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Abstract The multibody simulation of railway vehicle dynamics needs a reliable and ef-
ficient method to determine the location of the contact points between wheel and rail that
represent the application points of the contact forces and influence their directions and in-
tensities. In this work, two semi-analytic procedures for the detection of the wheel-rail con-
tact points (named the DIST and the DIFF methods) are presented. Both the methods con-
sider the wheel and the rail as two surfaces whose analytic expressions are known. The first
method is based on the idea that the contact points are located in the point in which the dis-
tance between the contact surfaces has local maxima, and is equivalent to solve an algebraic
4D-system. The second method is based on the idea that in the contact points the difference
between the surfaces has local minima and is equivalent to solve an algebraic 2D-system.
In both cases, the original problem can be reduced analytically to a simple 1D-problem that
can be easily solved numerically.

Keywords Contact point location - Railway simulation - On-line contact detection

1 Introduction

The research of the contact points between the wheels and the rails in the multibody simula-
tion of railway vehicle dynamics is very important since they represent the application points
of the contact forces. The wheel/rail contact problem has been discussed by several authors
and a number of procedures to evaluate the contact points can be found in the literature.
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In the simulation of the railway dynamics, there are two different approaches to solve
the wheel/rail contact problem: the so-called rigid contact formulation [1] and the semielas-
tic contact description [2, 3]. In the rigid approach (the classical multibody approach), the
contact is represented by means of the constraint equations that impose the contact between
the wheel and the rail surfaces. The contact points are searched during the dynamic simula-
tion by solving the nonlinear algebraic-differential equations associated to the constrained
multibody system. In this case, each wheel has only five degrees of freedom with respect to
the rail, and the indentation and the lift between the contact bodies are not permitted. This
approach has been applied both in the railway [1, 4-6] and in the automotive dynamics [7].

In the formulations based on the elastic approach, the wheel is represented as a rigid
body with six degrees of freedom with respect to the rail and the normal contact forces
are defined as the function of the indentation between the bodies through the Hertz contact
theory [2, 3]. In the literature, several methods for the detection of the contact points can
be found. Some authors started from the idea of minimizing the distance between the wheel
and rail surfaces; most of them, however, introduced additional hypotheses on the position
of the contact points in order to simplify the geometry of the problem [6, 8, 9].

In some preceding works, the authors presented a method [10, 11] in which the contact
points are searched minimizing the difference between the wheel and rail surfaces by means
of numerical iterative algorithms (like the Compass Search algorithm and the Simplex al-
gorithm [12, 13]). These procedures do not introduce additional geometric hypotheses and
allow an efficient management of the multiple contacts (up to two contact points for wheel).
The challenge of this study was the realization of an efficient multibody model, running in
real-time conditions; however, the developed solutions did not allow a direct implementation
of the research procedure in the multibody model. In other words, the solutions described in
[10, 11] were used to generate lookup tables to be used during the simulation of the vehicle
dynamics. The wheel/rail contact problem can be solved in this case finding the minima of
a two dimensional surface. The numerical algorithms conventionally used for this type of
application present various problems:

1. Iterative research algorithms need start points and break conditions that are not simple
to choose and may affect the reliability of the solution; moreover, the convergence of the
procedure cannot be easily assured.

2. The required accuracy cannot be guaranteed a priori.

. The management of the multiple solutions can be difficult.

4. The required computational burden allows only off-line implementation (a real time im-
plementation requires necessarily the use of lookup tables).

(98]

In this work, the authors propose two semianalytic methods to determine the wheel-rail
contact points. These procedures will allow to improve the performances of the preceding
methods and to overcome the problems mentioned above. Both the presented procedures
represent the wheel and the rail as two mathematical surfaces whose analytic expression is
known (Fig. 1). The first method is based on the idea that the contact points are located
in the points in which the distance between the wheel surface and the rail surface assumes
local maxima. This method has been used by several authors to solve the wheel/rail problem
[2, 3, 6]. In the wheel/rail case, the problem can be represented as the research of the sta-
tionary point on a four dimensional surface, that is equivalent to solve an algebraic system
having the form:

F,x)=0, F :R*—>R*% 6]
The second method is based on the idea that in the contact points the difference between the

wheel surfaces and the rail surface evaluated along a direction assumes local minima. In this
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Fig. 1 Wheel and rail surfaces
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case, the problem can be reduced to the research of the minima of a two dimensional surface
and is equivalent to solve an algebraic system that can be written as:

F,(x)=0, F,:R>—R2% )

In both cases, the problem can be reduced analytically to a simple mono-dimensional prob-
lem having the form

F(x)=0, F:R—>R 3)

that can be solved numerically. The first method will be indicated in the paper with the
abbreviation DIST (Distance Method), whereas the second with DIFF (Difference Method).

The performances of the proposed procedures will be compared among them and with
those obtained with other methods previously developed and available in the literature (like
the Compass Search and the Simplex methods [10-13]). The results will be also compared
with those obtained with the direct research of the solution obtained by the calculation of the
function on a multi-dimensional grid and the comparison between the obtained values (this
procedure will be indicated with GRID method throughout the paper). The comparisons will
be carried out in terms of precision and computation times.

The paper is organized as follows: In Sect. 2, the analytic formulation of the problem will
be introduced, in the Sects. 3 and 4, the DIST and DIFF methods will be described in detail;
in Sect. 5 the obtained results are described and the performances of the new procedures
will be compared with those obtained with other methods. A particular attention will be
dedicated to the computation times and the precision of the procedures.

2 The analytic formulation of the problem

In this chapter, the mathematical notations used in the paper and the analytic formulation of
the problem will be introduced. Firstly, a fixed global reference system O,x,ysz, (Fig. 2)
is defined, the x axis is tangent to the track centerline in the point O and the z; axis is
normal to the plane of the rails. With respect to this fixed global system, the railway track
can be described by means of a three-dimensional curve I'(s) (s is the curvilinear abscissa):

r:1cR-R. 4)
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Fig. 2 Definition of the rail
track, base, and auxiliary
reference systems

For convenience, I'(s) is defined as the projection of I'(s) on the horizontal plane x,y .
Usually in the cartographic description of a railway track, the profile is described by its
projection on the horizontal plane and by its longitudinal profile. The curvature K (s) of the
projection T'(s) can be obtained from the track planimetry, while the track slope p(s) that
represents the tangent of the angle between the track and the horizontal plane can be obtained
from the longitudinal track profile [15]. From these parameters, the three-dimensional track
curve I'(s) can be calculated. The track is usually composed of a series of straight, circular,
or transition curve segments and their analytical expressions are known. In the more general
case, the curve profile can be obtained integrating the Frenet equations [14]:

dt_K dn_ K(s)t 5
T (s)n(s), i (s)t(s), ©)

where t(s) and n(s) are respectively the tangent and the normal unitary vectors of the curve
I'(s). Starting from the boundary conditions t(0) = [1,0]” and n(0) = [0, 1]” (in this con-
figuration, the tangent unitary vector is parallel to x s and the normal one is parallel to y),

the Frenet equations can be integrated, obtaining t(s) and n(s). Then since t(s) = %, the
first two components of I'(s) can be calculated by the following integration:

F(s)= / t(u) du, (6)
0

in which u represents the integration variable. The third component of I'(s) is calculated
using the definition of the track slope:

[2(s) 2/0 p(u)du. )

A second reference system (referred as auxiliary reference system) O,x,y,z, (Fig. 3) is
defined, i,, j,, and k, represent the unitary vectors relative to the axes x,, y,, and z,, respec-
tively. It is defined on the rails, but follows the wheelset during the simulation. The x, axis
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Fig. 3 Track auxiliary reference
system and wheelset local

reference systems -
wheelset

is tangent to the track centerline in the point O, and the z, axis normal to the plane of the
rails. The position of the point O,, identified by its coordinates o] relative to the fixed ref-
erence system, can be calculated from the wheelset center of mass location G, identified by
its coordinates relative to the fixed reference system o/, imposing the following condition:

w?

