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Abstract This paper deals with collision with friction. In Part A, equations governing a
one-point collision of planar, simple nonholonomic systems are generated. Expressions for
the normal and tangential impulses, the normal and tangential velocities of separation of the
colliding points, and the change of the system mechanical energy are written for three types
of collision (i.e., forward sliding, sticking, etc.). These together with Routh’s semigraphical
method and Coulomb’s coefficient of friction are used to show that the algebraic signs of
four, newly-defined, configuration-related parameters, not all independent, span five cases
of system configuration. For each, the ratio between the tangential and normal components
of the velocity of approach, called α, determine the type of collision, which once found,
allows the evaluation of the associated normal and tangential impulses and ultimately the
changes in the motion variables. The analysis of these cases indicates that the calculated
mechanical energy may increase if sticking or reverse sliding occur. In Part B, theories
based on Poisson’s and Stronge’s hypotheses are presented with more encouraging results.

Keywords Collision · Collision with friction · Newton’s hypothesis · Routh’s graph ·
Coulombs’ coefficient of friction

1 Introduction

The interest in the subject of collision with friction in the context of rigid multibody systems
increased dramatically

(a) with the realization that the use of a coefficient of restitution is well suited to cases
where numerous collisions with friction occur during motions of interest. In these cases,
alternate approaches [1] involving explicit contact, restoring and dissipative forces or
finite-element based analysis are complex in implementation and/or increase simulations
run-time (i.e., lead to stiff equations); and
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(b) after Kane’s observation regarding a possible increase in the calculated mechanical
energy of a system undergoing collision with friction [2]. He showed that an en-
ergy increase may occur if use is made of Newton’s “kinematic” definition of coef-
ficient of restitution (hereinafter referred to as Newton’s hypothesis), in conjunction
with Coulomb’s coefficient of friction. Interestingly, Whittaker [3] comments (Art. 95)
“. . . a collision generally results in a decrease of dynamical energy,” without dis-
cussing exceptions (Mason and Wang [4] point out inconsistencies associated with the
Coulomb’s coefficient of friction).

Numerous investigators of collision-with-friction problems involving rigid bodies used
two-body systems as platforms to convey their ideas. For example, Routh [5] used Poisson’s
“kinetic” definition of coefficient of restitution (hereinafter referred to as Poisson’s hypothe-
sis), in conjunction with the associated compression and restitution phases, to predict seven
types of collision, using an ingenious graphical method. Whittaker [3], using Newton’s hy-
pothesis, considers (Art. 95) in connection with the 3D collision of two rigid bodies, the
loss of kinetic energy in a frictionless collision (in Art. 97, he discusses in general terms
what should be done if friction is present). Goldsmith [6], dealing with two-body, 2D, and
3D systems in connection with Newton’s hypothesis, also mentions compression and restitu-
tion phases. He comments that the coefficient of friction cannot be accurately determined in
connection with collision, and is generally defined in a manner corresponding to its noncol-
lision processes counterpart. Brach [7] published an analysis dealing with planar, two-body
collisions, suggesting that an impulsive torque is transmitted between the colliding bodies,
as well as an impulsive force. He defines a new coefficient of restitution to describe the rela-
tive angular motion of the bodies in a manner analogous to that used in connection with the
relative linear motion of the contact points.

Keller [8] was the first to react to Kane’s observation [2], solving a 3D version of the
two-body collision problem with Poisson’s hypothesis. Regarding the normal impulse as
an independent integration variable, he generated differential equations with components
of the relative velocity of the colliding points as dependent variables. He integrated these
equations, obtaining the components of the relative velocity of separation, the normal and
tangential impulses, and the changes in the motion variables. However, he did not show that
his approach leads to the decrease in the system mechanical energy. Battle [9] discussed con-
ditions ensuring energy consistency for both Newton’s and Poisson’s hypotheses. However,
he considered only the energy associated with the normal impulse alone. Stronge, trying to
ensure a decrease in the system energy, introduced a new “energetic” definition of coeffi-
cient of restitution [10] (hereinafter referred to as Stronge’s hypothesis). Expanding Keller’s
idea, he obtained changes in components of the relative velocity of the colliding points as
functions of the normal impulse, forming “slip trajectory” [11, 12], and ultimately solving
the collision problem (in [11], Stronge recognized that an “energetic” definition of coeffi-
cient of restitution, identical to his definition, was suggested by Boulange [13] in 1939, in
connection with problems of collision of bodies that are not perfectly elastic). Keller’s idea
was also used by Bhatt and Koechling [14], who pointed out ways to overcome singularities
that could arise if sticking occurs, and by Battle, who analyzed “balanced collisions” [15]
and 3D collisions [16].

It seems that the majority of investigators prefer algebraic solutions of the collision prob-
lem rather then solutions involving integrals [8]; for, if viable, these solutions offer a higher
computational efficiency. Thus, many continued to investigate different aspects of algebraic
solutions. Han and Gilmore [17] tabulated Routh’s 7 cases for a two-body planar collision,
and generated explicit expressions for the normal and tangential impulses (they also consid-
ered multiple-point collisions). Brach [18] conducted a two-body analysis, noting that there
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are system-dependent limitations of the value of Coulomb’s coefficient of friction, which if
violated give rise to an increase in the calculated kinetic energy. Smith [19] redefined the
tangential impulse in a way leading to the decrease of the kinetic energy in the double pendu-
lum system (used by Kane to show an increase in the kinetic energy). Wang and Mason [20]
reviewed Routh’s work and generated expressions for normal and tangential impulses for
the two-body planar collision using both Newton’s and Poisson’s hypotheses. They also
noted that with Poisson’s hypothesis, “tangential” collision (also called “grazing”) is possi-
ble. Finally, they showed that for the two-body planar collision, an energy gain is impossible
with Poissons’ hypothesis, whereas this is not necessarily the case with Newton’s hypoth-
esis. Ivanov [21] applied the three definitions of coefficient of restitution to the two-body
problem. Comparing analysis results with experimental results, he concluded that Stronge’s
hypothesis is the most realistic. Smith and Pao-Pao [22] found, in connection with a study of
collisions of a rigid body with a plane that the three definitions of coefficients of restitution
may lead to results differing from one another, and that none of the definitions capture tan-
gential compliance. Moreau [23] suggested the use of two coefficients of restitution, called
Normal and Tangential coefficients, defined in a manner similar to Newton’s definition. This
approach was adopted, e.g., by Pfieffer in his presentation of the idea complementarity in
dynamics [24]. Chatterjee and Ruina [25, 1998] discussed limitations of different collision
laws, especially in connection with two-body, 2D systems. They pointed out “inaccessible
regions” (i.e., regions of parameters with no solutions or multiple solutions, energy inconsis-
tencies, and inapplicability of the common collision laws to 3D problems). Distinguishing
between normal and tangential coefficients of restitution, they proposed a new algebraic col-
lision law which overcomes most of the shortcomings of the classical laws. In a different
work [26, 1998], they pointed out that Routh’s method assumes compliance in the normal
direction not in the tangential direction.

