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Abstract In this paper, finite elements based on the absolute nodal coordinate formulation
(ANCF) are studied. The formulation has been developed by various authors for the dy-
namical simulation of large-displacement and large-rotation problems in flexible multibody
dynamics. This study introduces a procedure to track the general geometrical properties of
ANCF elements back to their prototypes in the conventional finite-element method (FEM),
which deals with small-displacement problems. In this study, it is shown that each known
ANCF element can be derived from a conventional FEM using a universal transform. More-
over, some important static and dynamic properties of the elements in small-displacement
problems are automatically preserved. In the past, the authors of each newly proposed ANCF
element have made unnecessary efforts to show the consistency of the above mentioned
properties.

Keywords Finite elements · Large displacements · Absolute nodal coordinates

1 Introduction

During the past few decades, a number of researchers have contributed to large deformation
formulations for multibody applications. One of the remarkable approaches in this area,
the absolute nodal coordinate formulation, has been introduced as a numerical tool for the
design process of mechanical systems. The absolute nodal coordinate formulation is a finite
element procedure which is capable of describing large rotations properly and which does
not require the use of any incremental integration methods in order to satisfy the principle
of virtual work and energy.

O. Dmitrochenko (�) · A. Mikkola
Department of Mechanical Engineering, Lappeenranta University of Technology, Skinnarilankatu 34,
53851 Lappeenranta, Finland
e-mail: Oleg.Dmitrochenko@lut.fi

A. Mikkola
e-mail: Aki.Mikkola@lut.fi

mailto:Oleg.Dmitrochenko@lut.fi
mailto:Aki.Mikkola@lut.fi


324 O. Dmitrochenko, A. Mikkola

In the ANCF, finite elements are defined without the use of any intermediate reference
frame. Instead, the elements employ absolute position coordinates together with indepen-
dent global slopes that are, in fact, partial derivatives of the position vector with respect to
the element coordinates [1]. The use of global slope coordinates allows describing an ar-
bitrary rigid body motion without using any rotation matrix but employing the matrix of
global shape functions and the vector of global nodal coordinates. This unique feature leads
to a linear representation of a position vector of an arbitrary material point and, as a con-
sequence, to a constant mass matrix in both two- and three-dimensional cases [2, 3]. An
additional advantage of the constant description of the mass matrix is that the vector of iner-
tia forces that depends quadratically on velocities vanishes in the expression of the equations
of motion.

Research on the absolute nodal coordinate formulation can be categorized into two large
groups. In the first group, the formulation is used to describe conventional (or thin) beam and
plate elements that cannot capture transverse shear deformation. The absolute nodal coor-
dinate formulation is inherently developed for these types of elements. In this approach, an
element is parameterized as a centerline of a beam or a mid-surface of a plate by employing
global slope coordinates in the element longitudinal direction together with global position
coordinates [1, 4]. In the second group of research, ANCF elements capable of describing
transverse shear deformation are developed and utilized in practical applications [5, 6]. In
this approach, the shear deformation can be accounted for by parameterization of the ele-
ment as a volume by introducing additional slopes in the element transverse direction. This
makes it straightforward to define elastic forces using a continuum mechanics approach [3].
The feature of a constant mass matrix remains in effect also in the case of shear deformable
elements [7–10].

Analyzing the process of developing new ANCF elements, one can find a number of
interesting features:

– A large number, if not all, of finite elements within the ANCF are developed “from
scratch,” i.e., without any relation to earlier findings of the finite element method. It is
noteworthy that the ANCF has many similarities with the conventional finite element ap-
proach.

– After the authors have developed equations of motion of a new ANCF element, they
usually accomplish the element validation with simple, even primitive tests, such as:
(a) checking zero strain after a rigid-body rotation/translation; (b) comparing small-
displacement solutions with known solutions and with known finite elements; or (c) com-
paring eigenfrequencies and eigenmodes.

