
Multibody Syst Dyn (2009) 21: 55–70
DOI 10.1007/s11044-008-9127-1

Collision with friction; Part B: Poisson’s and Stornge’s
hypotheses

Shlomo Djerassi

Published online: 19 September 2008
© Springer Science+Business Media B.V. 2008

Abstract In Part B of this paper, planar collision theories, counterparts of the theory associ-
ated with Newton’s hypotheses described in Part A, are developed in connection with Pois-
son’s and Stronge’s hypotheses. First, expressions for the normal and tangential impulses,
the normal and tangential velocities of separation, and the change of the system mechanical
energy are written for five types of collision. These together with Routh’s semigraphical
method and Coulomb’s coefficient of friction are used to show that the algebraic signs of
the four parameters introduced in Part A span the same five cases of system configuration of
Part A. For each, α determines the type of collision which once found allows the evaluation
of the normal and tangential impulses and ultimately the changes in the motion variables.
The analysis of the indicated cases shows that for Poisson’s hypothesis, a solution always
exists which is unique, coherent and energy-consistent. The same applies to Stronge’s hy-
pothesis, however, for a narrower range of application. It is thus concluded that Poisson’s
hypothesis is superior as compared with Newton’s and Stronge’s hypotheses.

Keywords Collision · Collision with friction · Poison’s hypothesis · Stronge’s hypothesis ·
Routh’s graph · Coulombs’ coefficient of friction

1 Introduction

A one-point, planar collision theory based on Newton’s hypothesis was developed in Part
A of this paper. It was shown that the algebraic signs of 5 parameters, in conjunction with
the ratio between the tangential and normal velocities of approach, called α, span eleven
configuration-related cases of simple, nonholonomic systems undergoing collision and de-
termine for each the associated types of collision. It was also shown that within the different
cases, inconsistencies can occur by which the system mechanical energy increases. In Part B,
Poisson’s and Stronge’s hypotheses are used to develop collision theories. With reference to
Poisson’s hypothesis, five types of collision are identified (authors generally defined more
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than five types of collision, e.g., [1–3], and [4]; however, it can be shown that the number of
types of collision can be condensed to five, and that the additional types are special cases of
the five). For each, explicit expressions are generated in Sect. 2 for the normal and tangen-
tial impulses and for components of the velocity of separation, and in Sect. 3 for changes
in the system mechanical energy. The uniqueness, coherence, and energy-consistence of the
solutions related to each of the cases are investigated in Sect. 3. Section 4 is dedicated to the
exploration of relations between Stronge’s and Poisson’s hypotheses introducing a theory
based on the former. An example in Sect. 5 and a brief comparison of the three theories in
Sect. 6 conclude this work.

2 A collision theory with Poisson’s hypothesis

In accordance with Poisson’s hypothesis, the collision duration is regarded as comprising
two phases, namely a compression phase, starting at t1 and terminating at t̄ , the instant of
maximum compression when

v̄ · n = 0 (1)

where

v̄ =̂vR(t̄) (t1 < t̄ < t2); (2)

and a restitution phase, starting at t̄ and terminating at t2, when R(t2) = 0. The integrals
defining In and It (see (A13))1 can thus be divided as follows:

Inc =̂
(∫ t̄

t1

Rdt

)
· n, Inr =̂

(∫ t2

t̄

Rdt

)
· n, (3)

Itc=̂
(∫ t̄

t1

Rdt

)
· t, Itr=̂

(∫ t2

t̄

Rdt

)
· t, (4)

so that in light of (3), (4), and (A13),

In = Inc + Inr , It = Itc + Itr . (5)

According to Poisson’s hypothesis [5], the coefficient of restitution is defined

e=̂Inr/Inc, 0 ≤ e ≤ 1. (6)

One can thus divide (A22) and (A23), namely,

vS
n − vA

n = mnnIn + mntIt , (A22) repeated

vS
t − vA

t = mntIn + mtt It , (A23) repeated

into the equations

v̄ · n − vA · n =
(A22)

mnnInc + mntItc, (7)

1Equations numbers designated with A refer to equations of Part A numbered correspondingly.
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v̄ · t − vA · t =
(A23)

mntInc + mtt Itc, (8)

describing the compression phase and

vS · n − v̄ · n =
(A22)

mnnInr + mntItr , (9)

vS · t − v̄ · t =
(A23)

mntInr + mtt Itr , (10)

describing the restitution phase. As before, the theory allows reverse sliding, sticking or
forward sliding, and since sticking and reverse sliding follow forward sliding, a change of
events takes place either during the compression phase at time tc (t1 < tc < t̄) or during the
restitution phase at time tr (t̄ < tr < t2). Thus, forward sliding between t1 and tc (or between
t1 and tr ) can be followed by sticking or by reverse sliding between tc and t2 (or between tr
and t2). A detailed analysis of these possibilities requires further division of (7)–(10). For a
change of events occurring during the compression phase,

I ′
nc=̂

(∫ tc

t1

Rdt

)
· n, I ′′

nc=̂
(∫ t̄

tc

Rdt

)
· n; Inc = I ′

nc + I ′′
nc, (11)

I ′
tc=̂

(∫ tc

t1

Rdt

)
· t, I ′′

tc=̂
(∫ t̄

tc

Rdt

)
· t; Itc = I ′

tc + I ′′
tc, (12)

and (7) and (8) become

vR(tc) · n − vA · n = mnnI
′
nc + mntI

′
tc, (13)

vR(tc) · t − vA · t = mntI
′
nc + mtt I

′
tc, (14)

and

v̄ · n − vR(tc) · n = mnnI
′′
nc + mntI

′′
tc, (15)

v̄ · t − vR(tc) · t = mntI
′′
nc + mtt I

′′
tc. (16)