A number of works deal with more complex systems. Wittenburg [27] and Wang
et al. [28] consider frictionless collisions of multibody systems subject to holonomic con-
straints. Marghitu and Hurmuzlu [29] considered a tree-topology system with a number of
points of end-bodies in contact with different surfaces, and with one point of an end-body
hitting a surface. They developed an algorithm which identifies the motion of each of the
contacting points after collision termination, using the indicated three definitions of coef-
ficient of restitution. Finally, they commented that Routh’s method cannot be applied to
3D systems. Lankarani, in a series of papers culminating in [30], developed a Poisson’s
hypothesis-based formulation for open and closed chain systems. For each of Routh’s seven
types of collision, Lankarani generated expressions for the normal and tangential impulses
as functions of system parameters, coefficient of friction and coefficient of restitution, and
set out a 13-step algorithm for the solution of collision problems, which can be tailored to a
multibody simulation. He presented a number of examples showing a decrease in the system
kinetic energy. However, he did not prove that the system energy always decreases, nor did
he show that his solution is coherent (a coherent solution is one ensuring a positive normal
impulse, positive normal velocity of separation, and a positive, zero, or negative tangential
velocity of separation for forward sliding, sticking, and reverse sliding, respectively). In fact,
coherence is not discussed, e.g., in [20, 26], and [29], all dealing with Poisson’s hypothesis
and Routh’s method.

This survey may lead one to the following conclusions. First, the theories developed to
date do not seem to guarantee coherent solutions. Second, the theories do not cover simple,
nonholonomic systems. Third, a clear cut definition of the scope of applicability of the
different theories does not seem to have been identified. Finally, it has not been proven that
Poisson’s and Stronge’s hypotheses, generally preferred to Newton’s hypothesis, lead to the
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decrease of the system (calculated) mechanical energy. It is the purpose of this paper to fill
the indicated gaps. In Sect. 2 of Part A, equations underlying a one-point collision of simple,
nonholonomic systems in planar motion are developed, together with a general expression
for the associated change of the mechanical energy. Sections 3 and 4 are devoted to the
development of a collision theory based on Newton’s hypothesis and on Routh’s method
and to the analysis of the three associated types of collision and their region of application.
All possible configurations of one-point collision are mapped, regions of no solution and of
multiple solutions are identified, and the system change of mechanical energy is discussed.
Kane’s double-pendulum example [31] is reviewed in Sect. 5. A short summary in Sect. 6
concludes Part A of this work.

Steps similar to those in Sects. 3 and 4 are taken in Part B in connection with Poisson’s
and Stronge’s hypotheses.

2 Preliminaries

Let

Fr + F ∗
r = 0 (r = 1, . . . , p) (1)

be Kane’s equations of motion for S, a simple, nonholonomic system of ν particles Pi (i =
1, . . . , ν) of mass mi , possessing p independent generalized speeds u1, . . . , up and n (n > p)

generalized coordinates q1, . . . , qn, where Fr and F ∗
r are, respectively, the r th generalized

active force and the r th generalized inertia for S (Kane and Levinson [31]). vPi , the velocity
of Pi in N , a Newtonian reference frame, can be expressed in terms of u1, . . . , up, q1, . . . , qn

and time t as

vPi =
p∑

r=1

vPi
r ur + vPi

t (i = 1, . . . , ν) (2)

where vPi
r , called the r th partial velocity of Pi , and vPi

t , called the remainder partial velocity
of Pi , are functions of q1, . . . , qn and t . Let B and B ′ be bodies of S, and let P be a point of
body B coming into contact with point P ′ of body B ′ during the collision of B with B ′ oc-
curring between two instants t1 and t2. Let vR,vA, and vS be the relative velocity of points P

and P ′, the velocity of approach, and the velocity of separation, respectively, defined as

vR =̂ vP − vP ′
, (3)

vA =̂ vR(t1), vS =̂vR(t2). (4)

Each of the quantities appearing in (3) and (4) can be written similarly to vPi in (2). One can
thus recognize that

vR
r = vP

r − vP ′
r , vR

t = vP
t − vP ′

t , (5)

where vR
r is the coefficient of ur in vR . Suppose that during collision, P ′ exerts on P a

force R, so that P exerts on P ′ a force −R. Then (1) give way to equations that bring into
evidence the contributions of R, i.e.,

Fr + F ∗
r + R · vP

r − R · vP ′
r = 0 (r = 1, . . . , p; t1 ≤ t ≤ t2) (6)

or in view of (5a),

Fr + F ∗
r + R · vR

r = 0 (r = 1, . . . , p). (7)
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Fig. 1 3D collision

During the collision, P is assumed to maintain contact with P ′, i.e., to coincide with P ′;
and a plane S̃ exists which passes through P (≡ P ′) and is tangent to B and B ′ at P if both
are locally smooth, or to B ′ if only B ′ is locally smooth. Name B and B ′ such that n, a
unit vector perpendicular to S̃, makes vA · n a nonpositive quantity. Aline t, a unit vector
lying in S̃, with the projection of vA on S̃, making vA · t a non-negative quantity (see Fig. 1).
Finally, let s be a unit vector defined as s =̂n × t. Then

vR = vR · nn + vR · tt + vR · ss. (8)