However, an analysis presented in the current paper shows that many ANCF elements,
at least those that use only longitudinal slopes, can be formally constructed from existing
structural elements from a conventional finite element approach. Moreover, any structural
element from a conventional FEM that uses only transverse displacements and slopes as a
description of coordinates can be transformed into a corresponding ANCF element. After
such a transition, some important static and dynamic properties of the new elements are
preserved with respect to the original element. The authors assume that the shear deformable
ANCF elements also possess such FEM-inherited properties. However, the validation of this
claim is under way and will be a topic of future research.

The paper is organized as follows. In Sect. 2, known examples of generating ANCF
elements from existing FEM elements are presented to introduce preliminary material for
the formal definition of the general procedure on how to create new ANCF elements. In
Sect. 3, this formal generalization procedure is formulated for all finite elements. Moreover,
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Fig. 1 Conventional FEM beam
element

in the section, the transformation of terms of equations of motion after such a transition
is thoroughly analyzed. Section 4 includes a discussion about properties that are preserved
after the transformation is accomplished.

2 Examples of the transition from FEM to ANCF

In this section, examples of existing finite elements based on absolute nodal coordinates will
be presented. In the examples, the sequence of element creation as well as a description of
the element inherited root from conventional elements is discussed.

2.1 Beam elements

2.1.1 Original FEM beam element

The transformation from conventional elements to elements based on the absolute nodal
coordinate formulation can be illustrated by giving a simple example of the conventional
planar beam based on the Euler–Bernoulli theory, as depicted in Fig. 1, [11]. The element has
two nodes. The length of the element in a straight undeformed configuration is denoted by �.
The arbitrary configuration of the element centerline can be defined using four variables: two
degrees of freedom per each node:

– Transverse displacements u0 and u�,
– Nodal slopes represented by derivatives u′

0 = du0
dx

= tan θ0 and u′
� = du�

dx
= tan θ�.

The vertical displacement of an arbitrary point of the centreline given by a horizontal
coordinate x = 0 . . . � can be computed using the interpolation technique as follows:

y(x) = s1(x)u0 + s2(x)u′
0 + s3(x)u� + s4(x)u′

�, (1)

where s1, . . . , s4 are the shape functions for beams that can be expressed as

s1(x) = 1 − 3ξ 2 + 2ξ 3, s2(x) = �(ξ − 2ξ 2 + ξ 3),

s3(x) = 3ξ 2 − 2ξ 3, s4(x) = �(ξ 3 − ξ 2),
ξ = x/� . (2)

It is worth mentioning that the set of generalized coordinates contains transverse com-
ponents of displacements only, and the coordinates cannot describe any horizontal displace-
ments of the centerline. As a consequence, this particular model assumes small displace-
ments and small deformations of any part of the centerline. This means, in practice, that all
generalized coordinates, namely displacements u0 and u� and slopes u′

0 and u′
�, are assumed

to be small.
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One can rewrite (1) in the matrix form as

y(x) = s(x) · u, (3)

introducing the following row matrix of shape functions:

s = {s1 s2 s3 s4}, (4)

and the corresponding column matrix of generalized coordinates

u =

⎧
⎪⎪⎨

⎪⎪⎩

u0

u′
0

u�

u′
�

⎫
⎪⎪⎬

⎪⎪⎭

or u =

⎧
⎪⎪⎨

⎪⎪⎩

u1

u2

u3

u4

⎫
⎪⎪⎬

⎪⎪⎭

. (5)

Another notation for geometric relationship (1) can be expressed as follows:

y =
4∑

k=1

skuk, (6)

where variable uk refers to the kth component of vector u in (5).

2.1.2 Planar ANCF beam element

In order to specify arbitrary displacements of a beam, the beam centerline can be parameter-
ized using the arc parameter p = 0 . . . � while introducing two displacement fields for x(p)

and y(p), as shown in Fig. 2. The displacement field can be expressed as follows:

x(p) = s1(p)x0 + s2(p)x ′
0 + s3(p)x� + s4(p)x ′

�

y(p) = s1(p)y0 + s2(p)y ′
0 + s3(p)y� + s4(p)y ′

�.
(7)

Equation (7) can be written in matrix form as follows:

r(p) = S(p) · q, (8)

where

r =
{

x

y

}

, S =
[

s1 0 s2 0 s3 0 s4 0

0 s1 0 s2 0 s3 0 s4

]