Similarly, for a change of events occurring during the restitution phase

I ′
nr =̂

(∫ tr

t̄

Rdt

)
· n, I ′′

nr =̂
(∫ t2

tr

Rdt

)
· n; Inr = I ′

nr + I ′′
nr , (17)

I ′
tr =̂

(∫ tr

t̄

Rdt

)
· t, I ′′

tr =̂
(∫ t2

tr

Rdt

)
· t; Itr = I ′

tr + I ′′
tr , (18)

and (9) and (10) become

vR(tr ) · n − v̄ · n = mnnI
′
nr + mntI

′
tr , (19)

vR(tr ) · t − v̄ · t = mntI
′
nr + mtt I

′
tr , (20)

and

vS · n − vR(tr ) · n = mnnI
′′
nr + mntI

′′
tr , (21)

vS · t − vR(tr ) · t = mntI
′′
nr + mtt I

′′
tr . (22)
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Next, five types of collision, numbered as in [4], are defined and expressions for In, It , vS
n

and vS
t (In and It in [4]) are generated for each as follows.

Type 1 Sticking in compression, comprising sliding (t1÷tc) and sticking in compression
(tc÷t̄ ); sticking in restitution (t̄÷t2). Type 1 is characterized by

I ′
tc = −μI ′

nc, vR(tc) · t = 0, v̄ · t = 0, vS · t = 0. (23)

When (23c) and (1) are substituted in (7) and (8), one has

−vA
n =

(1)
mnnInc + mntItc, −vA

t =
(23c)

mntInc + mtt Itc. (24)

Equations (24) can be solved for Inc and Itc , yielding

Inc = (mtt + αmnt )
∣∣vA

n

∣∣/�, Itc = −(mnt + αmnn)
∣∣vA

n

∣∣/�. (25)

Thus,

In =
(5),(6)

(1 + e)Inc, It =
(A23),(23d)

−(
mntIn + vA

t

)
/mtt , (26)

and

vS
n =

(A22)
vA

n + mnnIn + mntIt =
(25),(26)

e(mtt + αmnt )
∣∣vA

n

∣∣/mtt . (27)

Type 2 Sticking in restitution, comprising sliding in compression (t1÷t̄ ), sliding (t̄÷tr ) and
sticking in restitution (tr÷t2). Type 2 is characterized by

Itc = −μInc, I ′
tr = −μI ′

nr , vR(tr ) · t = 0, vS · t = 0. (28)

Substitutions from (1) and (28a) in (7) lead to −vA
n = mnnInc − μmntInc , and with (5) and

(6)

In = (1 + e)
∣∣vA

n

∣∣/(mnn − μmnt ), It = −(
mntIn + vA

t

)
/mtt , (29)

where It is obtained from (A23) in view of (28d). The use of (1) and (5) in (9) yields vS
n =

mnneInc + mnt (It − Itc), which becomes with the aid of (28a) and (29b), vS
n = �eInc/mtt −

mnt/mttvA
t + mnt (μmtt − mnt )Inc/mtt or after rearrangements with α =̂

(A34)
vA

t /|vA
n |,

vS
n = (1 + e)�

∣∣vA
n

∣∣/[(mnn − μmnt )mtt ] − [1 + (mnt/mtt )α]∣∣vA
n

∣∣. (30)

Type 3 Reverse sliding in compression, comprising sliding (t1÷tc) and reverse sliding in
compression (tc÷t̄ ), reverse sliding in restitution (t̄÷t2). Type 3 is characterized by

I ′
tc = −μI ′

nc, I ′′
tc = μI ′′

nc, vR(tc) · t = 0, Itr = μInr . (31)

Substitutions from (31c) and (31a) in (14) yield

vA
t = (μmtt − mnt)I

′
nc. (32)

By (7)

−vA
n = mnnInc + mnt [−μI ′

nc + μ(Inc − I ′
nc)] (33)
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(see (31a), (31b), and (11c)). Eliminating I ′
nc from (32)–(33) one has

Inc = [1 + 2μmntα/(μmtt − mnt )]
∣∣vA

n

∣∣/(mnn + μmnt ). (34)

Next,

Itc =
(12c)

I ′
tc + I ′′

tc =
(31a),(31b)

μ(I ′′
nc − I ′

nc) =
(11c)

μ(Inc − 2I ′
nc)

=
(32)

μ
[
Inc − 2vA

t /(μmtt − mnt )
]; Itr =

(31d),(6)
μeInc (35)

and using (35) in (5b) one gets

In = (1 + e)Inc, It = μIn − 2μvA
t /(μmtt − mnt ). (36)

Also,

vS
n =

(1),(9),(6),(35b)
e(mnn + μmnt )Inc

=
(34)

e[1 + 2μmntα/(μmtt − mnt )]
∣∣vA

n

∣∣. (37)

Finally, the use of (A23) together with (36) leads after rearrangements to

vS
t = (μmtt + mnt)

[
In − vA

t /(μmtt − mnt )
]
. (38)

Type 4 Reverse sliding in restitution, comprising sliding in compression (t1÷t̄ ), sliding
(t̄÷tr ) and reverse sliding in restitution (tr÷t2). Type 4 is characterized by

Itc = −μInc, I ′
tr = −μI ′

nr , vR(tr ) · t = 0, I ′′
tr = μI ′′

nr . (39)