(of —of)-i, =0, (®)

since the point O, is on the curve I'(s) describing the rail track, O,f =TI'(s) and i, =i, (s),
then (8) can be rewritten as:

(01]; - r(s)) : ir(s) = 0. (9)

Equation (9) can be solved with respect to the variable s. This condition is equivalent to
impose that the plane y,z, contains the wheelset center of mass G.

In order to define the axes y, and z,, another reference system (named secondary refer-
ence system) is defined, its unitary vectors i,/, i/, and i, relative to the axes x,/, y,», and
z,+, respectively, are calculated as follows:

L dl“/’
lrr:lr:—
ds

j,,/ = k/ X ir/7 (10)

dr
ds

k=i X .
The unitary vectors of the auxiliary system can then be defined as follows:
[i- Jr K I=[Remdlir j- koI1=I[R], an
where the rotation matrix [Rc.n] is defined as:

1 0 0
[Rean] = [R, g 1= | 0 cosBe —sinfe | (12)
0 sinf. cosp.
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B. is the cant angle and [R;] is the rotation matrix that links the auxiliary system with the
fixed one.

Finally, the local reference system O,,x,, Y, 2, is defined. The y,, axis is coincident with
the rotation axis of the wheels and is rigidly connected to the axle (except for the rotation
around this axis). The x,, axis is parallel to the plane x, y, and the origin O,, coincides with
the center of mass G of the wheelset.

Indicating with p/, p’, and p¥ the position of a generic point expressed respectively
in the fixed, auxiliary, and local reference systems, then the following standard kinematic
relations hold:

p’ =0 +[R/Ip’,
p =0, +[Rulp”, (13)
p/ =of +[R]p".

where [ﬁ] = [R;][R;] is the rotation matrix that links the local system with the fixed one,
o), and 05) are the coordinates of the wheelset center of mass expressed in the auxiliary and
in the fixed reference system, respectively. The matrix [R;] (that links the local system with
the auxiliary one) is defined as:

cosa —sinae O[1 0 0
[Ro] =[R 4][R, gl =| sina cosa O 0 cosB —sinf
0 0 1[0 sinB cospB
cosa —sinacosf  sinasinf ]
= | sine cosacosff —cosasinf |, (14)
0 sin 8 cosf

where @ and B are respectively the yaw and roll angles of the axle with respect to the
track.

In order to parametrize a surface, different options can be considered. However, being
the wheel a solid of revolution, an angular parameter, and a translational parameter in the
direction of the wheel profile seem the natural option. Similarly, an arc length parameter and
a translational parameter in the direction of the rail profile is also a natural option for the
track. However, in this work for both wheel and rail, the surfaces two translational parame-
ters have been used; this choice allows to simplify the algebraic manipulations necessary to
develop the DIST and DIFF methods described in the following sections.

In the local system the axle (and, therefore, the wheels) can be described by means of
a revolution surface. The generative function, schematically sketched in Fig. 4 is indicated
with 7 (y,,) (the function r(y,) is known). The profile of the single wheel is plotted in detail
in Fig. 5. In this case, an ORE S 1002 has been chosen [15]. The position of a generic
point of the axle in the local reference frame p!) has consequently the following analytic
expression (Fig. 6):

xw
P, (Xw, Yu) = Y , (15)

—r(w)? —x2
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Fig. 4 Generative function of
the wheelset

480

R
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Fig. 5 Profile of the wheel ! i

Ok, T e,

while the position of the same point in the auxiliary system is given by (Fig. 3):

p:u(xun yw) = 0;} + [R2]p$(xwa yw) =

Xy, (Xw, Yuw)
Vi (s Yu) |3 (16)
25 (Xw, Yw)

as consequence of the choice of the reference systems the matrix [R;], defined in (14) as a
function of the wheelset yaw and roll angle has the following structure:

T
r, rr ri2

T
[Ro]=|r;, [=|ra 12
I’g 0 r3p

while the coordinates of the wheelset center of mass are:

0
b=| G,
G,

rs3
I3 )

r33

(18)
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p:« (xu' ? yn‘

Or

Fig. 6 Coordinates of a point on the wheel surface

Fig. 7 Railway generative i

function
f O, (e | Ve
37

Similarly, the rails can be described in the auxiliary system by means of a extrusion
surface. The generative function indicated with b(y,) is known and is sketched in
Fig. 7.

The profile of the single rail is plotted in detail in Fig. 8. This profile is rotated with
respect to the x, axis with an angle o, corresponding to the railway laying angle, in the
figure, an UIC 60 is shown [15].

The position of a generic point of the rail in the auxiliary system are:

Xr
p:(xh )= Yr . (19)
b(yr)

For both surfaces the normal unitary vectors (outgoing for convention) can be defined.
The normal unitary vector on the wheel surface (Fig. 9) is defined, in the local system,
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Fig. 8 Rail profile r ' : ! ' ' !
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Fig. 9 Normal unitary vector on
the wheel surface +
Z
b
p]"
O, ),
as follows:
nw(pw) — _ (apw )/ ’ apu' ap$
e CREA 0% Oy

2 2 -1 xw/\/ ”()’w)z—xi
= <\/r(yW) (r (yW) + 1)> —"()’u;)"/(yw)/ "()’w)z - x,% . (20)
1

r(yw)2 - xzzu

In this expression, r'(y,) is the wheel profile derivative r'(y,) = . In the auxiliary
reference system, the unitary vector normal to the wheel surface can be calculated as:

dr(yw)
dw

n,(p,) = [Ran} (py). (1)

It is useful to remark that in this case /r(y,)> —x2 is a real positive number since
r(yw)? > xp.
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Fig. 10 Normal unitary vector A
of the rail z
%

Or V,.