For planar collisions

vR = vR · nn + vR · tt,

vA = vA · nn + vA · tt

vS = vS · nn + vS · tt,

(vA · n ≤ 0, vA · t ≥ 0),

⎫
⎪⎪⎬

⎪⎪⎭
(9)

i.e., both vA and vS lie in the n–t plane. Note that t can be defined

t =̂n × (vA × n)/|n × (vA × n)|. (10)

Equation (9a) makes it possible to replace (7) with

Fr + F ∗
r + R · nvR

r · n + R · tvR
r · t = 0 (r = 1, . . . , p; t1 ≤ t ≤ t2). (11)

If it is assumed that t2 − t1 is “small” compared to time constants associated with the motion
of S, and that consequently, q1, . . . , qn and t remain constants between t1 and t2, then both
sides of (11) can be integrated from t1 to t2, yielding the equations

p∑

s=1

mrs�us + InvR
r · n + ItvR

r · t = 0 (r = 1, . . . , p), (12)

provided friction-associated impulses arising in the system’s joints are disregarded. Here, In

and It are the normal and tangential impulses defined as

In =̂
(∫ t2

t1

R dt

)
· n; It =̂

(∫ t2

t1

R dt

)
· t, (13)

vR
r =̂vR

r (t2) = vR
r (t1) (r = 1, . . . , p) (see (5a)), �us (s = 1, . . . , p) are defined as

�us =̂us(t2) − us(t1) (s = 1, . . . , p), (14)
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and mrs is the entry in row r , column s of the mass matrix M associated with (1) (see (68),
Appendix A). Note that n and t, defined only for t1 ≤ t ≤ t2, remain fixed in N during the
collision. Also note that R · n(t1 ≤ t ≤ t2) > 0 (P ′ cannot “pull” P ), hence

In > 0. (15)

Equations (12) comprise p equations with p + 2 unknowns �u1, . . . ,�up, In and It . The
quantities of interest in the context of simulations of motion of multibody systems undergo-
ing collisions are �u1, . . . ,�up , with which the simulations can be kept running; and these
can be obtained after In and It have been identified. To this end, consider the matrix form
of (12), solved for �us(s = 1, . . . , p), namely

|�u1 . . . �up|T = −InM−1|vR
1 ·n . . . vR

p ·n|T −ItM−1|vR
1 · t . . . vR

p · t|T , (16)

where M and M−1 are negative definite matrices. Now, vS − vA can be written as

vS − vA = |vR
1 . . . vR

p ||�u1 . . . �up|T (17)

when use is made of (4), (3), (2), (5), and (14). If both sides of (17) are dot-multiplied by n,
and if |�u1 . . . �up|T is eliminated with the aid of (16), one has

vS · n − vA · n = −|vR
1 · n . . . vR

p · n|M−1|vR
1 · n . . . vR

p · n|T In

−|vR
1 · n . . . vR

p · n|M−1|vR
1 · t . . . vR

p · t|T It , (18)

noting that vS
t = vA

t (5b). Similarly, if both sides of (17) are dot-multiplied by t, and if
|�u1 . . . �up|T is eliminated with the aid of (16), one obtains

vS · t − vA · t = −|vR
1 · t . . . vR

p · t|M−1|vR
1 · n . . . vR

p · n|T In

−|vR
1 · t . . . vR

p · t|M−1|vR
1 · t . . . vR

p · t|T It . (19)

The coefficients of In and It in (18) and (19) are constants between t1 and t2. Defining
mnn,mnt and mtt as

mnn =̂ − |vR
1 · n . . . vR

p · n|M−1|vR
1 · n . . . vR

p · n|T > 0,

mnt =̂ − |vR
1 · n . . . vR

p · n|M−1|vR
1 · t . . . vR

p · t|T ,

mtt =̂ − |vR
1 · t . . . vR

p · t|M−1|vR
1 · t . . . vR

p · t|T > 0,

⎫
⎪⎪⎬

⎪⎪⎭
(20)

in agreement with Lankarani’s definition in [30]; and vA
n ,vA

t ,vS
n and vS

t as

vA
n =̂vA · n, vA

t =̂vA · t, vS
n =̂vS · n, vS

t =̂vS · t (21)

one can write (18) and (19) as

vS
n − vA

n = mnnIn + mntIt , (22)

vS
t − vA

t = mntIn + mttIt , (23)

where mnn and mtt are positive numbers. The coefficient matrix of (22)–(23) can be written
C(−M−1)CT where C is the 2 × p matrix C =̂ |vR

1 · n . . . vR
p · n vR

1 · t . . . vR
p · t|, hence is

positive definite, so that

� =̂mnnmtt − m2
nt > 0. (24)



Collision with friction; Part A: Newton’s hypothesis 43

Equations (22)–(23) are two equations with four unknowns In, It ,vS
n and vS

t . Two additional
equations can be obtained if use is made of the concept of coefficient of restitution and
of Coulomb’s coefficient of friction, and contribute to the evaluation of In and It required
in (16).