The use of (7) leads to

−vA
n =

(39a)
(mnn − μmnt )Inc. (40)

Now,

−v̄ · t =
(20),(39c),(39b)

−(μmtt − mnt )I
′
nr (41)

and using (40), (41), (39a), and (8) in (17c), one has

I ′′
nr = (1 + e)Inc − vA

t /(μmtt − mnt ). (42)

Thus,

It =
(5b),(18c)

Itc + I ′
tr + I ′′

tr =
(39a),(39b),(39d)

−μInc − μI ′
nr + μI ′′

nr

=
(17c)

− μInc − μ(eInc − I ′′
nr ) + μI ′′

nr = −μ(1 + e)Inc + 2μI ′′
nr (43)

and the use of (43) leads to equations identical with (36), namely,

In =
(40)

(1 + e)Inc, It =
(42),(43)

μIn − 2μvA
t /(μmtt − mnt ). (44)
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Equation (9), in conjunction with (1), leads in view of (17c) and (42) to

vS
n = e

∣∣vA
n

∣∣ + 2μmnt

∣∣vA
n

∣∣/(μmtt − mnt )
[
(1 + e)rm − α

]
. (45)

Last, vS
t can be obtained from (22) with the aid of (42), (39c), and (39d), i.e.,

vS
t = (μmtt + mnt)

[
(1 + e)rm − α

]∣∣vA
n

∣∣/(μmtt − mnt ). (46)

Type 5 Forward sliding (t1÷t2). Type 5 is characterized by

Itc = −μInc, Itr = −μInr . (47)

Substitution from (1) and (47a) in (7) yields

Inc = ∣∣vA
n

∣∣/(mnn − μmnt ), (48)

thus

In = (1 + e)Inc, It = −μIn. (49)

Substitutions from (1), (6), and (48) in (9) leads to

vS
n = (mnn − μmnt )eInc =

(48)
e
∣∣vA

n

∣∣; (50)

and (A23) yields with (47)–(49),

vS
t = vA

t − (μmtt − mnt )(1 + e)Inc = [
α − (1 + e)rm

]∣∣vA
n

∣∣. (51)

In and It are thus available from (26), (29), (36), (44), or (49) depending on type of colli-
sion, which must now be uncovered. This can be accomplished with the aid of additional
information derived from Routh’s graph [6] as follows.

3 Routh-based semi-graphical method

3.1 Routh’s graph

Let Ĩn and Ĩt be the normal and tangential impulses defined in (A54), and recall the three
lines in the Ĩt − Ĩn plane introduced in Part A, namely,

forward sliding line LFS ⇒ Ĩt = −μĨn, (A55) repeated

sticking line LST ⇒ Ĩt = −(
Ĩnmnt + vA

t

)
/mtt , (A56) repeated

reverse sliding line LRS ⇒ Ĩt = μĨn − 2μvA
t /(μmtt − mnt ). (A57) repeated

These lines are shown in Fig. 1, which is similar to Fig. 2 in Part A except for the maximum
compression line

LMC ⇒ Ĩt =
(A22)

−(
Ĩnmnn + vA

n

)
/mnt (52)

drawn in two positions designated L
(1)
MC and L

(2)
MC on both sides of point G, where

Ĩn(G) = vA
t /(μmtt − mnt). (A58) repeated
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Fig. 1 Impulse diagram

Fig. 2 A two-sled collision

The different lines can be used to describe collision events with the aid of the intersection
points G, H(1), H(2) and I . The assumption vA

t > 0 still applies and all Ĩt –Ĩn relations start
at the origin and vary in accordance with line LFS . Inequalities (A59)–(A61), namely,

|mnt |/mtt < μ => μmtt − mnt > 0, μmtt + mnt > 0, (A59) repeated

−mnt/mtt > μ => μmtt + mnt < 0 (mnt < 0) , (A60) repeated
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−mnt/mtt > −μ => μmtt − mnt > 0,

−mnt/mtt < −μ => μmtt − mnt < 0 (mnt > 0),

}
(A61) repeated

remain valid, defining boundaries for sticking, reverse sliding, and forward sliding. Now,
suppose that line L

(1)
MC governs the Ĩt –Ĩn relation at maximum compression. Then for both

sticking (Type 2) and reverse sliding (Type 4), one obtains (1 + e)Ĩn(H
(1)) > Ĩn(G) >

Ĩn(H
(1)) (Ĩn(H

(1)) = Inc), or ((29), (40), and (A58))

(1 + e)
|vA

n |
mnn − μmnt

>
vA

t

μmtt − mnt

>
|vA

n |
mnn − μmnt

⇒ (1 + e)rm > α > rm (53)

since μmtt − mnt >
(A59),(A60)

0 and mnn − μmnt >
(29),(40)

0 (In must be positive).