, q =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0

y0

x ′
0

y ′
0

x�

y�

x ′
�

y ′
�

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (9)

The shape functions introduced in (2) are also used in (7). It is important to note that the
interpretation of generalized coordinates is similar: x0, y0 and x�, y� are x- and y- displace-
ments of the two nodes; when values x ′

0, y
′
0, x

′
�, and y ′

� are slopes of the x- and y-fields with
respect to the p-axis.
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Fig. 2 Interpolation of x and y

coordinates w.r.t. arc coordinate
p in ANCF

Fig. 3 Large-displacement and
large-slope ANCF element [12]

Note that the slopes x ′ = dx/dp and y ′ = dy/dp are still tangents with respect to the
p-axis, but they are also proportional to directing cosines to axes x and y, respectively.
Then, introducing the displacement and slope vectors at the end points r0 = {x0 y0}T, r′

0 =
{x ′

0 y ′
0}T, r� = {x� y�}T, and r′

� = {x ′
� y ′

�}T, the position of an arbitrary point of the beam can
be obtained as shown in Fig. 3.

In terms of the vector of generalized coordinates, q in (8) can be redefined as follows:

q =

⎧
⎪⎪⎨

⎪⎪⎩

r0

r′
0

r�

r′
�

⎫
⎪⎪⎬

⎪⎪⎭

or q =

⎧
⎪⎪⎨

⎪⎪⎩

q1

q2

q3

q4

⎫
⎪⎪⎬

⎪⎪⎭

, (10)

and the expression for the radius vector of an arbitrary point on the beam centerline can be
defined as

r =
4∑

k=1

skqk. (11)

2.1.3 Spatial ANCF beam element

One can note that the set of (1)–(6) resembles relations (7)–(11) in many details. This cir-
cumstance can be extended by giving another example of the spatial beam element proposed
in [13] and [14].

Spatial implementation of the beam centreline can be described using three independent
fields resembling (1) and (7) as:

x(p) = s1(p)x0 + s2(p)x ′
0 + s3(p)x� + s4(p)x ′

�,

y(p) = s1(p)y0 + s2(p)y ′
0 + s3(p)y� + s4(p)y ′

�,
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Fig. 4 Three-dimensional model
of the centerline of a beam

z(p) = s1(p)z0 + s2(p)z′
0 + s3(p)z� + s4(p)z′

�.

The above equation can also be represented using (8) and following the shape function
matrix and vector of nodal coordinates:

r =
⎧
⎨

⎩

x

y

z

⎫
⎬

⎭
, S =

⎡

⎣
s1 0 0 s2 0 0 s3 0 0 s4 0 0
0 s1 0 0 s2 0 0 s3 0 0 s4 0
0 0 s1 0 0 s2 0 0 s3 0 0 s4

⎤

⎦ , q =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0

y0

z0

x ′
0

y ′
0

z′
0

x�

y�

z�

x ′
�

y ′
�

z′
�

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

This 3D version of vector q has the same form as (10), while the only difference is
brought by the number of components in nodal vectors r0 = {x0 y0 z0}T, r′

0 = {x ′
0 y ′

0 z′
0}T,

r� = {x� y� z�}T, and r′
� = {x ′

� y ′
� z′

�}T. These vectors and the structure of the finite element
are visualized in Fig. 4.

To conclude this section, it can be said that (8)–(11) are general in the sense that they can
be implemented in two- and three-dimensional beam elements based on the absolute nodal
coordinate formulation.

Note that the three-dimensional ANCF beam implementation represents the geometry
of the beam centreline only, without describing the orientation of its cross-section. That
means that, in fact, this implementation applies to cable elements only; see a successful
implementation in [14]. Based on this simple representation, various authors, e.g., [12] and
[15], have proposed ANCF modifications of the Euler–Bernoulli beam elements accounting
for cross-section inertia. Relevant publications about beam elements can be found in [16–
18].
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Fig. 5 Hermitean plate bending
element having 16 d.o.f.

