
Multibody Syst Dyn (2009) 21: 1–35
DOI 10.1007/s11044-008-9122-6

A recursive, numerically stable, and efficient simulation
algorithm for serial robots with flexible links

Ashish Mohan · S.K. Saha

Received: 12 July 2007 / Accepted: 22 July 2008 / Published online: 21 September 2008
© Springer Science+Business Media B.V. 2008

Abstract A methodology for the formulation of dynamic equations of motion of a ser-
ial flexible-link manipulator using the decoupled natural orthogonal complement (DeNOC)
matrices, introduced elsewhere for rigid bodies, is presented in this paper. First, the Euler
Lagrange (EL) equations of motion of the system are written. Then using the equivalence
of EL and Newton–Euler (NE) equations, and the DeNOC matrices associated with the
velocity constraints of the connecting bodies, the analytical and recursive expressions for
the matrices and vectors appearing in the independent dynamic equations of motion are
obtained. The analytical expressions allow one to obtain a recursive forward dynamics algo-
rithm not only for rigid body manipulators, as reported earlier, but also for the flexible body
manipulators. The proposed simulation algorithm for the flexible link robots is shown to be
computationally more efficient and numerically more stable than other algorithms present in
the literature. Simulations, using the proposed algorithm, for a two link arm with each link
flexible and a Space Shuttle Remote Manipulator System (SSRMS) are presented. Numeri-
cal stability aspects of the algorithms are investigated using various criteria, namely, the zero
eigenvalue phenomenon, energy drift method, etc. Numerical example of a SSRMS is taken
up to show the efficiency and stability of the proposed algorithm. Physical interpretations of
many terms associated with dynamic equations of flexible links, namely, the mass matrix of
a composite flexible body, inertia wrench of a flexible link, etc. are also presented.

Keywords Flexible · DeNOC matrices · Recursive · Simulation · Numerical stabile ·
SSRMS

The work has been carried out in the Dept. of Mechanical Engineering, Indian Institute of Technology
Delhi, New Delhi 110016, India.

A. Mohan
Hi-Tech Robotic Systemz Limited, Gurgaon, India
e-mail: ashishsept13@rediffmail.com

S.K. Saha (�)
Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
e-mail: saha@mech.iitd.ernet.in

mailto:ashishsept13@rediffmail.com
mailto:saha@mech.iitd.ernet.in

2 A. Mohan, S.K. Saha

1 Introduction

The necessity and importance of dynamic modeling of multibody systems with structurally
flexible links is unambiguous. Research on the robotic systems with flexible arms and its
control started in the international arena in early 1970s. A comprehensive review of the
various techniques on the modeling of robot-link flexibility is given in [7, 42, 43, 50, 53].
A number of efficient dynamic algorithms for flexible multibody systems, based on different
approaches, are present in the literature [3, 9, 11, 15, 17, 20]. Most of the algorithms recog-
nize the difficulty of expressing the dynamic equations for the flexible links in Newton–Euler
(NE) form. On the other hand, the equations can be readily expressed in Euler–Lagrange
(EL) form. Thus, although recursive algorithm based on the NE form of dynamic equations
for flexible multibody systems have been proposed in the literature, e.g., in [41], researchers
tend to prefer the readily available EL form of the dynamic model [4, 27–29, 34, 51]. One
of the approaches proposed in the literature is to exploit the advantages of both EL and NE
formulations. The methodology is based on the expression of dynamic equations of motion
for individual flexible links first in its readily available EL form. Then using the equivalence
of EL and NE formulations, the dynamic model for each flexible link is written in the form
of its NE equations. Next, the constraint moments and forces are eliminated to obtain the
independent set of dynamic equations of the system at hand by projecting the uncoupled
equations of motion of all the flexible links on the constrained manifold, as done in [31] for
the rigid-link systems.

For the purpose of elimination of the constraint equations, various methods have been
proposed in the literature. One such method is based on the use of orthogonal complement
of the velocity constraints of mechanical system under study. An orthogonal complement
is defined as the matrix whose columns span the null-space of the matrix of the velocity
constraints, and hence the premultiplication of its transpose with the unconstrained dynamic
equations of motion vanishes the constrained moments and forces. As a result, a set of in-
dependent dynamic equations of motion, which are Ordinary Differential Equations (ODE),
is obtained. The ODEs are known to provide numerically stable algorithms compared to the
Differential Algebraic Equations (DAE) representing the same system dynamics [33]. The
said orthogonal complement is, however, not unique. In some approaches, an orthogonal
complement is found using numerical schemes, which are of an intensive nature requiring,
for example, singular value decomposition or eigenvalue computations [25, 54]. Angeles
and Lee [1] and Saha and Angeles [39] have obtained the complement for the serial rigid
multibody systems naturally from the velocity constraint expressions without any complex
computations. Therefore, the matrix is called the natural orthogonal complement (NOC).
Cyril [13] has obtained the above compliment for the flexible serial multibody systems and
reported a forward dynamics algorithm, which is not recursive. Saha [35] extended the con-
cept of the NOC by decoupling its representation, called the decoupled natural orthogonal
complement (DeNOC) matrices, and has eventually obtained independent dynamic equa-
tions from which both recursive inverse and forward dynamics algorithms for serial rigid
robotic systems have been obtained [36]. Note that the recursive forward dynamics algo-
rithm was not possible with the original form of the NOC, as reflected in [1, 13]. In this
present work, the DeNOC has been extended to the serial flexible multibody systems. The
NOC matrix for the flexible serial manipulators [13], is decoupled and expressed as a prod-
uct of two matrices, of which one is a block triangular and the other is a block diagonal.

A recursive, numerically stable, and efficient simulation algorithm 3

The advantages of the DeNOC based methodology for flexible serial manipulators are as
follows:

(i) Unlike the NOC, its modified form, i.e., the DeNOC, allows one to write the expres-
sions of the elements of the matrices in analytical recursive form.

(ii) The expressions of the elements for the matrices and vectors associated with the dy-
namic equations of motion can be obtained in analytical and recursive form, besides
allowing for a recursive forward dynamics algorithm which is known to provide stable
and more accurate simulation results [7, 35–37].

(iii) The DeNOC approach is built upon the basic mechanics and linear algebra theory,
which are easy to apprehend.

(iv) Moreover, physical interpretations of many terms, e.g., the mass matrix of a composite
flexible body, etc. are possible, similar to those with the rigid body systems [31, 36].

Note that the simulation is a two step process: (1) forward dynamics, i.e., the computation
of the accelerations for the generalized coordinates from the equations of motion of a sys-
tem at hand for the given actuator forces and torques; and (2) numerical integration of the
accelerations computed in step (1) to obtain the corresponding rates and positions. Thus,
the nature of simulation results depends as much on the forward dynamics algorithm as on
the integrator used in step (2). In fact, it is possible that the simulation results are unstable
even when the real system is stable. This could be due to ill-conditioning of the problem.
A problem is said to be ill-conditioned if even small changes in the data have the potential
to induce large changes in the solution of the problem. A forward dynamics algorithm is
numerically stable if it does not introduce any additional sensitivity than that already inher-
ent in the problem due to its physical characteristics, namely, the geometry and mass and
inertia properties, etc. An initial approach to reduce the numerical instability of the algo-
rithms and overcome the instability inherent with the numerical integration by controlling
the accumulation of errors is given by Baumgarte [6]. In the Baumgarte stabilization [6], an
artificial feedback, namely, position and velocity terms are added in the second derivative
of the constraint equation of the system. The disadvantage of this method is that there is
no reliable method for selecting the intensity of artificial feedback, i.e., the coefficients of
the position and velocity terms and an improper selection of these coefficients can lead to
erroneous results. Chang and Nikravesh [10] proposed different methods for selecting these
coefficients for the artificial feedback to the constraint differential equations. Moreover, it
should be noted that Baumgarte stabilization does not solve all possible instabilities, such as
those arising due to near kinematic singular configurations [19]. This aspect works in favor
of another stabilization method, namely, augmented Lagrangian formulation [33]. A brief
overview of various stabilization methods is given in [32, 33]. Different researchers have
used different criteria for investigating the numerical stability aspects of the simulation al-
gorithms. Ider [21] has used the Jacobian matrix and investigated its rank for the conditions
close to singularity. Sharf and Damaren [45] have taken the example of a Canadarm ro-
bot with flexible links and compared four different models to investigate their simulation
characteristics. They studied the drift in the energy of the system to test the numerical sta-
bility of the algorithms. Ellis et al. [18] have studied the numerical stability of the forward
dynamics algorithms using methods based on energy conservation. Similarly, formulation
stiffness phenomenon has been used by researchers for investigating the numerical stabil-
ity aspects [2, 5, 12]. Jain and Rodriguez [23, 24] have focused on the computation of the
sensitivity of the mass matrix and developed an analytical expression for the same using
spatial operator algebra. Stability aspects of a mobile robot, based on the posture velocity
error dynamics are proposed by Shim and Sung [46]. The emphasis is, however, more on

4 A. Mohan, S.K. Saha

Fig. 1 A typical n-link serial
robot

the geometric stability of the systems and numerical stability aspects of dynamic algorithms
is not covered.

It will be noted that most of the study on stability of numerical algorithms is limited to
the rigid multibody systems. The effect of flexibility of links on the numerical aspects of for-
ward dynamics algorithms still remains a relatively less explored area. In the present work,
a recursive, computationally efficient and numerically stable forward dynamics algorithm
for serial flexible robots is proposed. The algorithm is based on the UDUT decomposition
of the generalized inertia matrix (GIM) associated with the system’s dynamic equations of
motion, where U and D are, respectively, the upper block triangular and block diagonal ma-
trices. Analytical expressions for the elements of the matrices, U and D, are available due to
the use of the decoupled natural orthogonal complement (DeNOC) matrices for flexible ro-
bots that are proposed in this paper. The order of the proposed algorithm is O(n)+O(m3/3),
where n is the total number of links and m is the number of modes in which each link is
assumed to vibrate. The numerical stability aspects of the proposed forward dynamics algo-
rithm for the flexible link robotic systems are studied here using the following two schemes:
one based on power drift of the system, and other using the time duration for which the sim-
ulation results match with the desired results. The paper is organized as follows: In Sect. 2,
kinematic description of a flexible link is given. Some definitions are introduced in Sect. 3,
followed by the formulation of the dynamic model in Sect. 4. In Sect. 5, a recursive the
forward dynamics algorithm for serial flexible robotic systems is proposed, whereas the
simulation results of a flexible two link arm and a spatial Canadarm with two links flexible
are reported in Sect. 6. The numerical stability of the proposed algorithm is then investigated
in Sect. 7, followed by the conclusions in Sect. 8.