If the collision ends before values of Ĩt and Ĩn at point G are reached, i.e., before sticking
or reverse sliding occur, then forward sliding (Type 5) prevails. Accordingly, either Ĩn(G) >

(1 + e)Ĩn(H
(1)) (Ĩn(H

(1)) = Inc) so that in view of (48) and (A58),

vA
t

μmtt − mnt

> (1 + e)
|vA

n |
mnn − μmnt

⇒ α > (1 + e)rm (54)

since μmtt −mnt >
(A58)

0 (see inequality (A61a)) and mnn −μmnt >
(48)

0 (rm >
(36a)

0); or Ĩn(G) <

0, in which case μmtt − mnt < 0 (see inequality (A61b)) and mnn − μmnt >
(48)

0 (rm <
(A36a)

0),

so that by (51) (vS
t must be positive)

α > 0. (55)

Next, suppose L
(2)
MC governs the Ĩt –Ĩn relation at maximum compression. Then forward

sliding is ruled out (point G must be reached). If sticking (Type 1) occurs, then LST governs
the Ĩt –Ĩn relation, and Ĩn(H

(2)) > Ĩn(G) (see Fig. 1). Using (52) and (A56) to find Ĩn(H
(2)),

one has by substitution, (|vA
n |mtt +vA

t mnt )/� > vA
t /(μmtt −mnt) noting that Ĩn(G) is given

by (A58). Rearrangements with � >
(25a),(27)

0 (which together with |vA
n |mtt + vA

t mnt > 0 en-

sure vS
n >

(27)
0 and In >

(25a)
0) lead to

|vA
n |

mnn − μmnt

>
vA

t

μmtt − mnt

⇒ 0 < α < rm (56)

if mnn − μmnt > 0, and to

|vA
n |

mnn − μmnt

<
vA

t

μmtt − mnt

⇒ α > 0. (57)

if mnn − μmnt < 0. When reverse sliding (Type 3) follows, LRS governs the Ĩt –Ĩn relation
and Ĩn(I ) > Ĩn(G) (Fig. 1). Using (52) and (A57) to find Ĩn(I ), one has by substitution,
|vA

n |/(mnn + μmnt ) > vA
t (mnn − μmnt )/[(mnn + μmnt )(μmtt − mnt )]. This relation reduces

to inequality (56) since for Type 3 mnn + μmnt >
(37)

0 (vS
n must be positive), mnn − μmnt > 0

and μmtt − mnt >
(A60)

0 (mnt <
(A60)

0).
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3.2 The determination of the type of collision

Equations (26)–(27), (29)–(30), (36)–(38), (44)–(46), and (49)–(51), can be used together
with inequalities (A59)–(A61) (μ-bounds) and (53)–(57) (α-regions) to determine the type
of collision. To this end, one can invoke a table similar to Table 1 in Part A, describing cases
with consistent permutations of the algebraic signs of g, h, p and q , where

g=̂μmtt − mnt , h=̂mnn − μmnt , p=̂μmtt + mnt , q=̂mnn + μmnt . (A35) repeated

Regarding collision Types 1 and 2, Cases 1, 2, and 4 comply with inequalities (A59). The
argumentation preceding inequality (56) ensures In >

(25a)
0 and vS

n >
(27)

0 for Type 1, and in-

equalities (56) and (57) indicate the range of α for Cases 1 and 2 (h > 0) and for Case 4
(h < 0), respectively. Turning to Type 2, one must have h > 0 to ensure In > 0 (29a), and
can verify that vS

n > 0 only in Cases 1 and 2, provided the α-region in inequality (53) is sat-
isfied. As for Types 3 and 4, Case 3 complies with inequality (A60), ensuring In > 0, vS

n > 0
and vS

t < 0 for both types, as can be shown straightforwardly with the aid of inequalities
(56) (Type 3) and (53) (Type 4). Finally, all cases satisfy either inequality (61a) or (61b) in
Type 5. However, h > 0 and α > (1 + e)rm, ensuring In >

(49a)
0, vS

n >
(50)

0, and vS
t >

(51)
0, in all

but Case 4 (in Case 5 α > 0 since rm < 0).
An algorithm for the solution of a collision problem can now be established, provided μ

and e are known. α, mnn, mtt , mnt , g, h, p, q , rm and � are calculated for t1, the collision
time. The collision type is determined with the aid of Table 1 and used to evaluate In and It

with (26), (29), (36), (44), or (49), and then �u1, . . . ,�up with (A16).

3.3 Energy considerations

Expressions for �E in the five types of collision can be obtained by substitutions of In, It ,
vS

n , and vS
t in (A29). It is expedient to express �E as polynomial of degree 2 in α and I ′

n,

Table 1 Admissible sign-variations of g, h, p and q; T1, . . . ,T5 refer to Type 1, . . . ,Type 5, respectively

No g h p q Sticking (T1&T2) R. Sliding (T3&T4) F. Sliding

1 > 0 > 0 > 0 > 0 T1 0 < α < rm – α > (1 + e)rm

T2 rm < α < (1 + e)rm

2 > 0 > 0 > 0 < 0 T1 0 < α < rm – α > (1 + e)rm

T2 rm < α < (1 + e)rm

3 > 0 > 0 < 0 > 0 – T3 0 < α < rm α > (1 + e)rm

T4 rm < α < (1 + e)rm

4 > 0 < 0 > 0 > 0 T1 α > 0 – –

5 < 0 > 0 > 0 > 0 – – α > 0
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positive quantities, as follows

2�E
∣∣
1
/
∣∣vA

n

∣∣2 =
(25)–(27)

− 1/mttα
2 − ρ�/mtt I

′2
n

2�E
∣∣
2
/
∣∣vA

n

∣∣2 =
(29),(30)

− 1/mttα
2 − 2(mnt/mtt )I

′
nα

+ [(1 + e)� − 2mtt (mnn − μmnt )]/[mtt (1 + e)]I ′2
n

2�E
∣∣
3
/
∣∣vA

n

∣∣2 =
(36)–(38)

4μmnt/(μmtt − mnt )
2α2

− [2μ(μmtt + mnt )/(μmtt − mnt )]I ′
nα

+ [−ρ(mnn + μmnt ) + μ(μmtt + mnt )]I ′2
n

2�E
∣∣
4
/
∣∣vA

n

∣∣2 =
(44)–(46)