Before this objective is pursued, however, an expression for �E, the loss in the mechan-
ical energy for the system, in terms of In, It ,vA · n and vA · t, is generated. To this end, both
sides of the r th of (12) are multiplied by �ur for r = 1, . . . , p, and the respective sides of
all the resulting equations are added, giving rise to

p∑

r=1

(
p∑

s=1

mrs�us

)
�ur + In

p∑

r=1

vR
r �ur · n + It

p∑

r=1

vR
r �ur · t = 0

or, in view of (14), (5), and (4),

p∑

r=1

(
p∑

s=1

mrs�us

)
�ur + In(vS − vA) · n + It (vS − vA) · t = 0. (25)

Similarly, if both sides of the r th of (12) are multiplied by ur(t1), and the respective sides of
all the resulting equations are added, then

p∑

r=1

(
n∑

s=1

mrs�us

)
ur(t1) + InvA · n + ItvA · t − InvA

t · n − ItvA
t · t = 0. (26)

The energy loss during collision is given by (72) in Appendix A, which can be replaced
with

�E = −1/2
p∑

r=1

p∑

s=1

mrs�ur�us −
p∑

r=1

p∑

s=1

mrs�urus(t1)

+
ν∑

i=1

miv
Pi
t · [vPi (t2) − vPi (t1)]. (27)

This can be shown if �ur and �us(r, s = 1, . . . , p) appearing on the right-hand side
of (27) are replaced with ur(t2) − ur(t1) and us(t2) − us(t1) (r, s = 1, . . . , p), in accordance
with (14). Then after expansions and cancellations, one arrives at (72) in Appendix A. The
use of (25) and (26) in (27) yields the expression

�E = 1/2In(vS − vA) · n + 1/2It (vS − vA) · t + InvA · n + ItvA · t

− InvA
t · n − ItvA

t · t +
ν∑

i=1

miv
Pi
t · [vPi (t2) − vPi (t1)].

If and only if

−InvA
t · n − ItvA

t · t +
ν∑

i=1

miv
Pi
t · [vPi (t2) − vPi (t1)] = 0, (28)

then (27) reduces to

�E = 1/2In(vS + vA) · n + 1/2It (vS + vA) · t, (29)
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an equation reminiscent of Routh’s [5] and Smith’s [22] results produced for a planar, two-
body collision. If (28) is violated, then �E may become positive as in the example of Ap-
pendix B. Note that if vPi

t = 0 (i = 1, . . . , ν), then (28) is satisfied.
The remainder of Part A and Part B of this work are dedicated to the discussion of colli-

sion theories, based on Newton’s, Poisson’s, and Stronge’s hypotheses for the determination
of In and It .

3 A collision theory with Newton’s hypothesis

In accordance with Newton’s hypothesis [32], a quantity e called coefficient of restitution is
defined as

e =̂ − vS · n/vA · n (0 ≤ e ≤ 1). (30)

The associated theory of collision with friction (given, e.g., in [31]) stipulates that if

|It | < μIn (31)

where μ is Coulomb’s static coefficient of friction, then sticking occurs, i.e.,

vS · t = 0. (32)

If inequality (31) is violated, then forward sliding or reverse sliding take place, hence

It =̂ − μ′InvS · t/|vS · t|, (33)

where μ′ is Coulomb’s dynamic coefficient of friction. In this work, no distinction is made
between μ′ and μ (see, e.g., Whittaker’s [6] and Keller’s [8] analyses) as it may lead to
inconclusive solutions discussed in Sect. 4.

Equations (22)–(23) make it possible to reformulate the theory in terms of mnn,mtt

and mnt, in conjunction with α,g,h,p, q, rm and rp , quantities defined as

α =̂vA
t /|vA

n | (0 < α < ∞) (34)

g =̂μmtt − mnt, h =̂mnn − μmnt,

p =̂μmtt + mnt, q =̂mnn + μmnt, (35)

rm =̂ g

h
= (μmtt − mnt)

(mnn − μmnt)
, rp =̂ p

q
= (μmtt + mnt)

(mnn + μmnt)
(36)

(Stronge [12] defines a quantity similar to rm); and with the aid of the relations

� = [(mnn − μmnt)(μmtt + mnt) + (mnn + μmnt)(μmtt − mnt)]/2μ (37)

which reduce to (24) after expansion and with

rm + rp =
(36),(37)

2μ�

(mnn − μmnt)(mnn + μmnt)
.1 (38)

1Numbers appearing under equal signs refer to equations numbered correspondingly.
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To this end, expressions for In, It and vS
t must be generated, e.g., with the aid of following

observation, namely, that there might be an instant t̄ (t1 < t̄ < t2) where

v̄t =̂vR(t̄) · t = 0. (39)

In this case, the initial forward sliding is completed during collision, and is followed by
either sticking or reverse sliding. Defining I ′

n, I
′′
n , I ′

t and I ′′
t as

I ′
n =̂

(∫ t̄

t1

R dt

)
· n, I ′′

n =̂
(∫ t2

t̄

R dt

)
· n, In = I ′

n + I ′′
n , (40)

I ′
t =̂

(∫ t̄

t1

R dt

)
· t, I ′′

t =̂
(∫ t2

t̄

R dt

)
· t, It = I ′

t + I ′′
t , (41)

and dividing (22)–(23) accordingly, that is,

v̄n − vA
n = mnnI

′
n + mntI

′
t , (42)

vS
n − v̄n = mnnI

′′
n + mntI

′′
t , (43)

v̄t − vA
t = mntI

′
n + mttI

′
t , (44)

vS
t − v̄t = mntI

′′
n + mttI

′′
t , (45)

one can generate In, It and vS
t for the following three types of collision.

Type 1 Sticking, comprising forward sliding (t1 ÷ t̄ ) and sticking (t̄ ÷ t2). Type 1 is
characterized by

I ′
t = −μI ′

n, v̄ · t = 0, vS · t = 0. (46)

Substitutions from (46), (24), (40c), and (41c) in (44), (45) and (22) lead to

In = [(1 + e)mtt + αmnt]|vA
n |/�, It = −[αmnn + (1 + e)mnt]|vA

n |/� (47)

(note the absence of μ from these equations).
Type 2 Reverse sliding, comprising forward sliding (t1 ÷ t̄ ) and reverse sliding (t̄ ÷ t2).

Type 2 is characterized by

I ′
t = −μI ′

n, v̄ · t = 0, I ′′
t = μI ′′

n . (48)

Expressing I ′
n and I ′′

n from (44)–(45) in conjunction with (48) in terms of vA
t and vS

t , and
substituting in (22), one can find vS

t and show that

In = [(1 + e) + 2αμmnt/(μmtt − mnt)]|vA
n |/(mnn + μmnt),

It = μ[(1 + e) − 2αmnn/(μmtt − mnt)]|vA
n |/(mnn + μmnt),

}
(49)

vS
t = −rp/rm[α − (1 + e)rm]|vA

n |. (50)

Type 3 Forward sliding (t1 ÷ t2). Type 3 is characterized by

It = −μIn. (51)
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Substitutions from (51) in (22)–(23) lead to

In = (1 + e)|vA
n |/(mnn − μmnt), It = −μIn, (52)

vS
t = [α − (1 + e)rm]|vA

n |. (53)

In and It are thus available from (47), (49), or (52), depending on the type of collision, which
must now be uncovered. This can be accomplished with the aid of additional information
derived from Routh’s graph [7], as follows.