2.2 Plate elements

In this section, the procedure of generating new elements in the ANCF is implemented for a
plate bending element. The plate element based on the ANFC uses the Kirchhoff theory of
thin plates.

2.2.1 Original FEM element

The plate element considered in this section is a 16-degree-of-freedom Hermitean rectan-
gle element of length a and width b shown in Fig. 5. Each of its four nodes introduces
four degrees of freedom: e.g., it has a vertical displacement u1 for node 1, two slopes
u′

x1 = (∂u/∂x)1 and u′
y1 = (∂u/∂y)1, and a second-order slope u′′

xy1 = (∂2u/∂x∂y)1. This
implementation of the bending plate element is not the simplest one possible, but it is chosen
in this study to emphasize the possibility to manage the second-order slopes when generat-
ing ANCF elements.

The displacement field is expressed in terms of element nodal coordinates and shape
functions as follows:

z = s(x, y) · u, (12)

s = {s11 s12 s13 s14 s21 s22 s23 s24 s31 s32 s33 s34 s41 s42 s43 s44}, (13)

where two-dimensional shape functions sij = si(x)sj (y) are composed of the shape func-
tions (2) for beams. The vector of nodal coordinates can be written as

u = {
u1 u′

y1 u4 u′
y4 u′

x1 u′′
xy1 u′

x4 u′′
xy4 u2 u′

y2 u3 u′
y3 u′

x2 u′′
xy2 u′

x3 u′′
xy3

}T
.

2.2.2 ANCF plate element

The first thin plate element in the ANCF has been proposed in [4]. It resembles the Her-
mitean plate element described above and is parameterized using the mid-surface r(p1,p2)

as follows:

r = S(p1,p2) · q, (14)

where the shape function matrix can be written as

S = [s11I s12I s13I s14I . . . s41I s42I s43I s44I]. (15)
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Fig. 6 ANCF plate bending
element having 48 d.o.f. [4]

Fig. 7 Triangular plate bending
element in ANCF having 27
d.o.f. [19]

The shape function matrix is composed of the same shape functions as the original plate
element from the previous section. The vector of nodal coordinates can be written as

q = {
rT

1 rT′
1;2 rT

4 rT′
4;2 rT′

1;1 rT′′
1; rT′

4;1 rT′′
4; rT

2 rT′
2;2 rT

3 rT′
3;2 rT′

2;1 rT′′
2; rT′

3;1 rT′′
3;
}T

,

which consists of nodal displacement vectors rk = (r)node k , slope vectors r′
k;l = (∂2r/∂pl)k ,

and of second-order slope vectors r′′
k; = (∂2r/∂p1∂p2)k , see Fig. 6, in which the vectors are

denoted by q = {qT
10 qT

11 qT
12 qT

13 . . . qT
40 qT

41 qT
42 qT

43 }T.
This example is important in demonstrating that nodal coordinates as second derivatives

(or second slopes) can also be adopted for the absolute nodal coordinate formulation.
It is noteworthy that the relation in (14) is applied to ANCF finite elements in this paper.

It is also important to note that matrix S does not depend on coordinates q.
Besides this implementation of plate bending elements in the ANCF, there exist a number

of other implementations including rectangular and triangular plate elements, see Fig. 7. It
is not the focus of this paper to present details of these implementations, but it is worth
pointing out general features of all such elements.

3 The formal procedure of transition from FEM to ANCF

This section is devoted to the generalization of the procedure of transformation of any ex-
isting finite elements which use small transverse displacements and slopes to a new ANCF
element using arbitrary large position vectors and slopes as nodal vectors of degrees of free-
dom. Particular examples of such a transformation have been shown in Sect. 2.

Firstly, the general geometrical aspects of the transformation procedure are considered.
Secondly, detailed modifications in terms of the equations of motion are studied. And finally,
a list of known implementations of the procedure with references is pointed out.
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3.1 Transformation of geometry

Among the geometrical properties, such quantities as the expression of an arbitrary point
of the centerline of a beam or of the mid-surface of a plate must be considered. Also, the
transformation of shape functions and nodal degrees of freedom needs to be accounted for.