2 Kinematic description

Figure 1 shows a serial robotic system having a fixed base and n-moving bodies, which are
either rigid or flexible. Figure 2 shows the ith flexible link. For simplicity, and without any
loss of generality, each flexible link is assumed to vibrate in its mi th mode in bending and
m̄i modes in torsion. Hence, the degree of freedom (DOF) of the system is,

n̄ ≡ n +
nf∑

i=1

(
3mi + m̄i

)
,

A recursive, numerically stable, and efficient simulation algorithm 5

Fig. 2 The ith flexible link

where n = nr + nf , nr and nf are the number of rigid and flexible links, respectively. For
the kinematic description of the elastic deformation of each flexible link, the AMM [30, 49]
is used. Thus, the deformation of any element Ẽi lying along X̂i+1 axis of the link, Fig. 2,
due to bending is given by the 3-dimensional vector, ui , as

ui

(
āi , t

) ≡ [
ux

i u
y

i uz
i

]T
, (1a)

where ux
i , u

y

i , and uz
i are the projections of the deflection vector ui on the X̂i+1, Ŷi+1,

and Ẑi+1 axes, respectively, and āi is the position vector of element Ẽi from O ′
i . Thus,

āi = āi x̂i+1, where x̂i+1 is the unit vector along X̂i+1 axis and āi is the axial distance of Ẽi

from O ′
i along X̂i+1 of the ith link. Note that āi varies from 0 to ai—one of the DH parame-

ters of the link, as defined in Appendix A. Moreover, (āi , t) denotes the space and time de-
pendence of the vector ui . The term ux

i results in centrifugal stiffening of the link [8, 30, 44],
which is significant in the analysis of flexible multibody systems, when the angular rates of
the bodies are considerably greater than their first natural frequency. The centrifugal stiff-
ening effect becomes significant only when the flexible link rotates at a very large angular
rate [12]. Hence, for a flexible link used in industrial robots and in satellites whose speed of
operation are generally slow, the effect of centrifugal stiffening is neglected. Moreover, flex-
ibility along the joint axis, Zi , is ignored due to the assumption of ith link rigid along Zi ,
i.e., OiO

′
i of Fig. 2. The above two assumptions are quite common in the literature [13,

14, 49]. For a prismatic joint, the flexibility along the Zi -axis is also ignored. Otherwise,
the smooth translation along the axis is not possible. Now, using AMM, vector, ui , can be

6 A. Mohan, S.K. Saha

expressed in terms of space dependent eigen functions and time dependent amplitudes as

ux
i =

{
0 for revolute joints,
∑mi

j=1 sx
i,j d

x
i,j for prismatic joints,

u
y

i =
mi∑

j=1

s
y

i,j d
y

i,j for revolute and prismatic joints,

uz
i =

{∑mi

j=1 sz
i,j d

z
i,j for revolute joints,

0 for prismatic joints.

(1b)

In order to express (1b) in matrix-vector form, the three 3 × mi matrices, namely, Sx
i , S

y

i ,
and Sz

i , are introduced as follows:

Sx
i ≡

⎡

⎣
sx
i,1 . . . sx

i,mi

0 . . .0
0 . . .0

⎤

⎦ ; S
y

i ≡
⎡

⎣
0 . . .0

s
y

i,1 . . . s
y

i,mi

0 . . .0

⎤

⎦ ; and Sz
i ≡

⎡

⎣
0 . . .0
0 . . .0

sz
i,1 . . . sz

i,mi

⎤

⎦ , (2a)

where sx
i,1 . . . sx

i,mi
denote the shape functions along the X̂i+1 axis corresponding to the mi

modes. Similarly, s
y

i,1 . . . s
y

i,mi
and sz

i,1 . . . sz
i,mi

represent the shape functions of the link along

Ŷi+1 and Ẑi+1 axes in mi modes, respectively. The overall shape function matrix of the ith
flexible beam, vibrating in mi modes is thus given by

Si ≡ [
Sx

i S
y

i Sz
i

]
. (2b)

Moreover, three mi -dimensional vectors, dx
i ,d

y

i and dz
i , are introduced as

dx
i ≡ [

dx
i,1 . . . dx

i,mi

]T ; d
y

i ≡ [
d

y

i,1 . . . d
y

i,mi

]T
; and dz

i ≡ [
dz

i,1 . . . dz
i,mi

]T
,

(2c)
where the vectors, dx

i ,d
y

i , and dz
i , are respectively the vectors of time dependent amplitudes

corresponding to the shape function along X̂i+1, Ŷi+1, and Ẑi+1 axes, (2a). The components
of dx

i , d
y

i , and dz
i , are treated here as the generalized coordinates to describe the bending

deflection of the ith link, along with those associated with the angular rotation of the ith
joint, namely, θi . Next, the 3mi -dimensional vector of the time dependent amplitudes, d i , is
defined by

d i ≡
[[

dx
i

]T [
d

y

i

]T [
dz

i

]T
]T

. (2d)

Combining (2b–2d), (1b) is expressed as

ui = Sid i (2e)

where the 3-dimensional vector, ui , is defined in (1a). Furthermore, since the flexible part of
the link can also undergo torsion about X̂i+1 axis, it can be discretized similar to the bending
deformation as

βi ≡ s̄T
i ci (3a)

A recursive, numerically stable, and efficient simulation algorithm 7

where βi is the scalar angular deformation of the cross-section of the element, Ẽi , and
the m̄i -dimensional vectors, s̄i and ci , are the shape functions due to torsion and the time-
dependent torsional amplitudes, respectively. Vectors s̄i and ci are defined by

s̄i ≡ [
s̄i,1 . . . s̄i,m̄i

]T ; ci ≡ [
ci,1 . . . ci,m̄i

]T
. (3b)

Note that the components of ci will also be treated as the generalized coordinates for the ith
link, motion, along with d i and θi .

3 Some definitions

Referring to the serial robot with flexible links under study, Figs. 1 and 2, the following
definitions are introduced:

• t i and wi : The (6 + 3mi + m̄i)-dimensional twist and wrench of the ith flexible link, i.e.,

t i ≡ [
vT

i ωT
i ḋ

T
i ċi

]T; wi ≡ [
f T

i nT
i εT

i ϑ i

]T
, (4)

where, vi and ωi , are the 3-dimensional vectors of velocity of the point, Oi , of the ith
link, and its angular velocity, respectively. Moreover, the 3mi -dimensional vector, ḋ i , and
the m̄i -dimensional vector, ċi , are the time derivatives of the time dependent variables d i

and ci , defined in (2c) and (3b), respectively. The vectors, f i and ni , are the force at Oi

and the moment about Oi of the ith link, respectively, whereas εi is the 3mi -dimensional
generalized force vector associated with the generalized coordinates d i due to bending,
and ϑ i is the m̄i -dimensional generalized force vector associated with the generalized
coordinates ci due to torsion. For a rigid robot, vectors d i , ci , εi and ϑ i vanish and the
dimension of the vectors, t i and wi , reduce to six [1, 7].

• t and w: The n̂ ≡ 6nr + (6 + 3mi + m̄i)nf -dimensional vector of generalized twist and
wrench, respectively, which are defined as

t ≡ [
tT

1 tT
2 . . . tT

n

]T ; w ≡ [
wT

1 wT
2 . . . wT

n

]T
, (5)

where, t i and wi , for i = 1, . . . , n, are given by (4).
• q i and τ i : The (1+3mi +m̄i)-dimensional vectors of joint-displacements and amplitudes

(JDA), and the corresponding generalized forces of the ith flexible link, i.e.,

q i ≡ [
θi dT

i cT
i

]T
and τ i ≡ [

τi εT
i ϑT

i

]T
, (6)

where θi is the rotational or translational displacement of the ith joint depending on its
type, i.e., revolute or prismatic, respectively, and vectors d i and ci are defined in (2c)
and (3b), respectively. Moreover, τi , and the vectors, εi and ϑ i , are respectively the gen-
eralized forces corresponding to the joint coordinate, θi , and the amplitude vectors, d i

and ci . Note that for a rigid body εi and ϑ i vanish, and τ i reduces to a scalar [1, 7].
• q̇ and τ : The n̄-dimensional vector of rates of JDA vector and the vector of corresponding

generalized forces, i.e.,

q̇ ≡ [
q̇1 q̇2 . . . q̇n

]T
and τ ≡ [

τ 1 τ 2 . . . τ n

]T
, (7)

8 A. Mohan, S.K. Saha

where q̇ i is the time-rate of change of the joint-and-amplitude vector of the ith flexible
link, and τ i is the corresponding generalized forces of the ith flexible link. For a rigid
link, q i ≡ θi .

4 Dynamic modeling

In this section, the derivation of the decoupled natural orthogonal complement (DeNOC)
matrices associated with the velocity constraints of the serial-chain robotic system with
flexible links is outlined.