The unitary vector relative to the rail surface (Fig. 10), with respect to the auxiliary
system is defined as:

oy _ (0P OP) op, 9P,
o () = (8x, X 8y,>/ dx, X Y, 2)
r0
= (VI+00)2) | =000 |. (23)
1

In this expression, b'(y,) represents the rail profile derivative b'(y,) = T

3 The DIST method

As mentioned in the Introduction, the DIST method is based on the idea that in each contact
point the distance between the wheel surface and the rail surface assumes a local maximum.
The problem can be efficiently solved imposing the following conditions (Fig. 11) [14]:

e The normal unitary vector relative to the rail surface n’ (p) has to be parallel to the wheel
surface normal unitary vector n, (p’,);

n, X nj, (pfu) =n, (p:) x [Ry]m}) (pﬁ) =0. 24)

e The rail surface normal unitary vector n (p/) has to be parallel to the vector representing
the distance between the generic point of the wheel and of the rail d” = p/, — p/.

n.(p;) xd =0. (25)

The vector representing the distance between the generic point of the wheel and of the rail
can be expressed as

dr(xwa Yws Xrs yr) = p:;)('xw’ yw) - P:(xr» yr) = 0; + [R2]p$(xw7 yw) - P;(xr» yr) (26)
The vector d”" (xy, Yu, Xr, y») depends on four parameters, namely the parameters used to

identify a point on the rail and on the wheel surface, respectively. The conditions defined
in (24) and (25) represent a system with six equations (since two vectorial constraints are

@ Springer



Determination of wheel-rail contact points with semianalytic methods 337

Fig. 11 DIST method: vector 4-
representing the distance between r
the generic point of the wheel
and of the rail

Or Y,

imposed) and four unknowns (x,,yw,X,,y,), then only four of them are independent. Carry-
ing out the calculations, it could be verified that the third component of both the vectorial
equations (24) and (25) are proportional to the second one. Then only the first and second
components of the equations can be considered for the solution of the problem.

The solutions of the system (24-25) are indicated with

(xC ygi,xc ygl.), i=1,2,...,n, 27

wi? ri?
while
por =P, (x5 ), B =5 y5), i=1.2,.n (28)

are the corresponding contact points on the wheel and on the rail (Fig. 11).

The system solutions depends on the relative displacement between the wheelset and the
rail, defined by the kinematic parameters Gy, G, «, 8. Because of the problem geometry,
if the conditions b(y,) = b(—y,) and r(y,) = r(—y,) are satisfied (in other terms if the
wheel and the rail profile are symmetric with respect to the y,, and y, axis), the following
symmetry conditions holds:

o If (x§,,¥S,, x5, ¥,) is a solution associated to the kinematic variables (G,, G, , f),
then (—x5, S, —x5, y$) will be a solution associated to the kinematic variables
(Gyv Gm -, :8)

o If (x5, S, x5, v5) is a solution associated to the kinematic variables (G, G, , ),

c _.c

then (—xgi, —yii, —X,7, —Y,;) will be a solution associated to the kinematic variables

(=G,, G, a,—p).

A generic solution of the system (24-25) can be considered an effective contact point
only if the normal indentation between the surfaces p, is negative (according to our conven-
tion). Therefore, as regards the i-th solution, the following condition has to be verified:

pai =d< - (p) <0, (29)
where d7€ = p/¢ — p/:€. Otherwise, the solution must be rejected.

@ Springer



338 M. Malvezzi et al.

The i-th solution has to pass also another test to be considered a contact point: the curva-
tures of the surfaces in the contact points have to satisfy some algebraic conditions so that
the contact could be physically possible.

The normal principal curvatures Ky, (y,) and K5, (y,) in a generic point of the wheel
are defined as follows [14]:

1
K w(yw) = )
' Q)W+ 7 ()2 0
KZw(yw) = r (yw)

1+ r/(yuz)2)3/2 '

while the normal principal curvatures Ki,(y,) and K5, (y,) in a generic point of the wheel
are defined as:

Klr(yr) =0

Ko () — — P/ GD
TR CROE

In these expressions, r”(y,) = d ;(ZM) and b (y,) = & b;” represent the second derivative
of the wheel and the rail profile, respectlvely The curvatures are positive if the surfaces
are convex (Fig. 12). Concerning the wheel principal directions of curvature the following

relations hold:

vV r(yw)2 - ‘xlzl)
0

V'f)w(xw, Yu) = m
w
X

(32)
_ r/(yIL')
w
1 [r(yw)l

VEU J(Xw, yw) - h
w 1 + r/(yw)2 Vv i i

Fig. 12 Signs of the normal
principal curvatures K <0

conlact SlH_'f(IC‘t?S
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The rail principal directions of curvature are:

1
V}i,-(xra yr) =101,
0
(33)
0
5 ( ) !
Vo, Xps Vr) = —F/————
2r Y /1 +b/(yr)2 b/(y )

These relations can be used to calculate the normal curvatures K, (y”) K>, (y”) K lw(y D,
and Ky, (yu,) and the principal dlI‘eCthIlS of curvature V,f =V (x5, 59, V5o =
v, (x5, ¥5), vlwl v (x5, ¥5), and VZW vz,,,(xw,, ¥&.) in the contact points.

Then the curvatures of the wheel and rail surfaces k¥, ;, kS, ., kC ., k5 . in the longitudinal
and lateral rail direction can be calculated. The bundle of planes passing through the axis
defined by the unitary vector n’ (p:’lc) defined on the point p;;c is considered (or equivalently
the bundle defined by the axis passing through the unitary vector n/, (pw, ) defined on the
point ijlC) Cuttmg the contact surfaces with the planes of the bundle containing the unitary
vectors Vlf and v2”, by means of the Euler’s formula, the following expressions for the

curvature can be found [14]:

klcwl = Klw(ylfi) COSZ (ptC + sz (ylgl) SiIl2 wlc’
kzcw, = Klw(ylfi) cos? wic + Ky (ygi) sin? 1//ic,
(34)
klc;, = Klr()’,f,~)7
K, = Kar (55).
where
cospf = v Vi
cos Y = Ving Vi s
Vlrt - [RZ]TVIH ’
V2rt - [RZ]TVZH
Since Wic = (pic + %, the following relation holds:
kS = K1 (y5;) sin* & + Koy (v5;) cos® . (35)
The generic solution (x§,, y$,, x5, y$) with i = 1,2,...,n of the system (24-25) can be
considered an effective contact point only if the following conditions are verified:
lerl llLl > O
(36)
kZC;t + k2wt > O;

otherwise the contact is physically impossible. The situation is shown in Fig. 13 for the
second direction, as it can be seen, in the point PC? the curvatures satisfy the inequality
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Fig. 13 Normal curvatures in & c P{ "3
the contact points k,, 5 +k 7y <0

;,+k;, >0
9 +k(- >0
2h 2r

kzcn. + kzcwi < 0, in other terms in this case the wheel curvature radius is larger than the rail
one: even if the point P2 was a solution of the system (24—25) it could not be considered an
effective contact point. Because of the geometry of the problem, the first of (36) conditions
is always satisfied, and thus only the second has to be verified.

As hinted in the Introduction, the research of the distance stationary points is equivalent
to solve an algebraic 4D-system defined by the first two components of the vectorial equa-
tions (24-25). However, the problem dimension can be analytically reduced from four to
one. In other words, it is possible to express the variables x,,, x,, y, as a function of y,, in
order to obtain a simple scalar equation in the unknown y,,.