4μmnt/(μmtt − mnt )
2α2

− [2μ(μmtt + 3mnt )/(μmtt − mnt )]I ′
nα

+ [−ρ(mnn − μmnt ) + 2μmnt + μ(μmtt + mnt )]I ′2
n

2�E
∣∣
5
/
∣∣vA

n

∣∣2 =
(49)–(51)

−{(1 − e) + μα + μ[α − (1 + e)rm]}I ′
n

(58)

where

ρ = (1 − e)/(1 + e), I ′
n(α)=̂In/

∣∣vA
n

∣∣. (59)

Now, �E|1 < 0 and �E|5 <
(54),(55)

0, as can be verified by inspection (each of the right-

hand side terms is negative). Moreover, �E|2, �E|3 and �E|4 become maximal when
α = −mntI

′
n, α = gpI ′

n/(4mnt ) and α = g(p + 2mnt )I
′
n/(4mnt ), respectively, as their sec-

ond derivatives with respect to α are negative. These maxima have all positive derivatives
with respect to e, hence become maximal for e = 1, reading �E|2max@e=1 =

(58b)
μmntI

2
n ,

�E|3max@e=1 =
(58c)

−μp(g−2mnt)I
2
n /(8mnt ) and �E|4max@e=1 =

(58d)
−μp(p+2mnt)I

2
n /(8mnt ).

By Table 1 �E|3max@e=1 < 0 and �E|4max@e=1 < 0, whereas �E|2max@e=1 < 0 only
if mnt < 0 (Case 2, Table 1). In Case 1 mnt can be positive, however, �E|2 becomes
maximal at α = −mntI

′
n, which now is negative, i.e., outside the range of α; and, since

�E|2 is negative on the borders of α, i.e., �E|2 = �E|1(α = rm) < 0 and �E|2 = �E|5
(α = (1+e)rm) < 0 (see comment a below), then �E|2 is negative everywhere, as are �E|3
and �E|4.

3.4 Comments

a. In, It , vS
n and vS

t are continuous functions of α. This continuity is maintained through the
passages from one type of collision to another, occurring at α = (1 + e)rm and α = rm; i.e.,
In|2[α = (1 + e)rm] = In|5[α = (1 + e)rm], etc. Consequently, equal signs can be added to
the inequalities defining the regions of α in Table 1.

b. If μ = 0, then rm =
(36a)

−mnt/mnn. By inequalities (A59) (mnt = 0, rm = 0), (A60) (mnt <

0, rm > 0), and (A61) (mnt < 0 or mnt > 0) one has Types 1 and 2 for α =
(56),(53)

0, Type 3

for α <
(56)

rm, Type 4 for rm < α <
(53)

(1 + e)rm, and Type 5 for α >
(54)

(1 + e)rm (if mnt > 0,

then rm < 0, hence α >
(55)

0). In all events, In, It , vS
n , vS

t and �E are identical with their

counterparts in Newton’s hypothesis (see comment b in Part A).
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c. vS
n |e=0 = 0 for all the types of collisions (see (27), (30), (37), (45), and (50)). In connection

with Types 2 and 4, note that if e = 0, then α = rm, and the region of α reduces to zero.
Moreover, vS

n is a linear function of e, and it can be verified that ∂vS
n/∂e > 0 for all types of

collision.

d. Direct impact (vA
n < 0, vA

t = 0, α → 0) and grazing (vA
n = 0, vA

t > 0, α → ∞) can
be followed by collision types 1, 3, and 5 (not 2 and 4, for which 0 < (1 + ce)rm < α <

(1 + e)rm < ∞ (0 < c < 1, rm > 0) by Table 1). Expressions for In, It , vS
n and vS

t are
obtained by the substitution of vA

t = 0 and vA
n = 0 in (26)–(27) (Type 1), (36)–(38) (Type 3)

and in (49)–(51) (Type 5), respectively, and are identical with their counterparts in Part A
except vS

n = e(mnt/mtt )vA
t in Type 1 and vS

n = e[2μmnt/(μmtt − mnt )]vA
t in Type 3 rather

than vS
n = 0 (see comment d Part A).

e. When mnt = 0 (‘balanced collision’), no reverse sliding is possible since by inequality
(A60) mtt < 0, in contradiction with (A20b), which permits only mtt > 0. This is also true in
connection with Newton’s hypothesis (see comment e, Part A). Moreover, by (26) and (27)
(Type 1) and (29) and (30) (Type 2), In = (1 + e)|vA

n |/mnn, It = −vA
t /mtt and vS

n = e|vA
n |,

expressions identical to those obtained from (A47) and (A30) with Newton’s hypothesis.

f. Both Newton’s and Poisson’s hypotheses lead to identical results for forward sliding
((A52), (A53), (A30), and (A67) are identical with (49) (and (48)), (51), (50), and (58e),
respectively, subject to inequalities (A61)). Keller [7] arrived at a similar result in connection
with a two-body collision.

g. h, g and/or q , g and/or h, and h, in collision Types 2–5, respectively, are not allowed to
vanish, or else In and/or It go to infinity (see (26), (29), (36), (44), and (49)). Equal signs can
thus be added to the remaining inequalities in Table 1, Columns 2–5, leaving the solutions
unique. This can be shown to always be the case; for example, if p = 0, then Case 1, Type 1
and Case 3, Type 3, and similarly, Case 1, Type 2, and Case 3, Type 4 lead to the same In,
It , vS

n and vS
t (= 0), hence to the same solution.

h. Inequalities (A59)–(A61) do not depend on collision hypotheses, and hence are used in
connection with both Poisson’s and Stronge’s hypotheses, discussed presently.