4.1 The DeNOC matrices for flexible robots

The DeNOC matrices for a serial flexible robots are derived below:
(1) The twist of the ith flexible link is expressed in terms of the (i − 1)st one as

t i = Ai,i−1t i−1 + P i q̇ i , (8)

where t i is the (6+3mi + m̄i)-dimensional twist vector of the ith flexible link defined in (4),
and q̇ i is the time-rate of change of vector q i defined in (6), whereas the (6 + 3mi + m̄i) ×
(6 + 3mi + m̄i) twist propagation matrix, Ai,i−1, and the (6 + 3mi + m̄i) × (1 + 3mi + m̄i)

JDA propagation matrix, P i , for the flexible links are defined as

Ai,i−1 ≡
[
Ri,i−1 F i−1

Õ Ō

]
; P i ≡

[
pi Õ

T

0̃ 1̄

]
. (9)

In (9), the 6 × 6 matrix, Ri,i−1, and the 6-dimensional vector, pi , are defined as

Ri,i−1 ≡
[

1 ai,i−1 × 1

O 1

]
; pi ≡

[
0

zi

]
for revolute; pi ≡

[
zi

0

]
for prismatic (10)

in which, ai,i−1 ≡ −ai−1,i , is the position vector of the point, Oi of the ith link, from Oi−1

of the (i − 1)st link. Moreover, the 3 × 3 cross product tensor, ai,i−1 × 1, associated with
the vector, ai,i−1 [35] is defined such that (ai,i−1 × 1)x = ai,i−1 × x, for any 3-dimensional
Cartesian vector x. Furthermore, zi is the 3-dimensional unit vector along the axis of ro-
tation of a revolute joint or along the direction of a prismatic joint, whereas O and 0 are
respectively the 3 × 3 zero matrix, and the 3-dimensional vector of zeros, and 1 is the 3 × 3
identity matrix. Furthermore, the 6 × (3mi + m̄i) matrix, F i−1, is given by

F i−1 ≡
[

Si−1 Ô i−1

Δi−1 Ci−1

]
(11a)

in which the 3 × 3mi matrix, Si−1, contains the shape functions corresponding to the three
dimensional bending deflections, as defined in (2a–b), whereas the 3 × 3mi matrix, Δi−1,
contains the first derivatives of the bending shape functions corresponding to the (i − 1)st
flexible link. For the ith flexible link, if sij denotes the shape function corresponding to the

A recursive, numerically stable, and efficient simulation algorithm 9

j th mode, its first derivative with respect to its length of the flexible part, āi , evaluated at the
link end, ai , is given by ∂sij /∂āi |ai

. Accordingly, the matrix Δi is represented as

Δi ≡

⎡

⎢⎢⎢⎢⎢⎣

0 . . .0 0 . . .0 0 . . .0

0 . . .0 0 . . .0 −∂s
y

i,1

∂āi

∣∣∣∣
ai

. . . − ∂s
y

i,mi

∂āi

∣∣∣∣
ai

0 . . .0
∂sz

i,1

∂āi

∣∣∣∣
ai

. . .
∂sz

i,mi

∂āi

∣∣∣∣
ai

0 . . .0

⎤

⎥⎥⎥⎥⎥⎦
(11b)

in which s
y

i,j and sz
i,j , for j = 1, . . . ,mi are those appeared in (11b). Moreover, the 3 × m̄i

matrix Ci−1, contains the shape functions corresponding to the torsion of (i − 1)st flexible
link in m̄i modes. Accordingly, the matrix Ci is represented as

Ci ≡
⎡

⎢⎣
s̄i,1|ai

. . . s̄i,m̄i
|ai

0 . . .0

0 . . .0

⎤

⎥⎦ , (11c)

where s̄i,k for k = 1, . . . , m̄i , are the shape functions of the beam in torsional vibration, as
defined in (3b). Note that Õ , Ō , and Ô in (9–11) are respectively the (3mi + m̄i) × 6,
(3mi + m̄i) × (3mi + m̄i), and 3 × m̄i zero matrices. Also, 0̃ and 1̄ are respectively the
(3mi + m̄i)-dimensional vectors of zeros and the (3mi + m̄i) × (3mi + m̄i) identity matrix.
In line with the rigid link system [35], the (6+3mi + m̄i)× (6+3mi + m̄i) matrix, Ai,i−1, is
termed here as the twist propagation matrix for the flexible link which satisfies the property,
Ai,jAj,k = Ai,k . Similarly, the (6 + 3mi + m̄i) × (1 + 3mi + m̄i) matrix, P i , is termed as
the JDA propagation matrix.

(2) Now, for the n-link serial flexible link robot, Figs. 1 and 2, the n̂-dimensional vector
of generalized twist, t of (5) can be expressed using (8) as

t = At + Nd q̇, (12)

where q is the n̄-dimensional vector of the JDA of the robot. In (12), the n̂ × n̂ matrix, A,
and the n̂ × n̄ matrix, Nd , are given by

A ≡

⎡

⎢⎢⎢⎢⎣

O O

A21 O . . . O

...
...

. . .
...

O . . . An,n−1 O

⎤

⎥⎥⎥⎥⎦
; Nd ≡

⎡

⎢⎢⎢⎢⎣

P 1 0 . . . 0

0 P 2 . . . 0
...

...
. . .

0 0 . . . P n

⎤

⎥⎥⎥⎥⎦
, (13)

where O and 0 are the (6 + 3mi + m̄i) × (6 + 3mi + m̄i) matrix and the (6 + 3mi + m̄i)-
dimensional vector of zeros, respectively. Henceforth, O and 0 should be understood as of
compatible dimensions based on the expressions where they appear.

(3) Equation (12) is rearranged and written as

t = Nθ̇ , where N ≡ N lNd . (14)

10 A. Mohan, S.K. Saha

In (14), the n̂ × n̂ matrix, N l is given by:

N l ≡

⎡

⎢⎢⎢⎢⎣

1 O . . . O

A21 1 . . . O

...
...

. . .

An1 An2 . . . 1

⎤

⎥⎥⎥⎥⎦
, (15)

where 1 denotes the (6 + 3mi + m̄i)× (6 + 3mi + m̄i) identity matrix. Like O and 0, hence-
forth, 1 should be understood as of compatible size based on where it appears. The matrix,
N , in a coupled form is the natural orthogonal complement (NOC) matrix for the serial flexi-
ble robot as reported in [13]. In this paper, the decoupled form, namely, N l and Nd matrices,
are derived for the flexible systems for the first time, which are referred as the decoupled
natural orthogonal complement (DeNOC) matrices for flexible robots. The DeNOC matri-
ces allow one to write the matrix and vector elements associated with the dynamic equations
of motion in analytical form leading to recursive forward dynamics algorithm.

4.2 Dynamic modeling of flexible robots

The dynamic modeling of the flexible robot, shown in Fig. 1, is now derived using the
equivalence of EL and NE methodology, as proposed for rigid robots in [7], and the DeNOC
matrices for the flexible link robots derived in Sect. 4.1. The steps are outlined below:

(1) Referring to Fig. 2, the position vectors of the elements, Ēi , Ẽi , and payload of mass
mpi on the ith link, namely, r i , r̃ i , and rpi are respectively given by

r i = oi + b̄i , where b̄i = b̄izi ,

r̃ i = oi + r̄ i , where r̄ i = bizi + āi x̂i+1 + ui , and (16)

rpi = oi + r̄pi, where r̄pi = bizi + ai x̂i+1 + upi,

where, ai and bi are the DH-parameters of the link, as defined in Appendix A, b̄i is the axial
distance of element Ēi along Zi from Oi , and āi is the axial distance of element Ẽi along
X̂i+1 from O ′

i , as shown in Fig. 2. Note that b̄i is the position vector of element Ēi along
Zi from Oi , whose magnitude is b̄i . The term, b̄i , varies from 0 to bi , and āi varies from 0
to ai . Moreover, the unit vectors along Zi and X̂i+1-axes are denoted with zi and x̂i+1,
respectively, and vector oi denotes the position vector of the point, Oi , of the ith frame with
respect to the origin of the fixed first frame. Furthermore, vectors ui and upi are respectively
the positions of the element, Ẽi , and the payload mpi, on the deformed flexible link from its
undeformed state. Vector ui is indicated in Fig. 2. Note that the payload is considered as a
concentrated point mass at the tip of the link that accounts for any assembly with sensors
attached to the ith link. For the nth link, it is the real load to be carried by it.

(2) The kinetic energy, Ti , for the ith flexible link is then given by

Ti = 1

2

∫ bi

0
ρi ṙ

T
i ṙ i db̄i + 1

2

∫ ai

0
ρi

˙̃rT
i
˙̃r i dāi + 1

2
mpiṙ

T
piṙpi + 1

2

∫ ai

0
ρiIpiβ̇

2
i dxi+1 + Thi, (17)

where ρi is the mass per unit length of the ith link, and the vectors, ṙ i , ˙̃r i , and ṙpi, are the
velocities of the elements, Ēi , Ẽi , and payload, respectively, which can be written from (16)

A recursive, numerically stable, and efficient simulation algorithm 11

as

ṙ i = vi + ωi × b̄i;˙̃r i = vi + ωi × r̄ i + ḃizi + u̇i ; and
ṙpi = vi + ωi × r̄pi + ḃizi + u̇pi,

(18)

where, vi is substituted for ȯi , i.e., vi ≡ ȯi . Moreover, ˙̄ai = ȧi = 0 is used in (18) due to
the assumption of no extension along X̂i+1 axis of the ith flexible link shown in Fig. 2.

Similarly, ˙̄bi = 0, as this portion of the link is assumed rigid. Furthermore, ḃi represents the
linear joint rate in the presence of prismatic joint. However, for the revolute joint, it vanishes,
i.e., ḃi = 0. Also, the scalar, Ipi, denotes the polar moment of inertia of the cross-section of
the element, Ẽi , belonging to the ith flexible link, whereas βi is the angular deformation of
the cross-section of the element, Ẽi , as defined after (3a). Finally, the term, Thi, represents
the kinetic energy due to the hub inertia at the joint, which is given by,

Thi = 1

2
ωT

i I hiωi , (19)

where I hi is the 3 × 3 inertia tensor for the hub. A hub includes the effect of motor and the
gear assembly located at the joints.