4 Routh-based semi-graphical method

4.1 Routh’s graph

Consider two variables Ĩn and Ĩt defined as

Ĩn =̂
(∫ t

t1

R dt

)
· n, Ĩt =̂

(∫ t

t1

R dt

)
· t (54)

so that Ĩn is a monotonously growing quantity, and In =̂
(13),(54)

Ĩn(t2), It =̂
(13),(54)

Ĩt (t2). Replac-

ing In and It in (33) and (23) with Ĩn and Ĩt , respectively, and setting vS
t = 0 in (23), one

obtains equations of lines in the Ĩt − Ĩn plane, namely,

forward sliding line LFS ⇒ Ĩt =
(33)

−μĨn, (55)

sticking line LST ⇒ Ĩt =
(23)

−(
Ĩnmnt + vA

t

)
/mtt, (56)

reverse sliding line LRS 	⇒
(33),(55),(56)

Ĩt = μĨn − 2μvA
t /(μmtt − mnt), (57)

with Ĩn regarded as an independent variable. Note that the reverse sliding line crosses
point G, the intersection point of lines LFS and LST; and that, by (55) and (56),

Ĩn(G) = vA
t /(μmtt − mnt). (58)

Lines LFS,LST and LRS, drawn in Fig. 2, and, in particular, their respective slopes
−μ,−mnt/mtt and μ, can be used to look at values of Ĩn and Ĩt as the collision proceeds,
and to describe events occurring during collisions. With vA

t >
(9b),(21b)

0, all Ĩt − Ĩn relations

Fig. 2 Impulse plane



Collision with friction; Part A: Newton’s hypothesis 47

start at the origin and vary in accordance with LFS, until forward sliding is completed ei-
ther before point G is reached—then the collision ends with forward sliding characterized
by −mnt/mtt > −μ (if Ĩn(G) > 0) or by −mnt/mtt < −μ (if Ĩn(G) < 0); or at point G. In
that event, either sticking—governed by LST , or reverse sliding—governed by LRS, follow
depending on whether |mnt|/mtt < μ (then the inertial forces are not large enough to over-
come friction and produce reverse sliding) or −mnt/mtt > μ, respectively. The conditions
for sticking, reverse sliding, and forward sliding can thus be written, respectively, as

|mnt|/mtt < μ ⇒ μmtt − mnt > 0, μmtt + mnt > 0, (59)

−mnt/mtt > μ ⇒ μmtt + mnt < 0 (mnt < 0), (60)

−mnt/mtt > −μ ⇒ μmtt − mnt > 0,

−mnt/mtt < −μ ⇒ μmtt − mnt < 0 (mnt > 0).

}
(61)

Now, if sticking follows forward sliding (Type 1), then In > Ĩn(G) > 0 (Fig. 2). Substi-
tutions from (47a) and (58) lead in view of inequality (59a) to

[α − (1 + e)rm]/(�rm) < 0. (62)

If reverse sliding follows forward sliding (Type 2), then again In > Ĩn(G) > 0. Substitutions
from (49a) and (58) yield α/(mnn + μmnt) < (1 + e)rm/(mnn + μmnt) (since mnt <

(60)
0, and

hence rm >
(36a)

0) indicating that

mnn + μmnt > 0 ⇒ α < (1 + e)rm,

mnn + μmnt < 0 ⇒ α > (1 + e)rm.

}
(63)

Lastly, if a collision terminates with forward sliding (Type 3), then either Ĩn(G) > In > 0 or
Ĩn(G) < 0. Substitutions from (52a) and (58) yield, respectively,

α >
(61a)

(1 + e)rm, α >
(61b)

0. (64)

4.2 The determination of the type of collision

Coherent solution requires In > 0,vS
n > 0 and vS

t greater, equal, or smaller than zero, as
the case may be; or [(1 + e)mtt + αmnt]|vA

n |/�(=
(47)

In) > 0, etc., if use is made of (47),

(49), (50), (52), and (53) to obtain explicit expressions. These, together with inequalities
(59)–(61) (μ-bounds) and (62)–(64) (α-regions), can be expressed in terms of g,h,p, and q ,
therefore, the algebraic signs of these parameters determine the satisfaction—or violation—
of the inequalities. Now, each of the types of collision is coherent if and only if a certain
subset of the indicated inequalities is satisfied, an event dependent solely on the algebraic
signs of g,h,p, and q and on the range of α. The different possibilities can be explored
in an orderly fashion if it is noted that a one point collision of a simple, nonholonomic
system gives rise to five possible variations of the algebraic signs of g,h,p, and q (see
(35)) arranged in columns 2–5 of Table 1. In fact, 16 sign-variations exist, however, the
interdependence of g,h,p, and q ((35) and (37)) rejects the consistency of 11. That is,
variations with either g < 0 or h < 0 (implying mnt > 0) and with either p < 0 or q < 0
(implying mnt < 0), or variations with h ·p + g · q (= 2μ�) < 0 (contradicting � >

(24)
0) will

never occur, hence are ignored.
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Table 1 Addmissible sign-variations of g,h,p and q

No g h p q Sticking R. Sliding F. Sliding

1 > 0 > 0 > 0 > 0 α < (1 + e)rm – α > (1 + e)rm

2 > 0 > 0 > 0 < 0 α < (1 + e)rm – α > (1 + e)rm

3 > 0 > 0 < 0 > 0 – α < (1 + e)rm α > (1 + e)rm

4 > 0 < 0 > 0 > 0 α > 0 – –

5 < 0 > 0 > 0 > 0 – – α > 0

Considering sticking, one may conclude that only Cases 1, 2 and 4 comply with in-
equalities (59). Moreover, inequality (62) indicates that the sticking-associated α-regions
are those appearing in the sticking column in Table 1 (in Case 4 rm < 0 hence α > 0) for
which In >

(47a)
0 and |It | <

(31)
μIn. Regarding reverse sliding, inequality (60) is satisfied only in

Case 3. The range α is determined by inequality (63a) and is reported in the reverse sliding
column of Table 1. It can be verified that in Case 3 In >

(49a)
0 and vS

t <
(50)

0. Finally, all cases sat-

isfy either inequality (61a) or (61b) in forward sliding. However, h > 0 and α > (1 + e)rm,
ensuring In >

(52a)
0 and vS

t >
(53)

0, in all but Cases 4 (in Case 5 α > 0 since rm < 0).