With reference to the example of Part A (g > 0, h > 0, p < 0, q > 0), one can show
with the aid of Table 1, row 3, that the five cases are of Type 4, and that the changes in
the system mechanical energies are −0.1063, −0.1265, −0.1337, −0.1192, and −0.1115 J,
respectively.

4 A collision theory with Stronge’s hypothesis

Let �En be the change in the system kinetic energy associated with In (first term on the
right-hand side of (A29)), and let �Enc and �Enr be the parts of �En associated, respec-
tively, with the compression and the restitution phases. Then according to Storge’s hypoth-
esis [8], the coefficient of restitution ee is defined

e2
e=̂ − �Enr/�Enc = −(�En − �Enc)/�Enc, 0 ≤ ee ≤ 1. (60)

In view of (A29),

�En = 1/2In

(
vS + vA

) · n, �Enc =
(2)

1/2Inc

(
v̄ + vA

) · n,
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where v̄ · n =
(1)

0; and, substitutions in (60) yields

e2
e = 1 − (1 + ei)(1 − ev) (61)

where ev and ei refer to Newton’s and Poisson’s definitions of coefficient of restitution given
by (A30) and (6), respectively (without the subscripts appearing in (61)). Now, by reference
to (27), (30), (37), (45), and (50), one can express for each type of collision, ev in terms of
ei , eliminate ev from (61) and obtain a relation between ei and ee . For Type 1

vS
n/

∣∣vA
n

∣∣ =
(A30)

ev =
(27)

ei(1 + r), r=̂αmnt/mtt , (62)

and eliminating ev from (61) one has after rearrangements,

(1 + r)e2
i + rei − e2

e = 0. (63)

This equation can be solved for ei , yielding

ei = −r + √
r2 + 4(1 + r)e2

e

2(1 + r)
. (64)

Now, 1 + r >
(62)

0 (then vS
n >

(27)
0), therefore, the root in (64) is chosen positive to ensure ei > 0

and ∂ei/∂ee ≥ 0.
For Type 2 one has

vS
n/

∣∣vA
n

∣∣ =
(A30)

ev =
(30),(62b)

(1 + r + y)ei + y, y =̂ r(rm/α − 1). (65)

Substitution in (61) leads to

(1 + r + y)e2
i + (r + 2y)ei + y − e2

e = 0. (66)

For Cases 1 and 2 1 + r + y =
(62b),(65b),(A36)

�/[mtt (mnn − μmnt )] > 0 (Table 1), and

ei = −(r + 2y) + √
(r + 2y)2 + 4(1 + r + y)(e2

e − y)

2(1 + r + y)
. (67)

With a positive-sign root, (67) reduces to (64) when α = rm (then y = 0), ensuring ei > 0
and ∂ei/∂ee ≥ 0.

With regard to Type 3,

vS
n/

∣∣vA
n

∣∣ =
(A30)

ev =
(37)

ei(1 + s), s =̂2μmntα/(μmtt − mnt) (68)

and after the elimination of ev from (61),

(1 + s)e2
i + sei − e2

e = 0, (69)

ei = −s + √
s2 + 4(1 + s)e2

e

2(1 + s)
. (70)
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Here, 1 + s >
(68)

0 (then vS
n >

(37)
0), and the positive root was chosen to ensure ei > 0 and

∂ei/∂ee ≥ 0. Similarly for Type 4

vS
n/

∣∣vA
n

∣∣ =
(A30)

ev =
(45)

(1 + s + z)ei + z, z =̂ s(rm/α − 1), (71)

(1 + s + z)e2
i + (s + 2z)ei + z − e2

e = 0. (72)

For Case 3 1 + s + z =
(68b),(71b),(A36)

(mnn + μmnt )/(mnn − μmnt ) > 0 (Table 1), and

ei = −(s + 2z) + √
(s + 2z)2 + 4(1 + s + z)(e2

e − z)

2(1 + s + z)
. (73)

With a positive-sign root (73) reduces to (70) when α = rm (then z = 0), ensuring ei > 0 and
∂ei/∂ee ≥ 0. Lastly, for Type 5,

vS
n/

∣∣vA
n

∣∣ =
(A30)

ev =
(50)

ei =
(61)

ee, (74)

which means that (49)–(51) remain valid with ee replacing ei .
When α = (1 + ei)rm, then (66) and (72) reduce to ei = ee . Thus, the type of collision

can be determined uniquely from Table 1: α < rm indicates Types 1 or 3, α > (1 + ee)rm

indicates Type 5, and rm < α < (1 + ee)rm indicates Types 2 or 4. Having identified the
collision type, one can use (64), (67), (70), (73), or (74) to evaluate ei , and then calculate In

and It (Sect. 3) and ultimately �u1, . . . ,�up (A16).
Now, (64), (67), (70), and (73) can lead to ei which is greater than 1, even if 0 ≤ ee ≤ 1.