From the second component of the vectorial equation defined in (24), the following ex-

pression can be found:
713\/7()’11))2—)65} =TI1Xw _r12r(yw)r/(yw)~ (37)

In this expression, r3, 7y, and r|, are components of the matrix [R;]. Indicating for brevity
A=ry3, B=r(yy), C=ry, and D =rpr(y,)r' (yw), it can be rewritten as:

A/B? —x2 =Cx, — D, (38)

and, therefore, squaring both the members, it can be solved to obtain x,, as a function of y,,:

CD =+ ./C2D? — (C? + A2)(D? — A2B?)

3
Cr 1 A2 39

Xy12(Yw) =
As it can be seen, there are two possible values of x,, for each value of y,,. From the first
component of the vectorial equation defined in (24) the following expression can be found.
The index (; ») indicates that the value has to be calculated for both the roots of (39)

_ ! _ 2 _ 2
By = r1%w1.2(Vw) = 22 V)7 Vw) — r233/T (Vw)? — X122 (V) . o)
r3r (Yuw)r' (Yw) + r33\/r()7w)2 - xwl,z(yw)z

The following condition:

Faar ) ) + 7333/ r () = Tu12(3)? #0 (41)

is always assured since

rw)?>x2, r() > () and 13> .
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Without loss of generality, the left and the right side of the track can be considered sep-
arately. In the first case, y,, € [700 790] mm and y, € [720 780] mm and in the second
Yw € [-790 —700] mm and y, € [-780 —720] mm. Under these assumptions, the func-
tion b'(y,) is numerically invertible and the values of y,; »(y,) can be calculated. Finally,
from the second component of the vectorial equation defined in (25), the following relation
can be written:

Xr120w) =11 Pl (X120, Yu) = ri1Xuwt 2(Vw) + riayw — r13\/r(yw)2 = Xr12(Vw)*
(42)
The variables x,,, x,, y, have been expressed as a function of y,, and can be introduced in the
first component of the vectorial equation (25). Then the following relations can be found:

Fl,Z(yw) = _b/(yrl,z(yw)) (G7 + r3~p$(-xwl‘2(yw)v yw) - b(yrl,Z(yw)))

- (Gy +12.p} (xw12(Vw), yw) = yr12(0w))

= _b/(yrl,z(yw)) (GZ +r3yy — r33\/r(yw)2 - xwl,Z(yw)2 - b()’nz()@)))

- (G} + r21xw1.2(yw) + 2 Yw — 723\/r()’w)2 - xwl,Z(yw)2 - yrl,Z(yw)) =0.
(43)

It is a simple scalar equation in the variable y,, (where y,, € [700 790] mm for the left
side and y,, € [-790 —700] mm for the right side) and can be solved numerically. Also,
in this case, the index (; ) indicates that the equation has to be solved for both the roots
of (39).

For simplicity, the solutions ylfi (with i =1,2,...,n) of (43) are split in two groups:
yglj (with j =1,2,...,n;) indicates the roots of F;(y,) =0 (obtained with the first root
of (39)) and ySZk (with k =1,2,...,ny) those of F»(y,) =0, where n = n; + n,. Through
(39), (40), and (42), the values of the variables x,,, x,, ¥, corresponding to y51_/ and ylfzk
can be calculated:

xglj:xwl(ygu)a chljzxrl(yuc,lj)7 yrclj':yrl(yg]j)7 j:1727"'7nls
44)
Xoop = xuﬂ(yzfzk)v X = er(yzfzk)v Yok = yﬂ()’izk)’ k=1,2,....n3

and, therefore, by means of (15), (16), and (19), the positions of the contact points on the
wheel and on the rail are calculated:

rC _ _r C C rC _ r(,C C L
Puij —Pw(xwu,ywu), Prlj—P,.(x,.]j,y,.lj), Jj=12,...,ny,

(45)

oo =P, (526 Yioar)- P =P (o y), k=1.2.....m.
Not all the solutions (xglj, yglj,xrclj, yrclj) (with j =1,2,...,n;) and (xlfzk, ylfzk,
xS, ¥S) (with k = 1,2, ..., np) obtained finding the roots of (43) can be accepted, since

(37)—(43) contain irrational terms. Consequently, the following conditions have to be veri-
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fied for every j and k:

c
hd xu)lj

e The terms \/r(yglj)2 — (x,,)? and \/r(ygzk)Z — (x$,;)? appearing in (43) have to be
real.

C
hd (xwlj’

and x,SZk (calculated by (39) as a function of yg T and y,izk) have to be real numbers.

y51;) and (xCy, vS,,) have to be effective solutions of (37).

If one of these conditions is not verified, the solution has to be rejected. Moreover, con-
cerning eventual multiple solutions, if m is the multiplicity of the solution, only one
of these can be considered because the others m — 1 have not physical meaning. The
multiplicity of the solution has to be evaluated considering all the solutions in both the
sets (X015, V515 X5 ¥5,) (with j =1,2,..,n1) and (x5, Yoo X Yor) (with k =
1,2,...,"2).

For each wheel/rail configuration, the DIST method requires therefore the following
steps:

1. Determination of the solutions (x&;, y$,, x5, yS) (with i = 1,2,...,n) of the system
(24-25)

. Research and elimination of the multiple solutions

. Check of the analytic conditions

. Check of the condition on the curvatures

. Check of the condition on the normal indentation.

DN AW

These controls allow to verify that the solutions are physically realistic, in the analytic de-
velopment no simplifications and approximations were assumed then no solution of the
problem should be excluded.

4 The DIFF method

The DIFF method has been developed in order to simplify the method described in the
preceding section and then to further improve its efficiency. The DIFF method is based on
the idea that the contact points minimize the difference between the wheel surface and the
rail surface in the direction identified by the unitary vector k,:

D(xy, yuw) = (P;(Xw’ Yw) _p::(xwv yw)) Ky, (46)

where p!, is defined according to (15), while p/. (x,,, y,,) is defined as follows:

Xy, (s V)
p:(-xwa yw): y;)(xw’yw) . (47)
b(yy (X, Yuw))

In other terms, the point p’ (x,,, y,,) is evaluated as the intersection between the rail surface
and a line parallel to the axis z, passing through the point p/, on the wheel surface (Fig. 14).
For each wheel/rail relative configuration, the difference D(x,, y,,) is then a function de-
pending on two variables (in other terms it is a two dimensional surface).

The method is based on an approximation that could be a priori unacceptable, it is ap-
proximately true when considering wheel-rail tread contact, but it may be wrong when con-
sidering wheel-rail flange contact. However, it allows to simplify the problem and to obtain
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Fig. 14 Minimization of the 4-
difference: definition of the r
difference function

O,f- })

a procedure with an higher computational efficiency that could be implemented directly in
the multibody code. In order to verify the reliability of the proposed procedure, its results
have been compared with those obtained with the DIST method described above. The results
of the tests are summarized in Sect. 5.