An algorithm for the solution of a collision problem can now be established provided
μ and e are known. α,mnn,mtt,mnt, g,h,p, q, rm and � are calculated for t1, the collision
time. The collision type is determined with the aid of Table 1, and used to evaluate In and It

with (47), (49), or (52), and then �u1, . . . ,�up with (16).
It should finally be noted that the distinction between μ′ and μ(μ′ < μ) gives rise to

additional regions of ambiguity. For example, consider the first case in Table 1 with μ′ < μ.
The regions of sticking and forward sliding become 0 < α < (1 + e)rm and (1 + e)r ′

m < α <

∞, where r ′
m is defined as rm in (36a) with μ′ replacing μ. However, ∂rm/∂μ > 0 since

� > 0, hence r ′
m<rm. Consequently, conditions for both forward sliding and sticking are

satisfied when (1 + e)r ′
m < α < (1 + e)rm. This state of affairs is typical of transitions from

sticking to sliding regions, also appearing in Part B; and leads to the following conclusion,
namely, that the distinction between μ′ and μ gives rise to regions where solutions are not
unique. Hence, no such distinction is made in this work.

4.3 Energy considerations

The change in the system mechanical energy associated with sticking can be obtained by
substitutions from (30) and (32) in (29), which lead to �E|1 = 1/2In(1 − e)vA

n + 1/2ItvA
t ,

or, in view of (34) and (47),

2�E|1/|vA
n | = −{1 − e + α[αmnn + (1 + e)mnt]/[(1 + e)mtt + αmnt]}In. (65)

With regard to reverse and forward sliding, substitutions from (30) and (33) in (29) yield
�E = −1/2In(1 − e)|vA

n | + 1/2In(It /In)(vS
t + vA

t )|vA
n |/|vA

n |, or

2�E|2/|vA
n | =

(49),(50)
−{(1 − e) − μ(l − 2αmnn)/(l + 2μαmnt)

× [α(1 − rp/rm) + (1 + e)rp]}In (66)

for reverse sliding, where l = (1 + e)(μmtt − mnt); and

2�E|3/|vA
n | =

(53)
−{(1 − e) + μ[2α − (1 + e)rm]}In (67)
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for forward sliding. Equations (65)–(67) show that whereas. �E|3 < 0 for forward slid-
ing as can be shown straightforwardly for all cases of Table 1 (see inequality (64)),
this is not necessarily the case with sticking and reverse sliding. For instance, if e = 1,
�E reduces to �E|e=1 =

(29),(30)
1/2It�vt where �vt =̂vA

t + vS
t . Equation (65) becomes

�E|1 = −1/2|vA
n |2[2αmnt + α2mnn]/�, and �E|1 has for the first case of Table 1, a

maximum at α = −mnt/mnn (within the sticking region), which equals �E|1 max @e=1 =
1/2|vA

n |2m2
nt/(mnn�) > 0. For reverse sliding, the values of It and �vt are at α = 0

It |α=0 =
(49)

2μ|vA
n |/(mnn + μmnt) > 0 and �vt |α=0 =

(50)
2rp|vA

n | < 0, and at α = 2rm It |α=2rm =
(49)

−2μ|vA
n |/(mnn − μmnt) < 0 and �vt |α=2rm =

(50)
2rm|vA

n | > 0. Moreover, α(It = 0) = (μmtt −
mnt)/mnn 
= α(�vt = 0) = 2rprm/(rp − rm), hence there is a region of α where both It and
�vt have identical signs, and �E|2 > 0.

4.4 Comments

a. In, It ,vS
n and vS

t are continuous functions of α. This continuity is maintained through
the passages from one type of collision to another, e.g., at α = (1 + e)rm in Cases 1 and
2 of Table 1, where In|1[α = (1 + e)rm] =

(47a),(52a)
In|3[α = (1 + e)rm], and in Case 3, where

It |2It [α = (1 + e)rm] =
(49b),(52b)

It |3[α = (1 + e)rm]. Consequently, equal signs can be added to

the inequalities defining the regions of α in Table 1.

b. If μ = 0, then rm =
(36)

−rp = −mnt/mnn, hence rm + rp = 0. Inequalities (59) (mnt = 0),

(60) (mnt < 0) and (61) (mnt < 0 or mnt > 0) indicate sticking, reverse sliding or for-
ward sliding when α =

(62)
0, α <

(63),(50)
(1 + e)rm or α >

(64a)
(1 + e)rm, respectively (if mnt > 0,

then rm < 0, hence α >
(64b)

0). In all cases In = (1 + e)|vA
n |/mnn ((47), (49) and (52)) and

2�E/|vA
n | = −(1 − e)In < 0 ((65)–(67)).

c. e = 0 indicates vS
n = 0 but not vS

t = 0 ((50) and (53)).

d. The cases vA
n < 0, vA

t = 0 (α → 0), called direct impact [10, 30], and vA
n = 0,

vA
t > 0 (α → ∞), called grazing [4, 12, 20], can be followed by all three types of col-

lision; and In, It , vS
n and vS

t can be found from (47) (sticking), (49) and (50) (reverse
sliding) and (52) and (53) (forward sliding), by direct substitution. For direct impact
(vA

t = 0) In =
(47a)