Generalizing the examples given in Sect. 2, one can point out the general diagram on
how to accomplish the transformation:

y(x) = s(x) · u (original FEM element)
↓

r(p) = S(p) · q (new ANCF element)
(16)

The formal transition from the set of shape functions s from (3) to the matrix of shape
functions S from (8) can be written as

s = {s1 s2 . . . sN }
↓

S = [ s1I s2I . . . sN I ]
(17)

and the transition from the set of conventional nodal coordinates to the vector of ANCF
nodal coordinates can be written as

u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1

u2
...

uN

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

→ q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q1

q2
...

qN

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (18)

Relations (16)–(18) can be summarized as follows:

y → r = y ⊗ �,

s → S = s ⊗ I, (19)

u → q = u ⊗ �,

where the symbol ⊗ represents the Kronecker product, and � describes the m-dimensional
space. In (19), I is the unity matrix of size m; the value of m is either 2 or 3.

In short form, the formal procedure of the transformation of the FEM element to an ANC
element can be described by the following diagram:

y = s · u (original FEM element)
⊗ ⊗ ⊗
� I � (mapping of the terms)
↓ ↓ ↓
r = S · q (new ANCF element)

(20)
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In index notation, transformation (16) takes the following form:

y =
N∑

k=1

skuk

↓
r =

N∑

k=1

skqk

(21)

Equation (21) explicitly shows that the shape functions remain unchanged during the trans-
formation. As a matter of fact, only small-valued nodal degrees of freedom uk are replaced
by the nodal vectors qk that may take large values.

3.2 Transformation of equations of motion

After the transition procedure from a conventional FEM element to an ANCF element de-
scribed above, the equations of motion of the element needs also to be modified in a way
which allows shedding a light on the static and dynamic properties of the ANCF element.

The dynamics of a mechanical system can be expressed using the Lagrange equation as
follows:

d

dt

∂T

∂ ẋ
− ∂T

∂x
= ∂W

∂x
− ∂U

∂x
, (22)

where T and U are the kinetic and strain energy of the element, while W is the gravity force
potential. The vector of generalized coordinates x represents either vector u in the case of
the conventional finite element, or vector q in the case of the generated ANCF element.

In (22), the transition procedure for terms based on energies T and W are easy to carry
out, particularly in comparison to the transition procedure of the term which depends on
the strain energy U . For this reason, corresponding terms are considered separately in the
following sections.

3.2.1 Transformation of constant terms: mass matrix and gravity forces

Kinetic and virtual energy can be computed in the traditional way as an integral over volume
V of the finite element:

T = 1

2

∫∫∫

V

v · v dm,

(23)

W =
∫∫∫

V

r · g dm,

where dm = ρ dV is the infinitesimal mass element of the body, while ρ and dV are the
element mass density and volume, respectively. Vector g represents the gravity acceleration.
The position and velocity of a particle of the body in (23) can be computed as follows:

r = S · x,
(24)

v = S · ẋ,

where S is either sFEM or SANC, and ẋ denotes either u̇ or q̇, as explained above.
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The substitution of relations (24) into the expression of kinetic energy in (23) leads to
the following representation:

T = 1

2
ẋ ·

[∫∫∫

V

ST · S dm

]

· ẋ. (25)

The expression in the brackets of (25) represents the mass matrix. The mass matrix de-
pends on the shape function matrix only, and for this reason, the matrix remains constant.
Computing the mass matrix in terms of original shape functions represented by a row s and
in terms of ANCF functions given by matrix S, one can find the transformation of the mass
matrix as follows:

MFEM =
⎡

⎢
⎣

m11 · · · m1n

. . .
...

sym mnn

⎤

⎥
⎦ → MANC =

⎡

⎢
⎣

m11I · · · m1nI
. . .

...

sym mnnI

⎤

⎥
⎦ = MFEM ⊗ I. (26)

In (26), the same inertia coefficients mij = ∫∫∫

V
sisj dm appear in both matrices.

The potential function W needed in (23) can be computed as follows:

W =
∫∫∫

V

x · ST · g dm. (27)

Generalized gravity forces can be defined as follows:

Qgrav = ∂W

∂x
=

∫∫∫

V

ST · g dm.