The contact points between the surfaces can be approximated with the minima of the
difference function. In some preceding works [10, 11], the authors presented some proce-
dures to find numerically the minima, based on iterative methods (namely Simplex method
and Compass search [12, 13]). The efficiency of these methods was not sufficiently high to
allow an on-line implementation of the procedure.

The problem could be solved analytically imposing the following conditions on the par-
tial derivatives of the function D(x,, y,) [14]:

oD Xws Yw aD Xws Yuw
(,y)zo’ w, Yu) _ 48)
Xy Iy
Also, in this case, (xC;, y$,) with i = 1,2, ..., n indicate the solutions of the system (48),
and pi¢ =p’ (xS, vE), phC = pl(xS,, yC,) withi = 1,2, ..., n the corresponding contact

points on the wheel and on the rail (for each wheelset/rail configuration, 7 is the total number
of contact points).

Because of the problem geometry, if b(y,) = b(—y,) and r(y,) = r(—yy), the same
symmetry conditions described in the preceding section are verified.

To be considered possible contact points, the solutions of the system (48) have to be ef-
fectively a minimum of the surface (46), then the Hessian matrix Hp (xy, ¥,,) of D(xy, Yuw),
defined as [14]:

3’D 8’D
ax2, 9x Ay
Hp(xy, = v 49
D( w yw) 2D 22D ( )
Xy Ay 8):%)

C
wi?

has to be positive defined in the points (x ygi) with i =1,2,...,n. Since D(xy, yy) :

R? — R, this is equivalent to

#D, o ¢ c .C
P (x5 vei) >0, det Hp(x;. y5;) >0 (50)
w
withi=1,2,...,n.
The generic solution of (48) can be considered an effective contact point only if the nor-
mal indentation between the surfaces p, is negative. In this case, the normal indentation

@ Springer



344 M. Malvezzi et al.

Fig. 15 Minimization of the
difference: definition of the L i
surface indentation g

JIZ.

9) ;

pn cannot be calculated directly from the values of x,,, y, because the normal to the con-
tact surfaces in the contact point is not unique with this approach. For this reason, it was
approximated with the value p,; calculated as follows (Fig. 15):

Pt =D R (D) = puscos 61

In this expression, Df’c is the vector representing the difference between the surfaces, de-
fined as:

.C ,C ,C
Dlr :p;m' - p;m’ ’
Pui represents the indentation evaluated in the z, direction, defined as:
r,C
pui =D;" -k, (52)
and v; is the angle between the z, direction and the unitary vector normal to the rail surface:
cos®; =nl(p/;) - k.
Therefore, for each solution of (48), the following condition has to be verified:
Pni ==0. (53)
The minimization of the difference is equivalent then to solve an algebraic 2D-system (48).
However, also in this case, the problem dimension can be analytically reduced, since it is
possible to express the variable x,, as a function of y,, in order to obtain a simple scalar

equation in the variable y,,. Introducing the definitions of p/ (x,, y,,) and p/ (x,, y,,) into
(46), the following expression can be found:

D(xy, yw) = (p;ru(xwa yw) - p:(xw’ yw)) k= Z;;(xuu yw) - b(ylru(xw’ yw))
=G, +r13- P, (X, yu) — b(Gy + 12 Pl (X0, Yu))- (54)
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The partial derivatives of the function (48) are:

oD apy w opy
— (Xws Yu) = 3. =2 (X, Yu) — b (Gy 4+ 12.pl (X, yu) )2 —2 (X, Yu) =0, (55)
0Xy, 0Xy, 00Xy,
oD apy opy

— (X, Yu) =T3. (*w» Yw) _b/(Gy +1'2~P1£(xw» yw))r2~ (Xw, yw) =0. (56)

Oy dyw CA

The last term of (55) and (56) can be rewritten as follows:

r (Yt (Yw) )

r(yw)? — x2

w
_Tw

57
dyw ©7

. Xws Yw) = <V22 -3

and its value is different from zero, since r(yy)> > xi and ryp > ra3r’(yy). The term
b'(Gy +r,.p} (xy, Yi)) can be obtained from (56) and can be introduced in (55), in order to
achieve:

op¥ p¥ p¥ ap”
1322 s va) ) (12 22 G v ) = (12 222 (s y) ) (13 2 (s va) ) (58)
wa 3yw axw 8yw

and, carrying out the calculations:

a1 F(Yw)? — x2 = (rarss — rars) Xy + 21733 (Yu)r' (Vw)- (59)

Setting fOI' brevity Al =113y, Bl = r(yw), C] = FppF33 — I'3I3, and D] = 1’211‘33}’(_)11“) X
r'(yw), (59) can be rewritten as:

Awa—xi,:Clxw—l—Dl (60)

and, therefore, squaring both the members, the term x,, can be calculated:

—Ci Dy %,/CID} — (C2+ A (D} — A1BY)
Ci+ A} '

(61)

-xwl,Z(yw) =

The variable x,, is then expressed as a function of y,, and as it can be seen, there are again
two possible values of x,, for each value of y,,. Finally, we can introduce the relation (61)
in the second member of (55) obtaining:

Fra2(yw) = oy
w

0Py, (xuw1,2(Vw)s Yw)

0Py (xw1,2(Vw)s Yw)
=1TIs. — ay

B 3w

b'(Gy + 120l (Xu12(Vw)s Yu) T2

r(yu)r' (Yw)
\/r(yw)2 - xr1,2(yw)2

=TI3Yw — 133

—b'(Gy +raxwi2(w) + royw — r23\/’”(yw)2 — xr12(0w)?)

r ()t (Yw) )
— =0. 62
* <’” T GnR — Xura(m)? ©
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The problem is reduced to a simple scalar equation in the variable y, (where y, €
[700 790] mm for the left side and y, € [-790 —700] mm for the right side) that can
be solved numerically [12]. Also, in this case, the index (; ) indicates that the equation has
to be solved for both the roots of (61).

As usual for simplicity, the solutions ygl. (with i = 1,2,...,n) of (62) are split in
two groups: yglj (with j = 1,2,...,n;) indicate the roots of Fj(y,) = 0 (obtained us-
ing the first root of (61)) and ygzk (with k =1,2,...,n,) those of F,(y,) =0 where n =
ny + n, (obtained using the second root of (61)). Through (61), the values of the variable x,,
corresponding to ylf 1; and ygzk can be evaluated:

xS =xa(05,). J=12.n,
(63)

c c
Kok = wa(yrzk), k= 1, 2, R (%)

and, therefore, by means of (15), (16), and (47), the positions of the contact points on the
wheel and on the rail surfaces can be calculated:

,C c ,C .C ¢ \C ;
p:ulj:p:u(xwlj’ywlj)’ P =P Gy V) J=12 o

rC __ _r C C rC _ _r(.,.C C —
Puok = Py (wak’ wak)’ P =P; (wak’ wak)’ k=1,2,....n.

