicit solution procedure. A detailed description of the
related operations is given in MBDyn’s theory manual [27].

A perturbation of the relative orientation yields

θ δ × = δRrelRT
rel
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= δR̃R̃
T + R̃δR̃R̃

T
R̃

T

= θ̃ δ × + R̃θ̃ δ × R̃
T ; (65)

as a consequence,

θ̃ δ = (I + R̃)−1θ δ. (66)

Note that matrix (I + R̃) is singular for ‖θ̃‖ = π radian, which introduces a limitation on
the amount of angular strain the linear and the linear/angular deformable components can
withstand.

Matrix (I + R̃), whose inverse is at the core of the definition of matrix Î in (32), has

the interesting property of being invariant with respect to a pair of rotations R̃ and R̃
T

,
regardless of their order. In fact, the following properties can be easily verified:

R̃
T
(I + R̃) = (

I + R̃
T )

, (67)

(I + R̃)R̃
T = (

I + R̃
T )

. (68)

Another important property is:

I − (I + R̃)−1 = (
I + R̃

T )−1
. (69)

These properties may be interpreted in view of the affinity of matrix (I+R̃) with Cayley’s
parametrization of rotations. In fact, the parametrization of rotations that exploits Cayley’s
transform, as described in [28], is based on the property

R̃ = (I + ζ × )(I − ζ × )−1 (70a)

= (I − ζ × )−1(I + ζ × ), (70b)

a special case of (45), which states that either of the products at the right-hand side of (70)
yields an orthonormal matrix with positive unit determinant.

The relationship

(I + R̃)−1 = 1

2
(I − ζ × ) (71)

can be obtained with some manipulation of either of (70), remembering that Cayley’s para-
metrization consists in

ζ = 1

θ̃
tan

(
θ̃

2

)
θ̃ . (72)

Equation (71) represents a computationally efficient manner to compute the inverse of ma-
trix (I + R̃) avoiding a (trivial: 3 × 3) matrix inversion, at the cost of evaluating a trigono-
metric function.
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