The corresponding transformation rule from the original FEM element to the ANCF element
can be expressed as

Qgrav
FEM =

⎧
⎪⎨

⎪⎩

Q
g
1

...

Q
g
n

⎫
⎪⎬

⎪⎭
→ Qgrav

ANC =

⎧
⎪⎨

⎪⎩

Q
g
1k
...

Q
g
nk

⎫
⎪⎬

⎪⎭
= Qgrav

FEM ⊗ k, (28)

where k denotes the unit vector in the vertical direction, namely k = {0 1 }T in the planar
case or k = {0 0 1 }T in the spatial case. The numerical coefficients Q

g
k = g

∫∫∫

V
sk dm are

the same for the original and the ANCF element.

3.2.2 Elastic forces

The last term in the equations of motion in (22) differs from the previous ones as it is based
on the strain energy of deformation U , which is differently defined in the original finite
element method and in the absolute nodal coordinate formulation.

Without loss of generality, the expression for the strain energy is given using the simplest
case of the Euler–Bernoulli beam element. In the conventional finite element approach, the
strain energy is usually expressed in the form

U = 1

2
EI

∫ �

0
y ′′2 dx, (29)
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where EI is the bending rigidity of the beam, y ′′ is the second derivative of the centerline
deflection, and the integration is performed through the beam arc coordinate x.

Obtaining the shape functions and nodal coordinates as expressed in (3), one can derive
the expression y ′′ = s′′ · u and finally get the value of elastic forces as a gradient of the strain
energy expressed in (29) as follows:

Qelast
FEM = ∂U

∂u
= EI

∫ �

0

∂y ′′

∂u
y ′′ dx =

[

EI
∫ �

0
s′′s′′ dx

]

· u = KFEM · u, (30)

where the expression in the bracket represents the constant stiffness matrix KFEM. It is worth
saying here that the stiffness matrix includes bending rigidity only, since the introduced
Euler–Bernoulli beam does not have longitudinal degrees of freedom.

In the absolute nodal coordinate formulation, the expression for strain energy is more
complicated, as it includes a component due to longitudinal deformations. This is due to the
absolute nature of the coordinates. Thus, the commonly used expression for strain energy
can be written as

U = 1

2
EA

∫ �

0
ε2 dp + 1

2
EI

∫ �

0
κ2 dp, (31)

where ε is the longitudinal deformation of the beam centerline (EA is the tensional rigidity),

ε = 1

2

(
r′ · r′ − 1

)
, (32)

and κ is the transverse curvature of the beam defined as follows:

κ = ‖r′ × r′′‖
‖r′‖3

. (33)

In the latter formulas (32) and (33), primes denote differentiation with respect to the arc
coordinate of the beam. The corresponding vectors can be computed in a straightforward
way as follows:

r′ = S′ · q,

r′′ = S′′ · q.

However, the explicit expression for the strain energy to be computed via (31) is consid-
erably more complicated than the above expression (29) in the case of the FEM element. As
a result, the vector of generalized elastic forces in ANCF is highly nonlinear:

Qelast
ANC = ∂U

∂q
= KANC(q) · q, (34)

where KANC(q) is the nonlinear stiffness matrix, which has, in a general case of arbitrary
large displacements, few common terms with the constant stiffness matrix KFEM of the linear
FEM element. However, assuming the displacements to be small, it is possible to find that
nonzero components of the nonlinear stiffness matrix KANC correspond to elements of the
linear stiffness matrix KFEM; see Sect. 4.2.
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Table 1 Mapping of the structural finite elements of beams and plates from conventional FEM to ANCF

Conventional FEM elements Elements adopted for ANCF

Year, Author(s) N m ℵ Year, Author(s)

– Standard beam element 4 2 8 1996 Shabana [12]

3 12 2006 Dmitrochenko, Yoo et al. [14]

– 1974 Narayanaswami, Adelman [20] 4 2 8 2007 Mikkola, Dmitrochenko [21]

� 1966 Bogner, Fox et al. [22] 16 3 48 2003 Dmitrochenko, Pogorelov [4]