As in the case of the DIST method, not all the solutions (xclj, yglj) (with j =1,2,...,n))

and (xS, y$,) (with k = 1,2,...,n,) of (62) can be accepted. Equation (59) contains
irrational terms, and consequently the following analytic conditions have to be verified for
every j and k:

Cc
wlj

2. The terms \/r(yglj)z — (xlflj)2 and \/r(ySZk)z — (x$,,)? appearing in (62) have to be
real.

3. (xlflj, ylflj) and (xlfzk, ygzk) have to be effective solutions of (59).

1. x&,. and x§,, calculated by means of (61) have to be real.

Moreover, as regards eventual multiple solutions, the same considerations explained for the
DIST method are necessary.
The DIFF method requires, therefore, the following steps:

. Determination of the solutions (x¢;, y$,) (withi = 1,2, ...,n) of (48)
. Research and elimination of the multiple solutions

. Check of the analytic conditions

. Check of the minimum condition and

. Check of the condition on the normal indentation.

DN bW =

5 Numerical results

In this section, the numerical results of the proposed procedures will be illustrated in order
to evaluate the performances of the new procedures for the detection of the contact points.
In the first part, some simulations of a standard railway vehicle dynamics are described.
The simulations have been carried out by means of a multibody 3D model within which the
described methods for the evaluation of the contact point have been implemented. In the
second part, the performances of the proposed procedures are be compared with those of
the methods present in literature. Particular attention will be dedicated to the computation
burden and to the precision of the methods [10-13].
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5.1 Dynamic simulations

The railway vehicle chosen for the dynamic simulations is the Manchester Wagon whose
physical and geometric characteristics are easily available in the literature [16]. The multi-
body 3D model of this vehicle has been studied and validated in different conditions. Con-
sequently, the model can be considered a reliable benchmark for the evaluation of the per-
formances of the previously presented procedures [10, 11]. The multibody 3D model of the
Manchester Wagon, implemented in the Matlab computation environment, is schematically
shown in Fig. 16.
The vehicle is composed of the following parts:

. The car body (Fig. 16)

. Two bogies (Figs. 17a and b)

. Four axles (Fig. 17¢)

. Primary and secondary suspensions modeled by three-dimensional nonlinear force ele-
ments like bushings, dampers, and bumpstops (Figs. 17b and c).

AW N =

The contact point locations are calculated with the procedures described in the preceding
section. The indentation value is used to calculate the normal component of the contact
force, N, according to the elasto-viscous approach as sum of a term that depends on the
normal indentation between the bodies (the elastic component), and a term proportional to
the surface relative velocities in the contact point (the viscous term):

(65)

sign(v) — 1 sign —1
N=(—kh|p|7+kv|v| gn(v) ) gn(p) .

2 2

In this expression:

e kj is a constant that is calculated according to Hertz theory as a function of the surface
geometries and of the material characteristics [10, 11].

e p is the indentation in the contact point, defined as described in (29) if the DIST method
is used and as described in (51) if the DIFF method is used.

e y is a constant derived from Hertz theory, in this case y = % [17].

e k, is a constant depending on material properties, its value has been chosen on the basis
of data available in the literature (k, = 10* Ns/m) [2, 11].

e v is the indentation velocity.

The indentation velocity v is defined on the basis of the relative speed between the contact
bodies in the contact point v,.:

vV=V.-n. (66)

Fig. 16 Multibody 3D model of
the Manchester Wagon
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BUMPSTOP

(a) (b)

DAMPER

" BUSHING

(c)

Fig. 17 Bogie, suspensions, and axle of the Manchester Wagon, (a) vehicle bogie, (b) secondary suspen-
sions, and (¢) primary suspensions and axle

The relative speed on the contact points can be calculated from the kinematics of the
wheelset:
vi=v,, + 2 x (p,° — o), (67)

w

e v/ is the wheel speed in the contact point expressed with respect to the railway auxiliary
reference system.

v/, is the wheelset center of mass velocity.

Q! is the wheelset angular speed.

p’C is the contact point location expressed with respect to the auxiliary reference system.
o/, is the wheelset center of mass location expressed with respect to the auxiliary reference
system.

The magnitude of the tangential component of the contact forces is calculated on the ba-
sis of Kalker and Hertz theory [9, 17, 18]. The Hertz’s theory is used to define the contact
area dimensions and shape that depend on the normal force magnitude, the material proper-
ties, and the local profile geometry. The Kalker linear theory results are used to define the
components of the creep forces as follows:

T, = — fué,
Ty = — foon — [0, (68)
M, = fazn — f330, (69)
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where T, and T, represent respectively the longitudinal and lateral component of the con-
tact force, M;, is the spin moment. The coefficients fi;, fa,f33, fo3 are the linear creep
coefficients, depending on the contact ellipse semiaxis and on the material properties, their
values are tabulated and can be found, for example, in [17]. The coefficients &, n, and ¢ rep-
resent respectively the longitudinal, lateral, and spin creepage components and are defined
as follows [9]:

v,
£ =+,
v()w
v t,
n=-—-—, (70)
v()U}
Q' .n,
o=
va

In the above expressions, V. is the wheel speed in the contact point calculated as shown in
(67), i, is the unitary vector that identify the rail longitudinal direction, t, is the unitary vec-
tor tangent to the contact surface and orthogonal to i, (it identifies the lateral direction), n,
is the unitary vector normal to the contact surfaces in the contact point, v,,, is the magnitude
of the wheelset center of mass velocity.

The unlimited resultant creep force obtained from the linear model is:

T, =T} + Tk 71)

however, the magnitude of the resultant creep force cannot exceed the pure slip value that
depends on the adhesion coefficient u:

TrA,lim = MN (72)

Then a creep force saturation coefficient € is defined according to the following modified
Johnson—Vermeulen formulation [9]:
6_ B — 3652 + (5P for T, <3uN, -
% for T, > 3uN.
Finally the nonlinear creep force components are given by:
T, =€l (74)
T, =€T,. (75)

This model is approximated since considers a constant adhesion coefficient ;. More so-
phisticated models are present in the literature [19, 20], that consider the adhesion coefficient
as a function of the sliding; they will be implemented in future versions of the software.

As an example, the results of a simulation of the vehicle dynamics on a curved track
carried out through the Matlab software are shown. The results are obtained using the DIST
method for the detection of the contact points. The main characteristics of the curve are
summarized in Table 1.