(1 + e)mtt/�|vA
n | and It =

(47b)
−mnt/mttIn (sticking), In =

(49a)
(1 + e)/(mnn +

μmnt)|vA
n | and vS

t =
(50)

(1+e)|vA
n |rp (reverse sliding); and for grazing (vA

n = 0) In =
(47a)

mnt/�vA
t

and It =
(47b)

−mnn/�vA
t (sticking), and vS

t =
(50)

−rp/rmvA
t , In =

(49a)
2μmnt/[(μmtt − mnt)(mnn +

μmnt)]|vA
n | and It =

(49b)
−mnn/mntIn (reverse sliding).

e. When mnt = 0 (‘balanced collision’, [11, 15, 22]), then g,h,p, and q (35) are all pos-
itive, hence only the first case of Table 1 can occur (no reverse sliding is possible). Also,
2�E/|vA

n | =
(65)

−{1 − e + α2mnn/[(1 + e)mtt]}In < 0 for sticking, hence in both sticking and

forward sliding �E < 0.

f. The first term in (29) is always negative (see (30)). However, it approaches zero as e → 1,
enhancing the possibility for �E > 0.

g. g and/or q , and h, in collision types 2 and 3, respectively, are not allowed to vanish, or
else In and/or It go to infinity (see (47), (49), and (52)). Equal signs can thus be added to the
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remaining inequalities in Table 1, columns 2–5, leaving the solutions unique. This can be
shown to always be the case; for example, if p = 0, then Case 1, Type 2 and Case 3, Type 4
lead to the same In, It ,vS

n and vS
t (= 0), hence to the same solution.

h. A collision theory can be formulated without the bisection of the collision time, i.e.,
without the introduction of t̄ (39), as in Appendix C. This theory underlies that used by
Kane and Levinson in [31]. It can be shown, with the aid of a table similar to Table 1 that it
offers unique and coherent, but energy inconsistent solutions.

5 Kane and Levinson’s example [31, p. 348]

Figure 3 shows a double pendulum S consisting of uniform rods A and B , each of length l

and mass m. Let q1 and q2 be the orientation angles of the rods, and let ui = q̇i (i = 1,2).
Suppose that at time t1 the endpoint B̄ of B strikes H , a flat surface, and that at t1 q1 = 20,
q2 = 30 deg and u1 = −0.1, u2 = −0.2 rad/sec. It is required to evaluate the change in the
kinetic energy of S following the collision, for m = 3 kg and l = 2 m. To this end, n and t
are identified as n = −n1 and t = −n2, where n1 and n2 are the unit vectors shown in Fig. 3.
Next, the velocity of B̄ at t1, which is the velocity of approach, and the equation of motion
of S are generated and cast as follows

vB̄ (t1) = vA = −0.2684n + 0.5343t,

−1/3ml2
[
4u̇1 + 3/2 cos(q1 − q2)u̇2 + 3/2 sin(q1 − q2)u

2
2

] = 0,

−1/3ml2
[
3/2 cos(q1 − q2)u̇1 + u̇2 − 3/2 sin(q1 − q2)u

2
1

] = 0.

Substitutions in (20), (24), and (34) yield mnn = 0.3365, mtt= 0.8134, mnt = −0.5071,
� = 0.0166, and α = 1.9908. The top rows 1–4 of Table 2 show cases with different values
of e and μ corresponding to the four cases of [31], for which μmtt −mnt > 0,μmtt +mnt < 0
and � > 0; and if solved as in Appendix C (Kane and Levinson’s solution), then inequali-
ties (74) reduce to α < (1 + e)rm and α > −(1 + e)rp . These together with inequalities (77)
and (80), lead to the types of collision reported in column 7 of Table 2 and to the energy
changes in column 11 in agreement with [31]. Referring next to the Routh-based method
and to Table 1, and noting that in all cases g > 0, h > 0,p < 0, q > 0 (Table 1, case 3), one
has reverse sliding for all cases, as noted in column 7, bottom rows 1–4, with a decrease
of the kinetic energy. However, row 5 shows that a larger coefficient of restitution can lead

Fig. 3 Double pendulum
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Table 2 The double pendulum collision problem: two solutions

e μ rm (1 + e)rm −(1 + e)rp Type �u vS
n vS

t �E

[r/s,r/s] [m/s] [m/s] [J]

Newton’s hypothesis; no bisection of the collision time, Appendix C

1 0.5 0.2 1.529 2.294 2.198 2 [−0.15,0.51] 0.13 −0.06 −0.033

2 0.5 0.5 1.549 2.323 1.815 1 [−0.23,0.56] 0.13 0.00 0.163

3 0.3 0.5 1.549 2.013 1.573 1 [−0.10,0.41] 0.08 0.00 −0.119

4 0.7 0.5 1.549 2.633 2.057 2 [−0.34,0.69] 0.19 −0.018 0.489

5 0.9 0.5 1.549 2.943 2.299 – [ –, –] – – –

Newton’s hypothesis; with bisection of the collision time, Sect. 3

1 0.5 0.2 1.529 2.294 2.198 2 [−0.12,0.47] 0.13 −0.078 −0.095

2 0.5 0.5 1.549 2.323 1.815 2 [−0.13,0.49] 0.13 −0.070 −0.073

3 0.3 0.5 1.549 2.013 1.573 2 [−0.09,0.41] 0.08 −0.005 −0.131

4 0.7 0.5 1.549 2.633 2.057 2 [−0.17,0.58] 0.19 −0.130 −0.002

5 0.9 0.5 1.549 2.943 2.299 2 [−0.22,0.66] 0.24 −0.200 0.083

to �E > 0 (see Comment f ). It may be concluded that the bisection of the collision time
(compare Sect. 3 with Appendix C) does not rectify energy-related inconsistencies associ-
ated with Newton’s hypothesis.