(3) The EL equations of motion for the whole system are then given by [30]:

d

dt

(
∂T

∂ q̇ i

)
− ∂T

∂q i

= τ i , for i = 1, . . . , n, (20)

where n is the total number of bodies, whereas q i is the (1 + 3mi + m̄i)-dimensional vector
of independent generalized coordinates defined in (6). Accordingly, vector τ i is the associ-
ated generalized forces given by τ i ≡ τE

i + τ s
i , in which τE

i is the generalized forces due to
external forces and moments on the whole system, and τ s

i is the generalized forces due to
strains in the ith link. Vector τ s

i has the following form:

τ s
i ≡ ∂Vs/∂q i , (20a)

where Vs is the potential energy of the system at hand due to strains. Note here that the effect
of potential energy due to gravity is included by adding negative of the acceleration due to
gravity to the linear acceleration of the first link, v̇1, as proposed in [52]. Potential energy of
the system at hand due to strain energy, Vs as required in (20a) is evaluated as:

Vs =
nf∑

i=1

Vsi, where

Vsi ≡ 1

2

∫ ai

0
EiI

y

i

(
∂2u

y

i

∂ā2
i

)2

dāi + 1

2

∫ ai

0
EiI

z
i

(
∂2uz

i

∂ā2
i

)2

dāi

+ 1

2

∫ ai

0
GiIpi

(
∂2βi

∂ā2
i

)2

dāi , (20b)

where EiI
y

i , EiI
z
i are the flexure rigidity, and GiIpi is the torsional rigidity of the ith link in

which Ei is the Young’s modulus of elasticity, I
y

i and I z
i are the moment of inertia of the ith

link about its Ŷi+1 and Ẑi+1 axes, respectively, and Ipi is the polar moment of inertia of the
cross-section of the link. The deflection of the link, uy

i , uz
i , βi , are given by (3a), respectively,

12 A. Mohan, S.K. Saha

whereas the deflection along Xi+1 axis is ignored. Now, the partial differentiation of Vs

with respect to q i , as required in (20a) is evaluated. Note that the vector of generalized
coordinates, q i is the array of θi,d

y

i ,d
z
i , and ci , but Vs is a function of only d

y

i ,d
z
i , and ci .

As a result, τ s
i ≡ ∂Vs/∂q i is obtained as

τ s
i =

[
0 0T

[
τ

sy

i

]T [
τ sz

i

]T [
τ sx

i

]T
]T

. (20c)

Since strain energy due to axial centrifugal stiffening is neglected, the mi -dimensional zero
vector 0 appears in τ s

i after the scalar zero of (20c). In (20c), the mi -dimensional vectors
τ

sy

i and τ sz
i , and the m̄i -dimensional vector, τ sx

i , are given as

τ
sy

i ≡ [
τ

sy

i1 . . . τ
sy

imi

]T ; τ sz
i ≡ [

τ sz
i1 . . . τ sz

imi

]T
and

τ sx
i ≡ [

τ sx
i1 . . . τ sx

im̄i

]T
,

(20d)

where τ
sy

ij and τ sz
ij are defined, for j = 1, . . . ,mi , as

τ
sy

ij ≡ EiI
y

i

∫ ai

0

(
k̃

y

ij

mi∑

h=1

k̃
y

ihd
y

ih

)
dāi and

τ sz
ij ≡ EiI

z
i

∫ ai

0

(
k̃z

ij

mi∑

h=1

k̃z
ihd

z
ih

)
dāi .

(20e)

Similarly, τ sx
il are given as, for l = 1, . . . , m̄i , as

τ sx
il = GiI

x
pi

∫ ai

0

(
k̄x

il

m̄i∑

h=1

k̄x
ihc

x
ih

)
dāi , (20f)

where for j = 1, . . . ,mi , k̃
y

ij ≡ ∂2s
y
ij

∂ā2
i

, k̃z
ij ≡ ∂2sz

ij

∂ā2
i

, and for l = 1, . . . , m̄i , k̃x
il ≡ ∂2 s̄x

il

∂ā2
i

, in which

s
y

ij and sz
ij are the shape functions of the ith link in its j th mode of vibration about Ŷi+1

and Ẑi+1 axis, respectively, as defined after (2a), whereas s̄x
il is the shape function of the ith

link in its lth mode of torsion, as given by (3b). Note that d
y

i,h, dz
i,h, and cx

i,l are the general-
ized coordinates of the system. The total kinetic energy of the system is then, T = ∑n

i=1 Ti—
n being the total number of rigid and flexible links, nr and nf , respectively, i.e., n ≡ nr + nf .
The dynamic equations of motion for the flexible robot, as derived in Appendix B are ex-
pressed as

[(
∂t1

∂ q̇ i

)T

. . .

(
∂tn

∂ q̇ i

)T]
⎡

⎢⎣
w∗

1
...

w∗
n

⎤

⎥⎦ = τ i , for i = 1, . . . , n, (21)

A recursive, numerically stable, and efficient simulation algorithm 13

where the (6 + 3mi + m̄i) × (1 + 3mi + m̄i) matrix, ∂t i/∂ q̇j , and the (6 + 3mi + m̄i)-
dimensional vector, w∗

i , for i = 1, . . . , n, are reproduced from (B.10) as

∂t i

∂ q̇j

≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂vi

∂ q̇j

∂ωi

∂ q̇j

∂ ḋ i

∂ q̇j

∂ ċi

∂ q̇j

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

w∗
i ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ bi

0
ρi r̈ i db̄i +

∫ ai

0
ρi

¨̃r i dāi + mpir̈pi

∫ bi

0
ρi b̄i

(
zi × r̈ i

)
db̄i +

∫ ai

0
ρi

(
r̄ i × ¨̃r i

)
dāi + mpi

(
r̄pi × r̈pi

) + (
I hiω̇i + ωi × I hiωi

)

∫ ai

0
ρiS

T
i
¨̃r i dāi + mpiSi |Tai

r̈pi

∫ ai

0
ρiIpis̄i c̈

T
i s̄i dāi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(22)

where Si |ai
implies the value of the shape function Si , (2b) evaluated at āi = ai .

(4) The vector, w∗
i of (22), can be physically interpreted as the inertia wrench of the

flexible link, and can be written as

w∗
i = M i ṫ i + γ i , (23)

where M i is the (6+3mi + m̄i)× (6+3mi + m̄i) mass matrix, and γ i is the (6+3mi + m̄i)-
dimensional vector. The mass matrix, M i , and vector γ i are obtained as:

Mi ≡
∫ bi

0
ρi

⎡

⎢⎢⎢⎢⎢⎣

1 −b̄i × 1 O 0

−b̄i × (b̄i × 1) O 0

O 0

sym 0

⎤

⎥⎥⎥⎥⎥⎦
db̄i

+
∫ ai

0
ρi

⎡

⎢⎢⎢⎢⎢⎣

1 −r̄ i × 1 Si 0

−r̄ i × (r̄ i × 1) r̄ i × Si 0

ST
i Si 0

sym Ipis̄i s̄
T
i

⎤

⎥⎥⎥⎥⎥⎦
dāi

14 A. Mohan, S.K. Saha

+ mpi

⎡

⎢⎢⎢⎢⎢⎣

1 −r̄pi × 1 Si |ai
0

−r̄pi × (r̄pi × 1) r̄pi × Si |ai
0

Si |Tai
Si |ai

0

sym 0

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎣

O O O 0
I hi O 0

O 0
sym 0

⎤

⎥⎥⎦ ,

γ i ≡
∫ bi

0
ρi

⎡

⎢⎢⎢⎢⎣

	̄ i

b̄i × 	̄ i

0
0

⎤

⎥⎥⎥⎥⎦
db̄i +

∫ ai

0
ρi

⎡

⎢⎢⎢⎢⎢⎣

	 i

r̄ i × 	 i

ST
i 	 i

0

⎤

⎥⎥⎥⎥⎥⎦
dāi + mpi

⎡

⎢⎢⎢⎢⎢⎣

	 pi

r̄pi × 	 pi

Si |Tai
	 pi

0

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎣

0
ωi × I hiωi

0
0

⎤

⎥⎥⎦ ,

(24)

where 	̄ i ≡ ωi × (ωi × b̄i), 	 i ≡ ωi × [(ωi × r̄ i) + u̇i], 	 pi ≡ ωi × [(ωi × r̄pi) + u̇pi] and
the word “sym” denotes the symmetric elements of the matrix, M i .

(5) Combining (23) for all n-links, i.e., i = 1, . . . , n, (21) can be written as

(
∂t

∂ q̇

)T(
Mṫ + γ

) = τ , (25)

where the n̂ × n̂ matrix, M , the n̂-dimensional vector, γ , and the n̄-dimensional vector, τ ,
are given by

M ≡ diag
[
M1 . . . Mn

]; γ ≡ [
γ T

1 . . . γ T
n

]T
; and τ ≡ [

τ 1 . . . τ n

]T
. (26)

The vectors, t and w, are defined in (5), and the n̂ × n̂ matrix, ∂t
∂ q̇

, is defined as

∂t

∂ q̇
≡

⎡

⎢⎢⎢⎢⎢⎢⎣

∂t1

∂ q̇1
. . .

∂t1

∂ q̇n
...

...

∂tn

∂ q̇1
. . .

∂tn

∂ q̇n

⎤

⎥⎥⎥⎥⎥⎥⎦
. (27)

From (14), it is clear that

∂t

∂ q̇
= N lNd . (28)

Hence, (25) yields

NT
dN

T
l

(
Mṫ + γ

) = τ . (29)

(6) Now, differentiating (5) with respect to time, one obtains

ṫ = N lNd q̈ + N lṄd q̇ + Ṅ lNd q̇. (30)

A recursive, numerically stable, and efficient simulation algorithm 15

Then substituting (30) into (29), the independent set of constraint dynamic equations of
motion for the flexible robot are obtained as

I q̈ = φ, (31)

where I is the n̄ × n̄ Generalized Inertia Matrix (GIM) of the flexible system. The (i, j)

element of the matrix, I , are the (1 + 3mi + m̄i) × (1 + 3mi + m̄i) block matrices, which
can be expressed analytically as

I ij = IT
j i = P T

i M̃ iAijP j , for i = 1, . . . , n; j = 1, . . . , i, (32)

where the (1 + 3mi + m̄i) × (1 + 3mi + m̄i) matrix, M̃ i , is obtained recursively as

M̃ i ≡ M i + AT
i+1,iM̃ i+1Ai,i+1

in which M̃n+1 ≡ O , as there is no (n+ 1)st link in the chain. Hence, M̃n ≡ Mn. Moreover,
the n̄-dimensional vector, φ, containing external, strain energy, Coriolis, and other velocity
dependent terms is expressed as

φ = τ − NT
dN

T
l

[
M

(
N lṄd + Ṅ lNd

)
q̇
]
. (33)

Equations (31)–(33) represent the analytical and recursive expressions for the matrix ele-
ments of the GIM. Similar to the rigid body system, [35], M̃ i is interpreted here as the mass
matrix for the “composite flexible body” comprising of the rigidly attached flexible bodies
#i, . . . ,#n. Note that except their dimensions, the expression of the DeNOC matrices and
the recursive expressions associated with the dynamic models for the flexible systems are
exactly the same as those for rigid link systems. This feature is exploited to build up a unified
forward dynamics algorithm for the robots with both rigid and flexible links.