Figures 18a and b show the curvature K (s), the cant angle B.(s) as a function of the
curvilinear abscissa s. Figure 18c shows the track centerline on the plane x, y,: it is com-
posed of an initial straight part (50 m), the curve, and a final straight part.
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Table 1 Characteristics of the

curve Laying angle ap 1/20 rad
Curvature K —1/1200 m~!
Slope D 0
Cant angle Be 60/1435 rad
Train velocity 1% 45 m/s
Kinematic friction coefficient e 0.2
x10°
1 - . . : . 0.045
nodf
0,038 koot N
003
£
= g omst
g § oot
0015
001
0005}
% 50 W w0 A0 20 @m0
5 (m)
(b)
]
5F. 4
410 4
E
=
-15 -
5 i i i i H i
(] 50 0 180 200 250 30 350
¥ ()
(c)

Fig. 18 Characteristics of the curve, (a) rail curvature, (b) cant angle, and (c) the track on the x £ plane

The multibody model allows to calculate all the kinematic and dynamic characteristic of
each part of the model during the simulation; for brevity, only the following variables are
considered:

o The lateral displacement G, of the center of mass of the first axle with respect to the
track centerline (expressed in the auxiliary reference system). In the presented simulation,
a right curve is considered (negative curvature) and, therefore, when the vehicle is on the
curve the displacement is positive (Fig. 19).

e The positions of the contact points on the wheels and on the rails (expressed respectively
in the local and in the auxiliary system). In order to clarify the results, the positions of
these points have been plotted on two right cylinder surfaces having the same generative
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Fig. 19 Lateral displacement 10
Gy of the first axle 7 . : T T

Gy (m)

functions of the wheel and rail and a length equal to the distance traveled by the vehi-
cle (350 m). As it can be observed during the curve, two contact points on the left side
(Figs. 20a and c) and one on the right side (Figs. 20b and d) are present.

e The vertical contact forces F, on the wheels of the first axle (expressed in the auxiliary
reference system) (Figs. 21a, b, and c). As it can be seen when the vehicle performs, the
curve on the left wheel two contact points are present. When the second contact point
appears, the vertical load on the first one decreases.

In the presented simulations, the DIST method has been implemented directly on the
simulator (on line), then for each integration sample the contact points are evaluated as
described in Sect. 2 as a function of the wheelset displacement, the contact point locations,
the indentation values, and the wheelset velocity are used to evaluate the contact force,
which allows to define the vehicle dynamics equations [11]. The proposed method is able to
easily manage multiple contact points: The equation to be solved is the same both in case of
single and multiple solution, the variable is the number of solutions.

5.2 Performances of the proposed procedures

The performances of the procedures for the detection of the contact points previously de-
scribed have been compared among them and with those of other methods present in the
literature [10, 11]. Concerning the precision of the procedures, the following steps have
been carried out:

1. Firstly, the DIST and the DIFF method have been compared: (43) and (62) have
been solved numerically by means of a simple GRID algorithm (with grid resolution
Pe =0.1 mm).

2. Then the DIFF method results has been compared with those obtained applying a simple
multi-dimensional GRID method. This procedure consists essentially in the calculation
of the difference D(x,, y,) between the wheel and rail surfaces in the points defined by
a fixed grid (with a resolution pg = 1.0 mm on both the dimensions). As mentioned in
the Introduction, this method is computationally inefficient, especially if the problem is
multi-dimensional, but can be considered a reliable benchmark in terms of precision.
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Zr (mm)
Ir (mm)
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(a) (b)

Zh (mm)

70 780" 770 760 750 740 730 720 . . .
720 740 :
Yb (mm) "b('::‘o) B

(c) (d)

Fig. 20 Contact points on the wheels and on the rails, (a) left wheel, (b) right wheel, (c) left rail, and (d) right
rail

3. The GRID method has been compared with the procedures described in the litera-
ture, based on numerical iterative algorithms applied to find the minima of the surface
D(xy, yw). In particular, the Compass Search method (indicated with CS) and the Sim-
plex method (indicated with S) have been considered (with a tolerance of 0.1 mm for
both the algorithms) [12, 13].

4. Finally, the DIFF method and the procedures based on the numerical iterative algorithms
have been compared.

The comparison between the performance of the different methods for the evaluation of the
contact point locations has been realized considering a set of relative wheelset/railway con-
figurations composed of approximately 4.2 x 10° elements. The relative positions between
wheel and rail have been obtained varying the parameters G,, G, o, and g into the range
summarized in Table 2 (the range has been chosen taking into account the symmetries of the
problem).

All the configurations considered in the comparisons have been chosen in order to have in
correspondence of the contact points, normal indentations p, (or p,) physically acceptable:
the bound p, < p; = 0.33 mm has been imposed. The limit value p; has been calculated
through the Hertz theory hypothesizing a maximum normal load of 10° N applied on a single
contact point.
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o’ ot

Fz(N)

Fig. 21 Vertical contact forces, (a) vertical force F; on the first contact point of the left wheel, (b) vertical
force F, on the second contact point of the left wheel, and (c) vertical force F, on the contact point of the
right wheel

Table 2 Ranges of variability of

the parameters y 0 mm -+ 10 mm
G, 490 mm = 510 mm
o4 Orad = 0.01 rad
B —0.01 rad = 0.01 rad

The algorithm used to compare two procedures for the determination of contact point
locations detects the configurations in which the analyzed procedures evaluate a different
number of contact points or the evaluated locations are not the same. To this purpose, a
single wheel and the corresponding rail (indifferently on the left or on the right side) can
be considered. The procedures used for the comparison are indicated with A (benchmark)
and B. For a generic wheel/rail configuration, p5* withi =1,2,..., N and p}ij with j =
1,2,..., NE indicate the contact points (on the rail surface) detected by the procedures A
and B, respectively, N* and N are the numbers of contact points detected by the procedure
A and B, respectively. The number E4? of the errors associated to this configuration can be
determined through the following algorithm:
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1. the vectors v4 = 0 and vz = 0 where v, € RV and v; € RV are initialized
2. fori=1,2,...,N4
forj=1,2,...,N®
if | pg;* — p§/ ll2 < toll and vp(j) =0
setva(i)=1and vp(j) =1
break
end
end
end
3. setn® = N4 — |[val5 and n® = N® — ||vp|3
4. EA8 =max(n?, n®)

The elements of the vectors v4 and v are logical variables (their value can be 0 or 1). For
example, the j-th element of the vector v, is set equal to 1 if one of the contact points
detected by the procedure B is sufficiently near to the j-th contact point detected by the
procedure A, in other terms, if the distance between the locations of the detected contact
points is lower than a fixed value, identified by the variable toll. If the procedures A and
B calculated the same number of contact points and their locations would be the same,
N4 = N?% and all the elements of the vectors v, and v would be 1. If the procedures A
and B calculate a different number of contact points and/or if the distance between their
locations overcome the fixed value toll, some of the elements of the vectors v4 and vp
are equal to 0. For each procedure, the difference between the number of detected contact
points and the number of contact points matching with the other procedure is defined with
the variables n* and n®.

For each wheel/rail configuration, the error EAZ between the procedures A and B in the
definition of the contact point locations is defined as the maximum between n* and n®.
Furthermore, E42 represents the sum of the undetected pairs of points E lAB = min(n?, n®)
and of the points in excess Ef8 = max(n?,n®) — min(n?, n®). In order to evaluate the
global algorithm performance and to analyze the configurations with multiple contact points,
the error E}8 is defined as the number of errors between the procedures A and B in the
k-th configuration with A contact points. The partial errors e;‘B can then be defined as
follows:

TA
Z}; EAB
et = SpF h=120 Pt (76)

where T} is the number of relative wheel-rail configurations with / contact points and P4
is the maximum number of contact points present on a single wheel. The global error 4% is
then defined as:
A A
A8 _ T Xl B o)
TA ’
where T4 = 2;1:1 hT;2 is the total number of the contact points.