Subintervals of ee ensuring 0 ≤ ei ≤ 1 can be identified with the aid of (64), (67), (70), and
(73), as shown in Table 2. Starting with Type 1, one can show with (64), that if 0 ≤ e2

e ≤
1 + 2r , then 0 ≤ ei ≤ 1 in Cases 1, 2, and 5. It can be shown that with regards to Type 2,
0 ≤ ei ≤ 1 in Cases 1 and 2 if 0 ≤ e2

e ≤ l, where l=̂1 + 2(r + 2y) = mnt/mtt (2rm − α) > 0,
provided mnt > 0. If mnt < 0, then l < 0, hence either y ≤ e2

e ≤ l or 0 ≤ e2
e ≤ (the smaller of

l and y).
The procedure of Sect. 3 does not require ei < 1, however, questionable results may arise

if ei > 1. This can be illustrated with the example of Part A. Suppose that the coefficients
given in Column 2 of Table 2 are ee , and note that Cases 1–5 result in collisions of Type 4,
as in Sect. 3. Evaluating ei first by substitutions in (73) for Cases 1–5, one obtains ei =
0.8454, 4.374, 4.097, 4.734 and 5.115 with energy losses of −0.08118, 0.0650, 0.04796,
0.08802, and 0.1154J, respectively (58d). Cases 2–5 involve ei > 1, and lead to positive
energy changes. Indeed, by Table 2, the limit of e2

e ensuring ei < 1 is 0.353 for Case 1, and
−0.228 for Cases 2–5, implying that Cases 2–5 have no energy consistent solution.

Table 2 Regions of ee ensuring 0 ≤ ei ≤ 1;∗ l=̂1 + 2(r + 2y)

Type 1 Equation (64) Cases 1, 2, 4 ⇒ 0 ≤ e2
e ≤ 1 + 2r

Type 2 Equation (67) Cases 1, 2 ⇒ mnt > 0 : 0 ≤ e2
e ≤ l∗

mnt < 0 :
{

e2
e − y ≥ 0 ⇒ y ≤ e2

e ≤ l

e2
e − y ≤ 0 ⇒ 0 ≤ e2

e ≤ l, y

Type 3 Equation (70) Case 3 ⇒ 0 ≤ e2
e ≤ 1 + 2s

Type 4 Equation (73) Case 3 as in Type 2, Cases 1, 2 with s&z replacing r&y

Type 5 Equation (74) Cases 1–3, 5 ⇒ 0 ≤ e2
e ≤ 1
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5 The sled example ([9], p. 9)

Figure 2 shows two identical sleds A and B comprising rods of length 2l and mass m,
supported by massless knife-edges with steering angles γ and δ, touching ground at points
As and Bs a distance s from their mass centers A∗ and B∗, respectively; and supported by
two back sliders. Let u1, . . . , u6 be generalized speeds defined such that the velocities of A∗
and B∗, and the angular velocities of A and B in N , are given by

vA∗ = u1a1 + u2a2, ωA = u3a3, vB∗ = u4b1 + u5b2, ωB = u6b3,

and are subject to constraint vAs · a′
2 = 0, vBs · b′

2 = 0 imposed by the knife-edges, where
ai , bi , a′

i and b′
i (i = 1,2,3) are sets of three dextral, mutually perpendicular unit vectors

fixed in A and B , as shown in Fig. 2. These constraint equations, when written explicitly
and solved for u2 and u5 read

u2 = tanγ u1 − su3, u5 = tan δu4 − su6,

and lead with u1, u3, u4, and u6 regarded as independent generalized speeds to the following
equations, governing motions of A and B:

− u̇1/ cos2 γ + s tanγ u̇3 − su2
3 = 0, s tanγ u̇1 − (

l2/3 + s2
)
u̇3 + su1u3 = 0,

− u̇4/ cos2 δ + s tan δu̇6 − su2
6 = 0, s tan δu̇4 − (

l2/3 + s2
)
u̇6 + su4u6 = 0.

Defining generalized coordinates q1, . . . , q6 as q1 =̂pA∗ · n1, q2 =̂pA∗ · n2, q̇3 =̂u3 and
q4 =̂pB∗ · n1, q5 =̂pB∗ · n2, q̇6 =̂u6, one can replace the constraint equations with

− sin(γ + q3)q̇1 + cos(γ + q3)q̇2 + cosγ sq̇3 = 0,

− sin(δ + q6)q̇4 + cos(δ + q6)q̇5 + cos δsq̇6 = 0,

nonintegrable differential equations, which make the system nonholonomic. Next, suppose
that at time t1 the endpoint Bc of B collides with point Ac of A located a distance c from
A∗; and that it is required to evaluate the associated change in the generalized speeds and in
the system kinetic energy. To this end, the velocities of Ac and Bc are expressed as

vAc = u1a1 + (u2 + cu3)a2, vBc = u4b1 + (u5 + cu6)b2.

With n and t identified as n = a2 and t = ±a1 (making vA
t > 0), the components of the

relative velocity vR = vBc − vAc of the colliding points are written, with λ =̂q3 − q6 as

vR
n = − tanγ u1 − (c − s)u3 − (sinλ − tan δ cosλ)u4 − (s − l) cosλu6,

vR
t = ±[−u1 + (cosλ + tan δ sinλ)u4 + (l − s) sinλu6].