5 Forward dynamics algorithm

In this section, a recursive, computationally efficient, and numerically stable algorithm for
calculating the joint accelerations, q̈ from (31) are outlined. The GIM, I of (31), is decom-
posed using the reverse Gaussian elimination (RGE) [24, 38], namely,

I = UDUT, (34)

where U and D are respectively the n̄ × n̄ upper block triangular and block diagonal ma-
trices, and n̄ is the degree of freedom of the system given by, n̄ ≡ n + ∑nf

i=1(3mi + m̄i).
Matrices U and D are

U ≡

⎡

⎢⎢⎢⎣

1 U 12 · · · U 1n

O 1 · · · U 2n

...
...

. . .
...

O O · · · 1

⎤

⎥⎥⎥⎦ ; D ≡

⎡

⎢⎢⎢⎣

Î 1 O · · · O

O Î 2 · · · O
...

...
. . .

...

O · · · · · · Î n

⎤

⎥⎥⎥⎦ , (35)

where the (1 + 3mi + m̄i) × (1 + 3mi + m̄i) matrices, U ij and Î i , for i, j = 1, . . . , n, are
obtained from the application of the RGE rules. Note that for the rigid bodies, matrices U ij

16 A. Mohan, S.K. Saha

and Î i are scalars and U and D reduce to n×n upper triangular and diagonal matrices [37].
The expressions for U ij and Î i for i = 1, . . . , n and j = i + 1, . . . , n, are

U ij ≡ P T
i Ψ ij , and Î i ≡ P T

i Ψ̂ i , (36)

where P i is the (6+3mi + m̄i)× (1+3mi + m̄i)-dimensional joint displacement amplitude
(JDA) propagation matrix as defined in (9), and the (6 + 3mi + m̄i) × (1 + 3mi + m̄i)

matrices, Ψ̂ i and Ψ ij are given by

Ψ̂ i ≡ M̂ iP i; Ψ i ≡ Ψ̂ i Î
−1

i ; Ψ ij ≡ AT
j iΨ i . (37)

Again, for the rigid bodies, matrices Ψ̂ i and Ψ ij reduce to 6-dimensional vectors, whereas
the (6 + 3mi + m̄i) × (1 + 3mi + m̄i) dimensional JDA propagation matrix, P i , reduces to
the 6-dimensional vector, pi , defined in (10). Also, the (6 + 3mi + m̄i) × (6 + 3mi + m̄i)

flexible twist propagation matrix, Aij , defined in (9), reduces to the 6×6 matrix, Rij of (10).
Note that the matrix, M̂ i , represents the mass and inertia properties of the articulated flexible
body i, defined similar to the articulated inertia matrix for the rigid body system, consisting
of flexible links, #i, . . . ,#n, which are coupled by joints i + 1, . . . , n [35]. The (6 + 3mi

+ m̄i) × (6 + 3mi + m̄i) matrix, M̂ i , is obtained recursively as

M̂ i ≡ M i + AT
i,i+1M̄ i+1Ai,i+1, where M̄ i ≡ M̂ i − Ψ̂ iΨ

T
i (38)

for i = n − 1, . . . ,1, and M̂n ≡ Mn. For the recursive algorithm, the n̄-dimensional vector
of the generalized forces due to external moments, forces, gravity, strain associated with the
link deformations, and the centrifugal and Coriolis accelerations, etc., φ of (31) and (33) are
assumed to be evaluated recursively. The solution for q̈ can now be obtained from (31) in
the following three steps:

Step A. Solution for φ̂: The solution, φ̂ = U−1φ, is evaluated for, i = n − 1, . . . ,1 as

φ̂i = φi − P T
i ηi , (39)

where φ̂n ≡ φn. Note that the (6 + 3mi + m̄i)-dimensional vector, ηi , is obtained as

ηi = Ψ i φ̂i + η̄i; η̄i ≡ AT
i+1,iηi+1, and η̄n = 0.

Step B. Solution for φ̃: Dφ̃ = φ̂, for i = 1, . . . , n,

φ̃i = Î
−1

i φi (40)

in which the (1 + 3mi + m̄i) × (1 + 3mi + m̄i) matrix Î i is defined in (36). For the rigid

body system, Î i becomes scalar and Î
−1

i simply requires one division.

Step C. Solution for q̈ i : q̈ i ≡ U−Tφ̃, for i = 2, . . . , n,

q̈ i = φ̃i − Ψ T
i μ̄i , (41)

where the (1+3mi + m̄i)-dimensional vector, q̈1 ≡ φ̃1, and the (6+3mi + m̄i)-dimensional
vector, μ̄i , is obtained from

μ̄i ≡ Ai,i−1μi−1 and μi ≡ P i q̈ i + μ̄i; μ̄1 = 0. (42)

For the rigid bodies, Ai,i−1 ≡ Ri,i−1,P i ≡ pi , and μ̄i is a 6-dimensional vector.

A recursive, numerically stable, and efficient simulation algorithm 17

5.1 Computational complexity

Using the above steps, namely, in A, B, C, above, it can be seen that unlike the rigid-body
system where the equivalence of Î is a scalar [37], for flexible bodies it is the (1 + m̃) ×
(1 + m̃) matrix. Note here that for the estimation of computational complexity, all links
are assumed to vibrate in the same number of modes, i.e., mi and m̄i = m̄. Accordingly,
m̃ is taken as, m̃ = 3m + m̄. Since the individual element of the matrix, Î i , do not have
any recursive relation like the block matrix elements of I , no analytical decomposition is

possible. Hence, Î
−1

i requires explicit inversion whose computational complexity is in the

order of (1+m̃)3

3 ≈ O(m̃3

3), as m is generally large. However, the rest of the calculations can be
done with O(n)—n being the total number of links—calculations. In order to justify this, let
us assume that (39) needs C1 computations. Hence, Step A requires nC1 calculations. Next,

(40) will require C2 the computations, which includes Î
−1

i . Hence, the order of computations
for C2 is m̃3/3 as mentioned above, and computations required in Step B is nC2. Finally,
if (41) and (42) require C3 computations, then Step C can be obtained with nC3 calculations.
So, the total computations to solve for the accelerations of the generalized coordinates, q̈ ,
are n(C1 + C2 + C3), i.e., the order of computation is O(n) + O(m̃3

3). It is pointed out here
that if the conventional formulation like the one reported in [13] and others are used; where
explicit inversion of I , (31), is carried out, the order of computations would be O(n̄3

3)—
n̄ being equal to nr + (m̃ + 1)nf .

Next, the exact number of computations required in the proposed forward dynamics al-
gorithm are counted. In the count, the effect of payload and hub are not considered so as
to be able to compare the final complexity with those reported in the literature, where these
effects are also not reported. The total computational counts are given as

[(
2m2 + m̄2 + 180m + 4m̄ + 299 + Mm1

)
n − (

124m + m̄ + 229 + Mm2
)]

M;
[(

6m2 + 2m̄2 + 4mm̄ + 122m + 8m̄ + 220 + Am1

)
n − (

94m + m̄ + 192 + Am2

)]
A;

and 2n T,

(43)
where Mm1, Mm2, Am1 and Am2 are the functions of m̂ = 1 + 2m + m̄, and depend on the
number of modes considered for the vibrations. They are given by

Mm1 ≡ m̂3

6
+

(
2m + m̄ + 15

2

)
m̂2 +

(
4m2 + m̄2 + 4mm̄ + 30m + 15m̄

2
+ 100

3

)
m̂;

Mm2 ≡
(

27 + 4m2 + m̄2 + 4mm̄ + 26m + 13m̄

2

)
m̂;

Am1 ≡ m̂3

6
+ m̂2

2
+

(
6m2 + 3

2
m̄2 + 6mm̄ + 27m + 27

2
m̄ + 82

3

)
m̂;

Am2 ≡
(

2m2 + m̄2

2
+ 2mm̄ + 13m + 13

2
m̄ + 27

)
m̂.

5.2 Comparison

The computational complexity of the proposed algorithm is compared in Table 1 with the
two other algorithms available in the literature, namely, [13, 46]. No other recent literature

18 A. Mohan, S.K. Saha

Table 1 Comparison of computational complexity

Algorithm Multiplications (M) Additions (A) M A

(a) Considering vibrations in bending (m = 2) and torsion (m̄ = 1)

Proposed (n = 6)a M1ptn + M2pt A1ptn + A2pt 9038 7311

Cyril [13] (n = 6)b M1cn
3 + M2cn

2 A1cn
3 + A2cn

2 10812 8538

+ M3cn + M4c + A3cn + A4c

(b) Considering vibrations in bending only (m = 2)

Proposed (n = 8)a M1pn + M2p A1pn + A2p 9874 7699

Jain and Rodriguezb M1j n A1j n 11889 9387

[23, 24] (n = 9)a

Jain and Rodriguezc Mnr
1j

n3 + Mnr
2j

n2 + Mnr
3j

n Anr
1j

n3 + Anr
2j

n2 + Anr
3j

n 9920 8605
[23, 24] (n = 8) (n = 8)

12360 10660

(n = 9) (n = 9)

aNumber of links for which the recursive algorithms benefit over non-recursive algorithm appearing in that
table
bRecursive algorithm
cNon-recursive algorithm

reported such complexity count except for the RR, where R stands for revolute joints, and
RRR robots [49]. In [49], only the computational complexity for the generalized inertia ma-
trix (GIM) is reported, but not for the forward dynamics algorithm. This may be apparently
due to the complexity in counting the number of operations in terms of multiplications,
additions, etc. However, it is emphasized here due to the fact that even a few savings in
multiplications or additions may have significant impact on the efficiency of the algorithm
when these computations are performed over thousands and millions of discretized steps.
As a result, one can apply the algorithm in real-time applications or use less advanced, less
costly computing system to perform the same work satisfactorily. Note that the algorithm
and the computational count given by Cyril [13] includes the effect of torsional vibrations,
whereas the algorithm and the computational count given by Jain and Rodriguez [22] does
not consider them. Hence, the proposed algorithm is compared with the above two algo-
rithms separately in Table 1. From Tables 1(a–b), it is clear that the recursive algorithm
proposed above outperforms the other two.