� 1963 Melosh [23] 12 3 36 2005 Dufva and Shabana [24]

	 1988 Specht [25] 9 3 27 2007 Dmitrochenko, Mikkola [19]

	 1971 Morley [26] 6 3 18 2007 Dmitrochenko, Mikkola [19]

♦ 1968 Clough & Felippa [27] 12 3 36 2007 Schwab, Gerstmayr et al. [28]

3.2.3 Transformation of equations of motion: summary

In the preceding paragraphs, it has been shown how some of the important terms of the
equations of motion are changed when one applies the formal transformation rule to obtain
an ANCF element from an existing conventional FEM element. The results obtained above
can be summarized in the following diagram:

MFEM · ü + KFEM · u = Qgrav
FEM (FEM, small displacements u)

⊗ ⊗ ↓ ⊗ ⊗
I � ↓ � I (mapping of terms)
↓ ↓ ↓ ↓ ↓

MANC · q̈ + KANC(q) · q = Qgrav
ANC (ANC, large position vector q)

As one can see, most terms of the equations are transformed in a simple way: namely,
their size is multiplied by 2 or 3 as a result of applying Kronecker’s product ⊗. The only
exception is the stiffness matrix, which is transformed in a rather complicated way using a
nonlinear mapping KFEM → KANC(q).

3.3 Known implementations for thin structural elements

The procedure described above can be considered as the immersion of 1- or 2-manifold
into a two-dimensional space, the number of degrees of freedom N of the source element
is multiplied by m = 2, so that the number of degrees of freedom is ℵ = N · m. The im-
mersion into a three-dimensional space will multiply it by m = 3. The full list of known
implementations of structural ANCF elements is given in Table 1, right-hand column. The
corresponding conventional elements are presented in the left-hand column. This list can be
extended by adding any existing structural element to the left-hand side. The interpretation
of the symbols in the first column of the table is as follows: – stands for beam elements,
while �,	, and ♦ stand for plate elements such as rectangular, triangular, and quadrilateral
ones, accordingly.

4 Invariants of the transformation

If the transformation procedure described above has been applied to a structural element
from an FEM library to obtain a new element using ANCF, it can be shown that some
important static and dynamic properties are preserved automatically.
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4.1 Strains during an arbitrary rigid-body rotation

Let the position and deformation of an ANCF element (the beam element for simplicity) be
given by a set of nodal vectors qk and scalar representation of shape functions sk according
to (11) as follows:

r =
4∑

k=1

skqk.

This configuration can be considered as the initial reference configuration. One of the mea-
sures of deformation of the element in this configuration is the longitudinal deformation
(32), which can be computed as follows:

ε = 1

2

(
r′ · r′ − 1

) = 1

2

(
4∑

k,l=1

s ′
kqk · s ′

lql − 1

)

. (35)

Another configuration which is considered here is the large rigid-body rotation of the whole
element. This can be expressed by the vector of nodal coordinates as follows:

r∗ =
4∑

k=1

skq∗
k, q∗

k = R · qk.

Each nodal coordinate vector qk which is either a position vector or a slope vector is multi-
plied by the rotation matrix R. After the rotation, it is easy to demonstrate that the value of
longitudinal deformation is preserved:

ε∗ = 1

2

(
r′∗ · r′∗ − 1

) = 1

2

(
4∑

k,l=1

s ′
ks

′
l q∗

k · q∗
l︸ ︷︷ ︸

qk ·RT·R·ql

−1

)

= 1

2

(
4∑

k,l=1

s ′
ks

′
lqk · ql − 1

)

= ε.

Note that scalars s ′
l are commutative with respect to vectors q∗

k , and the rotation matrix is
orthogonal: RT · R = I.

In a similar way, it is possible to demonstrate that the transverse curvature defined by (33)
is also preserved during an arbitrary rigid-body rotation. That means that the expression for
the strain energy given by (31) remains unchanged after the rotation, as does the vector of
elastic forces (34).

4.2 Small displacements

In this section, a special test case of loading is considered. In the test, an ANCF element
in the initial undeformed configuration is loaded by its own weight. Again, for the sake of
simplicity, the beam element described in Sect. 2.1.2 is studied.