The mass matrix and the relative velocity components can now be used in (A20) to evaluate
mnn, mnt and mtt and then, with (A35), g, h, p and q needed to uncover the type of collision
and the associated quantities In, It , �ur (r = 1,3,4,6), vA

n , vS
n , vA

t , vS
t and �E. With m =

3 kg, l = 1, s = 0.75, c = −0.5 m, q3(t1) = π/4, q6(t1) = 7π/4 rad, u1(t1) = u4(t1) =
1 m/sec, u3(t1) = u6(t1) = 0.1 rad/sec, and for e, μ, γ and δ given in columns 1–4 of Table
3, one obtains results recorded in columns 5–9 for the three hypotheses. Regarding Stronge’s
hypothesis, Poisson’s coefficient of restitution equivalent to ee = 0.8 is found for collision
Types 5, 3, and 1 by substitutions in (74), (70), and (64), respectively.
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Table 3 Two-sled collision problem: three solutions

e μ γ δ Type [�u1,�u3,�u4,�u6] vA
n ,vS

n vA
t ,vS

t �E

[m/s, r/s, m/s, r/s] [m/s] [m/s] [J]

Newton’s hypothesis; type 1 => sticking, type 2 => reverse sliding, type 3 => forward sliding

0.8 0.3 0.2 0.20 3 [−0.209,0.984,−0.667,−0.052] −1.08,0.86 0.77, 0.71 −0.724

0.8 0.3 0.2 0.85 2 [−0.193,1.197,−0.405,−0.329] −1.08,0.86 0.16, −0.186 −0.292

0.8 0.7 0.2 0.85 1 [−0.286,1.232,−0.342,−0.242] −1.08,0.86 0.16, 0.0 −0.224

Poisson’s hypothesis; equivalent with Newton’s hypothesis for forward sliding (comment f )

0.8 0.3 0.2 0.20 5 [−0.209,0.984,−0.667,−0.052] −1.08,0.86 0.77, 0.71 −0.724

0.8 0.3 0.2 0.85 3 [−0.187,1.169,−0.396,−0.322] −1.08,0.82 0.16, −0.035 −0.298

0.8 0.7 0.2 0.85 1 [−0.276,1.198,−0.334,−0.238] −1.08,0.81 0.16, 0.0 −0.288

Stronge’s hypothesis; the coefficients of restitutions are Poisson’s, equivalent to Stronge’s ee = 0.8

0.800 0.3 0.2 0.20 5 [−0.209,0.984,−0.667,−0.052] −1.08,0.86 0.77, 0.71 −0.724

0.874 0.3 0.2 0.85 3 [−0.387,1.206,−0.305,−0.708] −1.08,0.89 0.16, −0.033 −0.207

0.887 0.7 0.2 0.85 1 [−0.494,1.188,−0.296,−1.049] −1.08,0.90 0.16, 0.0 −0.178

A comment regarding multiple collisions is in order. Collisions of the type in question
are events of a very short duration, typically on the order of a few milliseconds, hence are
rarely simultaneous, and can be dealt with one at a time. If, nevertheless, m collisions are
simultaneous, then (A12) must be replaced by

p∑
s=1

mrs�us +
m∑

i=1

(
I (i)
n vR(i)

r · n(i) + I
(i)
t vR(i)

r · t(i)
) = 0 (r = 1, . . . , p). (75)

With Poisson’s and Stronge’s hypotheses, the number of possible solutions rises dramati-
cally from 5, if m = 1, to 5m (and from 3 to 3m with Newton’s hypothesis), the determination
of the solution in a particular case becomes complex; and it may occur that there is no coher-
ent solution or there are multiple solutions. Authors dealing with this state of affaires make
simplifying assumptions which allow admissible solutions. For example, Ivanov [10] uses
Newton’s hypothesis for the investigation of multiple collisions of unconstrained bodies, as-
suming that sliding does not reverse direction during collision. Wolfsteiner and Pfieffer [11]
use Poisson’s hypothesis to generate normal impulses and (friction dependent) tangential
impulses, neglecting transitions from sliding to sticking and from sticking to sliding.

Regarding (75), one assumption that comes to mind is that (26), (29), (36), (44), and
(49) associated with the five types of collision apply to i = 1, . . . ,m; and can be used one
at a time, for 5m evaluations of �u1, . . . ,�up , provided I (i)

n > 0 (i = 1, . . . ,m). Coher-
ence must then be tested, requiring vS(i)

n > 0 (i = 1, . . . ,m) and vS(i)
t (i = 1, . . . ,m) which

accommodates the respective type of collision. The investigation of such assumptions is,
however, lengthy and is left for future work.

6 Summary

An analysis similar to that in Part A was conducted in Part B with reference to Poisson’s
hypothesis. It was shown that as in Part A, the signs of g, h, p and q—spanning five
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configuration-related cases of the systems in question—and the range of α determine the
type of collision, with which In and It and the changes in the motion variables can be cal-
culated. The different cases were arranged as in Table 1, and used not only as a base for
collision-type identification algorithm, but also as a tool for the comparison of the three the-
ories. It was shown that Poisson-based theory leads always to unique, coherent, and energy-
consistent solutions. With regards to Stronge’s hypothesis, it was shown that the type of
collision can be determined with the aid of Table 1 with ee replacing ei , and that the one-to-
one correspondence existing for the five types of collision between Stronge’s and Poisson’s
definitions of coefficient of restitution, enable the evaluation of the latter, given the former.
One can then proceed with the evaluation of the normal and tangential impulses and the
changes in the motion variables. It is shown, however, that Poisson’s coefficient of resti-
tution, now regarded as a parameter, may exceed unity, giving rise to questionable results.
Thus, limitations defined in Table 2 are imposed on the permissible values of Stronge’s co-
efficient. In that regard, Poisson’s hypothesis is advantageous. Poisson’s hypothesis is also
advantageous when compared with Newton’s hypothesis (Table 1, Part A), as no energy
discrepancies occur. In conclusion, Poisson’s hypothesis is superior to both Newton’s and
Stronge’s hypotheses for the solution of planar collision problems.
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