The coefficients in Tables 1(a) and 1(b) are:

M1pt ≡ 2m2 + m̄2 + 180m + 4m̄ + 299 + Mm1;
M2pt ≡ −(

124m + m̄ + 229 + Mm2
);

A1pt ≡ 6m2 + 2m̄2 + 4mm̄ + 122m + 8m̄ + 220 + Am1;
A2pt ≡ −(

94m + m̄ + 192 + Am2

);
where Mm1, Mm2, Am1, and Am2 are given after (43) and

M1c ≡ m̂3

6
+ m̂2

(
−m

2
+ 1

)
+ m̂

(
m2

2
− 2m

)
− m3

6
+ m2;

A recursive, numerically stable, and efficient simulation algorithm 19

M2c ≡ −3m̂2

2
+ m̂

(
3m + 33

2

)
− 3m2

2
− 15m

2
+ 15m̄

2
+ 12;

M3c ≡ 5m̂2 − m̂

(
10m + 109

6

)
+ m3

6
+ 53m2

6
+ 233m

3
− 7m̄

2
+ 246;

M4c ≡ −123;

A1c ≡ m̂3

6
+ m̂2

(
−m

2
+ 1

)
+ m̂

(
m2

2
− 2m

)
− m3

6
+ m2;

A2c ≡ −3m̂2

2
+ m̂(3m + 13) − 3m2

2
− 17m

2
+ 3m̄ + 9;

A3c ≡ 5m̂2 − m̂

(
10m + 85

6

)
+ m3

6
+ 53m2

6
− 251m

6
+ 228;

A4c ≡ −102;
M1p ≡ 2m2 + 180m + 299 + Mm3;
M2p ≡ −(124m + 229 + Mm4);
A1p ≡ 6m2 + 122m + 220 + Am3;
A2p ≡ −(94m + 192 + Am4);

where

Mm3 ≡ m̂3

6
+

(
2m + 15

2

)
m̂2 +

(
2m2 + 15m + 100

3

)
m̂;

Mm4 ≡ (
2m2 + 13m + 27

)
m̂;

Am3 ≡ m̂3

6
+ m̂2

2
+

(
6m2 + 27m + 82

3

)
m̂;

Am4 ≡ (
2m2 + 13m + 27

)
m̂;

M1j ≡
{

5m3

6 + 27m2

2 + 893m
3 + 281 for n ≤ 7,

13m2 + 298m + 673 for n ≥ 7;

A1j ≡
{

5m3

6 + 23m2

2 + 677m
3 + 256 for n ≤ 7,

14m2 + 225m + 537 for n ≥ 7;

Mnr
1j ≡ 1

6
; Mnr

2j ≡ 12m2 + 34m + 29

2
;

Mnr
3j ≡ 48m + 268

3
;

Anr
1j ≡ 1

6
; Anr

2j ≡ 11m2 + 24m + 14;

Anr
3j ≡ m2 + 97

2
m + 116.

20 A. Mohan, S.K. Saha

Fig. 3 A two-link arm with both
links flexible

Note that from the computational point of view using the nonrecursive algorithms for n < 8,
where n is the number of links in the robotic chain is economical as seen from the Table 1(b).
However, due to the nature of nonrecursive algorithms the numerical methods employed to
obtain the joint velocities and positions do not converge as quickly as for those obtained
using a recursive algorithm. Hence, overall CPU time to calculate the joint accelerations
from forward dynamics, followed by numerical integration of the joint accelerations using
a nonrecursive algorithm may be more. This nonconvergence of joint accelerations in case
of nonrecursive algorithms also leads to numerical instability in the simulation results. This
aspect is explained in Sect. 7. Hence, a recursive algorithm is preferred over nonrecursive
algorithms in forward dynamics and simulation.

6 Simulations

In order to validate the proposed forward dynamics algorithm, simulation of a two-link
flexible robotic arm and a spatial 6-link Space Shuttle Remote Manipulator System Robot
(SSRMS), with its 2nd and 3rd links flexible are performed. In both the cases, the flexible
links are assumed to be vibrating in their first two modes only. The eigen function used to
represent the shape functions of the ith link in its j th mode of bending is given by [26]:

sij = [
(sinςj + sinhςj) − σ(cosςj + coshςj)

];
σ = (sin δj + sinh δj)/(cos δj + cosh δj),

(44)

where for j = 1 and 2, the modal constant, δj = 1.875 and 4.694, respectively [26]. The
shape functions of the link in torsion s̄ij , as defined in (3b), can also be represented by
similar trigonometric functions [30].

6.1 Both links flexible

Simulation of a two-link arm with both links flexible, as shown in Fig. 3 is performed. The
arm is considered hanging freely under gravity and no external torques are applied on it.

A recursive, numerically stable, and efficient simulation algorithm 21

Fig. 4 Simulation results for two-link flexible arm

Both the links have mass, length, and flexure rigidity of 1 m, 5 Kg and 1000 Nm2. The
response of the system is obtained with the following initial conditions: θ1 = −90◦, θ2 = 5◦,
θ̇1 = 0 and θ̇2 = 0, and di,j = 0 and ḋi,j = 0, for i, j = 1,2. Simulation results, shown in
Fig. 4, match exactly with those given in the literature, namely, in [13]. It is pointed out here
that Cyril [13] had observed artificial damping in his simulation results, which are absent
using the present formulation. This can be attributed to the numerical stiffness present in the

22 A. Mohan, S.K. Saha

original-NOC based nonrecursive formulation proposed by Cyril [13]. The present DeNOC
based recursive algorithm avoids such artificial stiffness. These aspects are elaborated in
Sect. 7.

6.2 Space shuttle remote manipulator system robot

Next, the 6-link Space Shuttle Remote Manipulator System (SSRMS) [13, 45] is considered,
whose 2nd and 3rd links are assumed flexible due to its architecture. Figure 5 shows the SS-
RMS whose DH and other parameters are given in Table 2. Forced simulation is performed
using the scheme outlined in Fig. 6. The joint trajectories, given by (45), are prescribed for a
representative maneuver of the SSRMS, considering all links are rigid. The joint torques are
then computed using the inverse dynamics algorithm, developed separately, for the SSRMS
robot, considering all of its links as rigid. The joint torques thus obtained are shown in Fig. 7

θi = 0.05

[
t − 5

π
sin

(
π

5
t

)]
, for i = 1, . . . ,6. (45)

The simulation results are given in Figs. 8–9. The results match with those presented
in [13]. The tip deflection of the flexible links 2 and 3 are shown in Fig. 9. The simulation
results obtained for the robot are stable up to about 6 sec. After this numerical errors start
building up resulting in unstable results. These aspects are separately discussed in Sect. 7.

Table 2 DH and other parameters of the SSRMS robot

Link No. (i) ai (m) bi (m) αi (rad) θi (rad) mi (Kg) EiIi (Nm2)

1 1 0 −π/2 θ1[0]a 47.5 –

2 6 0 0 θ2[0] 140 1 × 105

3 7 0 π/2 θ3[0] 85 1×105

4 1 0 −π/2 θ4[0] 47.5 –

5 1 0 π/2 θ5[0] 47.5 –

6 1 0 0 θ6[0] 47.5 –

aThe values in [·] show the initial configuration of the arm

Fig. 5 The six-link SSRMS

A recursive, numerically stable, and efficient simulation algorithm 23

Fig. 6 Forward dynamics analysis of SSRMS

However, up to 6 sec. whatever variations are noted, they are due to the flexibility of the
links.

7 Numerical stability and CPU time

In Sect. 5, the computational complexity of the forward dynamics algorithm proposed in the
paper is shown to be better than some other algorithms reported in the literature. However,
the computational complexity of the forward dynamics cannot alone be considered for the
overall efficiency, as the integration scheme and the numerical stability characteristics of
the forward dynamics algorithm also play important roles. Assuming an appropriate numer-
ical integration scheme is used, the numerical stability of the proposed algorithm and the
associated CPU time are studied in this section.