The geometry of the undeformed straight-line configuration of the beam can be expressed
by the following relations:

∥
∥r′∥∥ = 1,

∥
∥r′′∥∥ = 0.

As a consequence, the longitudinal deformation and the transverse curvature vanish:

ε = 1

2

(
r′ · r′ − 1

) = 0,

(36)

κ = ‖r′ × r′′‖
‖r′‖3

= 0.
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However, the asymptotic behavior of the two deformations is different when the config-
uration of the element is in a nearly straight-line position. Accordingly, for small vertical
deflections, the quantity ‖r′‖ remains close to 1, ‖r′‖ ≈ 1, while the quantity ‖r′′‖ changes
more rapidly. Note that the condition ‖r′‖ = r′ ·r′ ≈ 1 implies r′ ·r′′ ≈ 0, or vectors r′ and r′′
are nearly orthogonal. For these reasons, the estimation of the behavior of the deformation
quantities from (36) can be written as

ε ≈ 0, κ = ‖r′‖‖r′′‖ sin∠(r′, r′′)
‖r′‖3

≈ ∥
∥r′′∥∥,

and their squares are approximated as

ε2 ≈ 0,

κ2 ≈ r′′ · r′′.

Furthermore, the approximate expression for the strain energy takes the form

U ≈ 1

2
EA

∫ �

0
ε2

︸︷︷︸
≈0

dp

︸ ︷︷ ︸
≈0

+ 1

2
EI

∫ �

0
r′′ · r′′ dp,

which allows us to compute the estimated value of the vector of the elastic forces:

Qelast
ANC = ∂U

∂q
≈ EI

∫ �

0

∂r′′T

∂q
· r′′

︸ ︷︷ ︸

S′′T·S′′ ·q

dp =
[

EI
∫ �

0
S′′T · S′′ dp

]

· q = Klin
ANC · q.

The expression in brackets corresponds to the approximated constant stiffness matrix
Klin

ANC obtained by assuming the displacement to be small. Apparently, this stiffness matrix
is closely related to the bending stiffness matrix of the original finite element:

Klin
ANC = KFEM ⊗ I.

Thus, in the case of small vertical displacements, the stiffness coefficients in both the
original FEM element and in the ANCF element remain unchanged. Furthermore, since
the generalized gravity forces have the same numerical values in both formulations (see
Sect. 3.2.1), small vertical displacements in the linear static problem are preserved after the
transformation of the element.

It should be noted that in this section, vertical displacements only are taken into account
since in the original structural elements of beams and plates considered in Sect. 2, only the
bending behavior of the elements is accounted for.

4.3 Inertia properties and natural frequencies at initial configuration

In Sect. 3.2.1, it was pointed out that mass matrices of the original finite element and the
ANC-transformed element use the same inertia coefficients. On the other hand, in the previ-
ous Sect. 4.2 it is shown that also stiffness coefficients are the same if the displacements are
small around the undeformed straight-line configuration. Combining these two ideas, one
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can conclude that the natural frequencies of oscillations of the two elements near this initial
configuration will be same.

It should be noted that in similar way to the previous section, only the transverse os-
cillations and their frequencies are compared here since the original structural elements of
beams and plates simply do not have longitudinal degrees of freedom, and the corresponding
longitudinal frequencies are absent.

5 Conclusions

In this paper, a study is conducted on relationships between conventional FEM and recently
introduced ANCF structural elements that use the Euler–Bernoulli or Kirchhoff theory for
beams and plates. It is shown that elements in FEM that use only transverse displacements
and slopes as generalized coordinates can be transformed into a corresponding ANCF ele-
ment. After such a transition, some important geometric, static, and dynamic properties of
the obtained elements are preserved.

It is also expected that similar relationships exist for fully parameterized shear de-
formable ANCF elements that have been recently proposed in [2, 5, 29–31]. These elements
employ the Timoshenko beam theory or the Reissner–Mindlin theory. However, during this
research, the authors failed to find conventional elements that could correspond to the lat-
ter references. The research in this direction is not finished yet, and it will be a subject of
subsequent research.
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