Concerning the comparison between the DIST and the DIFF method, Tables 3 and 4
summarizes the partial errors e{” and the global error e?? for different values of the laying
angle o, In this case, the DIST method has been chosen as benchmark with a tolerance
toll =2.0 mm.
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Table 3 Comparison between
the DIST (benchmark) and the

DIFF methods, partial errors eZD

and global error 4D

(ap = 1/40)

Table 4 Comparison between
the DIST (benchmark) and the

DIFF methods, partial errors e;{D

and global error 4D

(ap =1/20)

Table 5 Comparison between
the DIST (benchmark) and the
DIFF methods, global error 4D
(arp = 1/40)

Table 6 Comparison between
the DIST (benchmark) and the
DIFF methods, global error 4D
(ap =1/20)

Error type ap =1/40
4P (%) 1.0
4P (%) 1.1
4P (%) 1.0
Error type ap =1/20
4P (%) 0.3
4P (%) 2.3
4P (%) 1.6
4P (%) 0.9
toll (mm)
0.5 1.0 1.5 2.0 2.5 3.0
Pn 0.30 2.3 1.9 1.3 1.1 1.0 0.9
(mm) 0.24 2.1 1.7 1.3 1.1 0.9 0.9
0.18 2.1 1.5 1.1 1.0 0.9 0.9
0.12 1.8 1.2 1.0 0.8 0.8 0.8
0.06 1.0 0.6 0.4 0.4 0.4 0.4
toll (mm)
0.5 1.0 1.5 2.0 2.5 3.0
Pn 0.30 1.8 1.4 13 1.3 1.3 1.3
(mm) 0.24 1.3 1.1 1.0 1.0 1.0 1.0
0.18 0.9 0.7 0.7 0.7 0.7 0.7
0.12 0.5 0.4 0.4 0.4 0.4 0.4
0.06 0.2 0.2 0.2 0.2 0.2 0.2

Due to the wheel and rail geometries, when the laying rail angle is o, = 1/20 configura-
tions with one, two, and three contact points are present, when its value is «, = 1/40, there
are only configurations with one and two contact points. The comparison between DIST
and DIFF shows a global error approximately equal to 1%; its value substantially does not

dependent on the laying angle.

Then the behavior of the global error e*? has been analyzed as a function of the tolerance
toll and of the normal indentation p,; both the standard values of the laying angle o, have
been considered (Tables 5 and 6). Also, in this case, the DIST method has been considered

as the benchmark.

From the obtained results, it can be observed that

1. The global error e?P decreases if the tolerance toll increases. However, a bias error is
present: this systematic error is due to the differences in the analytic formulation of the
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Table 7 Comparison between

the DIFF (benchmark) and the Error type ap =1/40 ap=1/20
GRID methods, global error PG
(ap = 1740, 1/20) PG (%) 1.1 42

Table 8 Comparison between

the GRID (benchmark) and the Error type ap =1/40 op =1/20
iterative (Compass Search and

Simplex) methods, global errors £GCS (%) 3.2 59

¢GCS and ¢6S (ap =1/40,1/20)  (CS (%) 1.6 7.1

Table 9 Comparison between

the DIFF (benchmark) and the Error type ap=1/40 ap=1/20
iterative (Compass Search and

Simplex) methods, global errors £PCS (%) 5.0 10

ePCS and ePS (ap, = 1/40,1/20) DS (%) 3.4 10

two methods and to the different checks on the solutions: The first one evaluates the
contact points as the points in which the distance between the body surfaces has a local
maximum, while the second one minimizes the difference between the surface in the z,
direction. The locations identified with the procedures are approximately the same if the
indentation is small: the bias error decreases as the indentation decreases.

2. The global error e?P decreases if the normal indentation p, decreases.

As regards instead, the comparison between the DIFF and the GRID methods, the global
error ePY for the usual values of the laying angle o, (Table 7) have been considered. In this
case, the DIFF method has been chosen as benchmark with a tolerance toll = 2.0 mm.

In the same way, both the CS and the S method have been compared to the GRID method
(chosen as benchmark with tolerance toll = 4.0 mm). Table 8 summarizes the values of
the global errors €95 for the CS method and €% for the S method, with o, = 1/40 and
o, =1/20.

As regards finally, the comparison between the procedures based on the numerical itera-
tive algorithms and the DIFF method (chosen as benchmark with tolerance toll = 2.0 mm),
the global errors eP®S and ePS for the standard values of the laying angle o p are summarized
in Table 9.

The performances of the various procedures, moreover have been compared among them
in terms of computation times. Figure 22 shows the mean time required to evaluate the
contact points in a generic relative wheel-rail configurations (the corresponding values are
summarized in Table 10). The described performance have been obtained with a processor
Intel Pentium 4 (3.0 GHz).

On the basis of the described results, the following considerations can be made:

1. The performances of the DIST and the DIFF methods are similar in terms of precision
and computation times.

2. The semianalytic procedures are reliable as regards precision.

3. The DIST and the DIFF methods are faster and more accurate than the procedures based
on the numerical iterative algorithms.
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Table 10 Computation times

Method Time (s)
GRID 9.3
S 0.255
CS 0.105
DIST 0.045
DIFF 0.037
Fig. 22 Comparison among the Computation Times
computation times 10 ; - : . T

Time (s)

cs
Method

6 Conclusions

In this work, two semianalytic methods for the detection of the wheel-rail contact points (the
DIST and the DIFF methods) are presented. Both the procedures consider the wheel and the
rail as two mathematical surfaces whose analytic expression is known. The DIST procedure
is based on the idea that the contact points minimize the distance between the surfaces and
is equivalent to solve an algebraic 4D-system. The DIFF method instead is based on the
idea that the contact points minimize the difference between the surfaces and is equivalent
to solve an algebraic 2D-system, it is based on an approximation whose consequences in
terms of reliability has been verified with a series of tests.

In both cases, the original problem has been reduced analytically to an equation with one
scalar unknown that is then solved numerically. Since the problem dimension is one, even
elementary noniterative algorithms have shown to be efficient and reliable.

Subsequently, the performances of the described procedures have been compared among
them and with those of the methods present in the literature. The GRID method and other
procedures based on numerical iterative algorithms (like the Compass Search algorithm and
the Simplex algorithm) have been considered. The comparison has been carried out in terms
of precision and computation times.

The developed procedures (named DIST and DIFF methods) have similar performances
in terms of precision and computation times, both of them are reliable as regards the preci-
sion and are more accurate and more efficient than the procedures based on the numerical
iterative algorithms.
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The reduced computational times allow to overcome the usual off-line implementation,
in which the contact points are calculated independently from the vehicle dynamics model
and used to build lookup tables used during the simulations and to realize an online imple-
mentation (the procedure can be implemented directly in the multibody model).
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