7.1 Numerical stability

The numerical stability of the proposed algorithm is studied here taking the numerical exam-
ple of the simulations of SSRMS robot, considered in Sect. 6.2. The simulation results are
obtained using the ode45 function with 0.001-step size and 10−8 tolerance in Matlab v6.5.
The simulation results obtained using the proposed algorithm are compared with those ob-
tained using a non-recursive algorithm while all other calculations strategies are kept the
same. In the nonrecursive algorithm, the GIM, I of (31), is first obtained numerically be-
fore it is factorized numerically using the Cholesky decomposition [48], followed by the
solution of the joint accelerations q , using forward and backward substitutions. The algo-
rithm is known to have O(n̄3

3) complexities [48]. Note that for the nonrecursive algorithms,
as described in Sect. 1, there exist a number of stabilization methods, namely, Baumgarte

24 A. Mohan, S.K. Saha

Fig. 7 Joint torques for SSRMS

stabilization and augmented Lagrangian approach [32]. However, these stabilization tech-
niques modify the dynamic model such that the simulation results obtained do not corre-
spond to the original system, but represent some other slightly deviated system [40]. More-
over, behavior of these stabilization approaches is highly configuration dependent and does
not improve the stability of the system for its near singular configurations [33]. Furthermore,
the above stabilization techniques have been used by researchers for only rigid link robotic
systems. More recently, researchers have proposed methods for solving efficiently systems
of differential-algebraic equations which represent flexible mechanisms. However, stability

A recursive, numerically stable, and efficient simulation algorithm 25

(a) Comparison of joint angles

Fig. 8 Comparison of joint responses of SSRMS

analysis of algorithms for rigid-flexible link robotic systems is still an open area of research.
In order to avoid the loss in accuracy of simulation results, no stabilization method is used
here with any of the algorithms. The calculations of φ are carried out exactly in a manner
done for the proposed recursive algorithm. Hence, the effect of recursive and nonrecursive
algorithms becomes explicit. The simulation results obtained using the two algorithms are
compared with the desired trajectory of (45). The difference between the simulated joint
path obtained from the two FD algorithms and the desired joint maneuver are plotted in

26 A. Mohan, S.K. Saha

(b) Comparison of joint rates

Fig. 8 (Continued)

Fig. 10 for joint 4. Comparison is shown for the results of joint 4 only, as the effect of
numerical stability is most pronounced. Similar behavior was obtained for the other joints,
and hence not reported here. It is seen that the simulation based on the nonrecursive algo-
rithm totally fails after about 1.2 sec. On the other hand, the simulation using the proposed
recursive algorithm continues up to 2 sec. and up to 7 sec. in total, albeit the error blows
up. Next, the stability of the two algorithms is investigated using the criterion based on the
principle of conservation of energy and power as proposed by Sharf and Damaren [45]. In

A recursive, numerically stable, and efficient simulation algorithm 27

Fig. 9 Tip deflection of the flexible links of SSRMS

Fig. 10 Error deviations for
joint 4 of SSRMS

the forced simulation, the input power to the robotic system is calculated as, Π = ∑n

i=1 τi θ̇i ,
where τi and θ̇i are the torque obtained from the inverse dynamics algorithm and the desired
joint rates, respectively, for the all rigid SSRMS system-n being the number of joints. Now,

based on the simulation results, the simulated power is computed as Π̃ = ∑n

i=1 τi
˙̃
θ i , where

˙̃
θ i is the simulated joint rate. Since a flexible link is energy dissipating system, assuming no
losses due to friction and damping, the output energy is equal to the input energy supplied
to the system minus the energy dissipated due to vibrations. Thus, to compare the numerical
stability of the two algorithms, namely, the proposed and the non-recursive algorithm, the
output power is calculated from both the algorithms. The results are plotted in Fig. 11. For
the nonrecursive algorithm, results become unstable and simulation stops soon after 2.5 sec.
However, for the recursive algorithm, the output power almost matches with the input one
even up to 6 sec. Moreover, the drift in the nonrecursive algorithm increases after about
1.1 sec. before it fails after 2.5 sec. The drift for the recursive algorithm is much less even
up to 6 sec. Hence, the numerical stability of the latter algorithm is established. Next, in
order to investigate the built-up of the errors, the nature of the joint accelerations, θ̇i , for
i = 1, . . . ,6, is obtained using both the algorithms. Figure 12 plots the joint acceleration
for joint 6, which also shows the better performance for the proposed recursive algorithm.
Similar behavior is also observed for other joint accelerations.

It should be noted here that the formulation, as presented in Sect. 4.2, derives a set of in-
dependent dynamic equations of motion, which are Ordinary Differential Equations (ODE)
and the ODEs are known to provide numerically stable algorithms compared to the Differ-

28 A. Mohan, S.K. Saha

Fig. 11 Comparison of desired
and simulated powers

Fig. 12 Joint accelerations of joint 6 of SSRMS

ential Algebraic Equations (DAE) representing the same system dynamics [33]. There is as
such no algebraic constraint in the proposed formulation of the system of dynamic equation
of motion, namely, (31). Hence, the integrator ode45 used in simulation need not handle any
algebraic equations. Moreover, to check if the numerical stiffness due to the link flexibility
has affected the results or not, the same set of simulations are carried out using ode23s as
the numerical integrator in Matlab v. 2007a. Note that the ode23s integrator can handle stiff
systems efficiently. The results obtained using ode45 and ode23s match exactly. Thus, the
apparent differences in the characteristics of the simulation results are only due to numerical
stability caused by truncation error, round-off error, etc. in the algorithms.

7.2 CPU time

To investigate the efficiency of the proposed algorithm, the CPU times taken by the recur-
sive and the nonrecursive algorithms for the forced simulation of the SSRMS robot arm is
obtained. The CPU times taken by the 3.5 GHz Pentium PC using the two algorithms for the
simulation duration of 2.5 sec. is noted down, which are shown in Fig. 13. The CPU times
were obtained using “tic” and “toc” commands of the MATLAB at the beginning and the
end of the program for the simulation. The reason for taking the simulation time of 2.5 sec.
is because up to 2.5 sec. both the algorithms give stable results. It is clear from Fig. 13 that
the proposed O(n) recursive algorithm is more efficient than its nonrecursive counterpart.
This is due to the fact that the joint accelerations, θ̇i for i = 1, . . . ,6, obtained for the re-
cursive algorithm are smoother for a longer duration of time than the nonrecursive one, as

A recursive, numerically stable, and efficient simulation algorithm 29

Fig. 13 Comparison of CPU
times

seen for joint 6 in Fig. 12. Other joints behave similarly. Because of smooth nature of θ̇i ,
the numbers of iterations required in the numerical integration are less, hence requiring less
CPU time for the proposed recursive algorithm. These results are also consistent with the
power plots shown in Fig. 11. In order to see the effect of the step sizes on the CPU time
taken by the recursive and the nonrecursive algorithms, step-sizes of 0.1, 0.01, 0.001, and
0.0001 are used in “ode45.” No significant effect was observed.

8 Conclusions

A dynamic modeling approach for the serial-chain robots with flexible links based on the
equivalence of Euler–Lagrange and Newton–Euler equations of motion, and the decoupled
natural orthogonal complement (DeNOC) matrices is proposed that leads to a recursive for-
ward dynamics algorithm. Such algorithm provides numerically stable and efficient simu-
lation. The recursiveness was obtained due to the UDUT decomposition of the generalized
inertia matrix, (GIM). The decomposition is possible because of the decoupling of the NOC
matrix. The proposed algorithm is shown to be computationally faster and numerically more
stable. The contributions of this paper are:

(1) Simplification of the dynamic algorithm based on the assumption of link shapes
as bent slender beams, which is realistic in most practical robot architectures; (2) Deriva-
tion and introduction of the DeNOC matrices in the dynamic modeling of flexible robots;
(3) Evaluation and comparison of the computational complexity of the proposed recursive
forward dynamics algorithm with those available in the literature; (4) Numerical stability
analyses and efficiency of the proposed recursive forward dynamics algorithm based simu-
lation of SSRMS. As per the authors’ knowledge, such study is reported for the first time
in the literature; and (5) Physical interpretations of many terms associated with the dynamic
model of the flexible-link robots.

Acknowledgement The research work reported in this paper is carried out under the partial financial aid
from the Department of Science and Technology, Government of India (SR/S3/RM/46/2002), which is duly
acknowledged.

Appendix A: Denavit and Hartenberg parameters

The Denavit and Hartenberg (DH) parameters [16] are a systematic method to define the
relative position and orientation of the consecutive links in a multibody robotic system and
can be assigned differently for the same system, as in [31, 36]. The DH parameters that are
used in this paper are explained here. Referring to Fig. 1, the serial robot manipulator under

30 A. Mohan, S.K. Saha

Fig. 14 Definition of DH
parameters

study consists of (n + 1) bodies or links, namely, the fixed base and the bodies numbered
as #1, . . . ,#n. All the bodies are coupled by n joints, numbered as 1, . . . , n. The ith joint
couples the (i − 1)st link; for the (i + 1)st frame, i.e., Xi+1, Yi+1, Zi+1. Now referring to
the Fig. 14 for the first n frames, the DH parameters are defined according to the following
rules:

1. Zi is the axis of the ith joint. Its positive direction can be chosen arbitrarily.
2. Xi is defined as the common perpendicular to Zi−1 and Zi , directed from the former

to latter. The origin of the ith frame, Oi , is the point where Xi intersects Zi . If these
two axes intersect, the positive direction of Xi is chosen arbitrarily. And the origin, Oi ,
coincides with the origin of the (i − 1)st frame, i.e., Oi−1.

3. The distance between Zi and Zi+1 is defined as ai , which is a nonnegative number.
4. The Zi coordinate of the intersection of the Xi+1 axis with Zi , which is shown in Fig. 14

as the distance between Oi and O ′
i is defined as bi . This can be either positive or negative.

For a prismatic joint, bi is a variable.
5. The angle between Zi and Zi+1 is defined as αi , and is measured about the positive

direction of Xi+1.
6. The angle between Xi and Xi+1 is defined as θi , and is measured about the positive

direction of Zi . For a revolute joint, θi is a variable.

Since no (n + 1)st link exists, the above definitions do not apply to the (n + 1)st frame and
its axes can be chosen at will.