6 Summary

A thorough investigation of a one-point planar collision with friction theory based on New-
ton’s hypothesis, in conjunction with the Routh’s semigraphical method and Coulomb’s co-
efficient of friction, was conducted with the aid of explicit expressions for In, It ,vS

n and vS
t

written for three types of collision. It was shown that the algebraic signs of four parameters
g,h,p, and q , and the range of α, determine the type of collision, as reported in Table 1,
spanning five possible cases of simple, nonholonomic systems undergoing planar collisions.
Table 1 also shows that the incorporation of Routh’s method, does not prevent Newton’s hy-
pothesis from leading to a possible increase in the calculated mechanical energy of systems
undergoing collisions if sticking or reverse sliding occur. This, in general, is an unacceptable
proposition for simulations of motion of multibody systems undergoing collisions.

In Part B of this work, investigations of Poisson’s and Stronge’s collision hypotheses are
conducted and their generality examined with the aid of a table similar to Table 1 with more
encouraging results.

Appendix A

The entry mrs in row r , column s of the p × p mass matrix associated with (1) is the
coefficient of u̇s in the r th equation, and is given by

mrs =̂ −
ν∑

i=1

mivPi
r · vPi

s (r,s= 1, . . . , p). (68)



52 S. Djerassi

This can be shown formally if aPi , the acceleration of Pi in N , is expressed as

aPi =
p∑

r=1

vPi
r u̇r + v̇Pi

r ur + v̇Pi
t (i = 1, . . . , ν) (69)

(see (2)). The inertia force associated with Pi equals −miaPi , hence its contribution to
the r th of (1) is given by −miaPi ·vPi

r . Summation of such contributions from all the particles
comprise the r th generalized inertia force, namely, F ∗

r = ∑ν

i=1 −miaPi · vPi
r . Substitutions

from (69) for i= 1, . . . , ν make it possible to verify that coefficient of u̇s is that given by (68).
Note that mrs = msr , hence that the mass matrix is symmetric. Next, the kinetic energy of a
simple nonholonomic system defined in Sect. 1 is given by

E = 1/2
ν∑

i=1

mi

[
p∑

r=1

vPi
r ur + vPi

t

][
p∑

s=1

vPi
s us + vPi

t

]
(70)

or when use is made of mrs defined in (68),

E = −1/2
p∑

r=1

p∑

s=1

mrsurus +
ν∑

i=1

miv
Pi
t vPi − 1/2

ν∑

i=1

mi(v
Pi
t )2. (71)

The loss of mechanical energy during collision is �E =̂E(t2) − E(t1), and since
vPi

t (t2) =̂vPi
t (t1) (i = 1, . . . , ν), then

�E = −1/2
p∑

r=1

p∑

s=1

mrsur(t2)us(t2) + 1/2
p∑

r=1

p∑

s=1

mrsur(t1)us(t1)

+
ν∑

i=1

miv
Pi
t · [vPi (t2) − vPi (t1)]. (72)

Appendix B

Consider a particle P dropped on a disk which is made to rotate with a constant angular
speed � about its vertically-posed axis, hitting a point P ′ of the disk a distance r from the
indicated axis. Then in accordance with the definitions of n and t, the former is vertical
and points upward, and the latter is tangent to the path of P ′ at t1. Thus, if u1 =̂vP · n,
then vP (t1) = u1(t1)n. Also vP ′

(t1) = vP ′
t = �rt. Next, let e = 1, so that in accordance

with (30), vP (t2) · n = −vP (t1) · n (or u1(t2) = −u1(t1)). Finally, assume that due to the
rough surface of the disk vP (t2) = u1(t2)n + vTt, i.e., the velocity of P is imparted with a
tangential component vTt. Clearly, the mechanical energy of the system increases although
the mechanical energy of the disk remains constant since its angular speed is prescribed.
This example shows that if vPi

t 
= 0, then an increase in the mechanical energy of the system
following a collision does not necessarily indicate a flaw in the collision theory.

Appendix C

Expressions for In, It ,vS
n and vS

t can be obtained for the three types of collision without the
bisection of the collision time as follows.
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Type 1 Sticking. Type 1 is characterized by vS
t = 0. By (22), (23), (30), and (32)

In = |vA
n |[(1 + e)mtt + αmnt]/�, It = −|vA

n |[αmnn + (1 + e)mnt]/�. (73)

Sticking prevails if inequality (31) is satisfied or with the substitution of In and It from (73)
in inequality (31)

−μ[(1 + e)mtt + αmnt]/� < −[αmnn + (1 + e)mnt]/� < μ[(1 + e)mtt + αmnt]/�,

which becomes if use is made of rm and rp defined in (36),

mnn − μmnt

�
[α − (1 + e)rm] < 0,

mnn + μmnt

�
[α + (1 + e)rp] > 0. (74)

Type 2 Reverse sliding. Type 2 is characterized by vS
t < 0 and It =

(33)
μIn. Equations (22),

(23), (30), and (33) yield

In = (1 + e)|vA
n |/(mnn + μmnt), It = μIn, (75)

vS
t = [α + (1 + e)rp]|vA

n |. (76)

Reverse sliding prevails if

α < −(1 + e)rp. (77)

Type 3 Forward sliding. Type 3 is characterized by vS
t > 0 and It =

(33)
−μIn. Equations (22),

(23), (30), and (33) yield

In = (1 + e)|vA
n |/(mnn − μmnt), It = −μIn, (78)

vS
t = [α − (1 + e)rm]|vA

n |. (79)

Forward sliding prevails if

α > (1 + e)rm. (80)

Equations (73), (78), and (79) are identical with (47), (52), and (53), respectively. How-
ever, (75) and (76) differ from (49) and (50). Here, the collision time is not bisected and,
therefore, inequalities (59)–(64) cannot be used. A table similar to Table 1 can be built in
conjunction with inequalities (74), (77) and (80), however. One then obtains for Cases 1–2
and 4–5 α—regions identical with those of Table 1. In Case 3, one has, by inequalities (74),
(77) and (80), (1 + e)rm > α > −(1 + e)rp , α < −(1 + e)rp and α > (1 + e)rm for sticking,
reverse sliding and forward sliding, respectively (−rp < rm). Hence solutions are always
coherent and unique.
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