Appendix B: Derivation of (21)

Using the expressions for the total kinetic energy, T = ∑n

i=1 Ti , where Ti is given by (17),
the partial differentiations with respect to the set of j th independent generalized speeds and
coordinates, q̇j and qj , respectively, as required in (20) are obtained as

∂T

∂ q̇j

=
n∑

i=1

[∫ bi

0
ρi ṙ

T
i

∂ ṙ i

∂ q̇j

db̄i +
∫ ai

0
ρi

˙̃rT
i

∂ ˙̃r i

∂ q̇j

dāi + mpiṙ
T
pi

∂ ṙpi

∂ q̇j

+
∫ ai

0
ρiIpiβ̇i

∂β̇i

∂ q̇j

dāi + (I hiωi)
T ∂ωi

∂ q̇j

]
, (B.1a)

A recursive, numerically stable, and efficient simulation algorithm 31

∂T

∂qj

=
n∑

i=1

[∫ bi

0
ρi ṙ

T
i

∂ ṙ i

∂qj

db̄i +
∫ ai

0
ρi

˙̃rT
i

∂ ˙̃r i

∂qj

dāi + mpiṙ
T
pi

∂ ṙpi

∂qj

+
∫ ai

0
ρiIpiβ̇i

∂β̇i

∂qj

dāi + (I hiωi)
T ∂ωi

∂qj

]
. (B.1b)

Substituting βi ≡ s̄T
i ci and β̇i ≡ s̄T

i ċi from (3a), into (B.1a–b), d
dt

(∂T
∂ q̇j

) is obtained

from (B.1a) as

d

dt

(
∂T

∂ q̇j

)
=

n∑

i=1

[∫ bi

0
ρi

{
r̈T

i

∂ ṙ i

∂ q̇j

+ ṙT
i

d

dt

(
∂ ṙ i

∂ q̇j

)}
db̄i

+
∫ ai

0
ρi

{
¨̃rT
i

∂ ˙̃r i

∂ q̇j

+ ˙̃rT
i

d

dt

(
∂ ˙̃r i

∂ q̇j

)}
dāi + mpi

{
r̈T

pi

∂ ṙpi

∂ q̇j

+ ṙT
pi

d

dt

(
∂ ṙpi

∂ q̇j

)}

+
∫ ai

0
ρiIpis̄

T
i

{
c̈i s̄

T
i

∂ ċi

∂ q̇j

+ ċi s̄
T
i

d

dt

(
∂ ċi

∂ q̇j

)}
dāi

+
{(

I hiω̇i + ωi × I hiωi

)T ∂ωi

∂ q̇j

+ (I hiωi)
T d

dt

(
∂ωi

∂ q̇j

)}]
. (B.2)

As shown in Stejskal and Valasek [47] and others, it is evident that

∂ ṙ i

∂ q̇j

= ∂r i

∂qj

; ∂ ˙̃r i

∂ q̇j

= ∂ r̃ i

∂qj

;

∂ ṙpi

∂ q̇j

= ∂rpi

∂qj

and
∂ ċi

∂ q̇j

= ∂ci

∂qj

.

(B.3)

Hence, the 2nd, 4th, 6th, and 8th terms on the right-hand side of (B.2) are given by

d

dt

(
∂ ṙ i

∂ q̇j

)
= d

dt

(
∂r i

∂qj

)
= ∂ ṙ i

∂qj

; d

dt

(
∂ ˙̃r i

∂ q̇j

)
= d

dt

(
∂ r̃ i

∂qj

)
= ∂ ˙̃r i

∂qj

;

d

dt

(
∂ ṙpi

∂ q̇j

)
= d

dt

(
∂rpi

∂qj

)
= ∂ ṙpi

∂qj

and
d

dt

(
∂ ċi

∂ q̇j

)
= d

dt

(
∂ci

∂qj

)
= ∂ ċi

∂qj

.

(B.4)

Similar to (B.4), it can also be shown that

d

dt

(
∂ωi

∂ q̇j

)
= ∂ωi

∂qj

. (B.5)

Substituting (B.4) and (B.5) into (B.2), and using the resulting expression, along with (B.1b),
the left hand side of (20), is obtained as

n∑

i=1

[∫ bi

0
ρi r̈

T
i

∂ ṙ i

∂ q̇j

db̄i +
∫ ai

0
ρi

¨̃rT
i

∂ ˙̃r i

∂ q̇j

dāi + mpir̈
T
pi

∂ ṙpi

∂ q̇j

+
∫ ai

0
ρiIpis̄

T
i c̈i s̄

T
i

∂ ċi

∂ q̇j

dāi + (
I hiω̇i + ωi × I hiωi

) ∂ωi

∂ q̇j

]
= τ j , (B.6)

32 A. Mohan, S.K. Saha

where cancellation of some terms happened. Next, substituting ṙ i , ˙̃r i and ṙpi from (18)
into (B.6), one obtains

n∑

i=1

[∫ bi

0
ρi

{
r̈T

i

∂vi

∂ q̇j

+ r̈T
i

∂(ωi × b̄izi)

∂ q̇j

}
db̄i +

∫ ai

0
ρi

{
¨̃rT
i

∂vi

∂ q̇j

+ ¨̃rT
i

∂[ωi × r̄ i + u̇i]
∂ q̇j

}
dāi

+ mpi

{
r̈T

pi

∂vi

∂ q̇j

+ r̈T
pi

∂[ωi × r̄pi + u̇pi]
∂ q̇j

}

+
∫ ai

0
ρiIpis̄

T
i c̈i s̄

T
i

∂ ċi

∂ q̇j

dā + (
I hiω̇i + ωi × I hiωi

)T ∂ωi

∂ q̇j

]
= τ j . (B.7)

Using the vector triple product rule [24], aT(b × c) = (c × a)Tb—a, b and c are any
3-dimensional Cartesian vectors, one can show that

r̈T
i

∂(ωi × b̄izi)

∂ q̇j

= b̄i r̈
T
i

(
∂ωi

∂ q̇j

× zi + ωi × ∂zi

∂ q̇j

)
= b̄i (zi × r̈ i)

T ∂ωi

∂ q̇j

, (B.8a)

¨̃rT
i

∂(ωi × r̄ i + u̇i)

∂ q̇j

= ¨̃rT
i

∂(ωi × r̄ i)

∂ q̇j

+ ¨̃rT
i

∂u̇i

∂ q̇j

= ¨̃rT
i

(
∂ωi

∂ q̇j

× r̄ i + ωi × ∂ r̄ i

∂ q̇j

)
+ ¨̃rT

i

∂u̇i

∂ q̇j

= (
r̄ i × ¨̃r i

)T ∂ωi

∂ q̇j

+ ¨̃rT
i

∂u̇i

∂ q̇j

, (B.8b)

r̈T
pi

∂(ωi × r̄pi + u̇pi)

∂ q̇j

= r̈T
pi

(
∂ωi

∂ q̇j

× r̄pi + ωi × ∂ r̄pi

∂ q̇j

)
+ r̈T

pi

∂u̇pi

∂ q̇j

= (
r̄pi × r̈pi

)T ∂ωi

∂ q̇j

+ r̈T
pi

∂u̇pi

∂ q̇j

. (B.8c)

In (B.8a–c), ∂zi/∂ q̇j = O , ∂ r̄ i/∂ q̇j = O , and ∂ r̄pi/∂ q̇j = O are used as zi , r̄ i , and r̄pi are
functions of qj ’s only, and not q̇j ’s. Moreover, using (2e) and substituting u̇i = Si ḋ i , along

with u̇pi = Si |ai
ḋ i in (B.8a–c), ¨̃rT

i
∂u̇i

∂ q̇j
and r̈T

pi
∂u̇pi
∂ q̇j

are rewritten as:

¨̃rT
i

∂u̇i

∂ q̇j

= ¨̃rT
i Si

∂ ḋ i

∂ q̇j

, (B.9a)

r̈T
pi

∂u̇pi

∂ q̇j

= r̈T
piSi |ai

∂ ḋ i

∂ q̇j

. (B.9b)

A recursive, numerically stable, and efficient simulation algorithm 33

In (B.9b), Si |ai
is the shape function of the link evaluated at its tip, i.e., āi = ai . Substitut-

ing (B.9a–b) into (B.7) yields

n∑

i=1

[∫ bi

0
ρi

{
r̈T

i

∂vi

∂ q̇j

+ b̄i

(
zi × r̈ i

)T ∂ωi

∂ q̇j

}
db̄i

+
∫ ai

0
ρi

{
¨̃rT
i

∂vi

∂ q̇j

+ (
r̄ i × ¨̃r i

)T ∂ωi

∂ q̇j

+ ¨̃rT
i Si

∂ ḋ i

∂ q̇j

}
dāi

+ mpi

{
r̈T

pi

∂vi

∂ q̇j

+ (
r̄pi × r̈pi

)T ∂ωi

∂ q̇j

+ r̈T
piSi |ai

∂ ḋ i

∂ q̇j

}

+
∫ ai

0
ρiIpis̄

T
i c̈i s̄

T
i

∂ ċi

∂ q̇j

dāi + (
I hiω̇i + ωi × I hiωi

)T ∂ωi

∂ q̇j

]
= τ j . (B.9c)

Now, introduce the following definitions:

∂t i

∂ q̇j

≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂vi

∂ q̇j

∂ωi

∂ q̇j

∂ ḋ i

∂ q̇j

∂ ċi

∂ q̇j

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

w∗
i ≡

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ bi

0
ρi r̈ i db̄i +

∫ ai

0
ρi

¨̃r i dāi + mpir̈pi

∫ bi

0
ρi b̄i

(
zi × r̈ i

)
db̄i +

∫ ai

0
ρi

(
r̄ i × ¨̃r i

)
dāi + mpi

(
r̄pi × r̈pi

) + (
I hiω̇i + ωi × I hiωi

)

∫ ai

0
ρiS

T
i
¨̃r i dāi + mpiSi |Tai

r̈pi

∫ ai

0
ρiIpis̄i c̈

T
i s̄i dāi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B.10)
Then (B.9c) is rewritten in compact form as

[(
∂t1

∂ q̇j

)T

. . .

(
∂tn

∂ q̇j

)T
]⎡

⎢⎣
w∗

1
...

w∗
n

⎤

⎥⎦ = τ j (B.11)

which is the desired equation of motion to obtain the generalized force corresponding to the
vector of the j th generalized coordinates.

References

1. Angeles, J., Lee, S.K.: The formulation of dynamical equations of holonomic mechanical systems using
a natural orthogonal complement. ASME J. Appl. Mech. 55, 243–244 (1988)

2. Ascher, U.M., Pai, D.K., Cloutier, B.P.: Forward dynamics, elimination methods, and formulation stiff-
ness in robot simulation. Int. J. Robotics Res. 16(6), 747–758 (1997)

34 A. Mohan, S.K. Saha

3. Bauchau, O.A.: Computational scheme for flexible non-linear multibody systems. Multibody Syst. Dyn.
2, 169–225 (1998)

4. Bauchau, O.A.: On the modeling of prismatic joints in flexible multibody systems. Trans. ASME Com-
put. Methods Appl. Mech. Eng. 181, 87–105 (2000)

5. Bauchau, O.A., Wang, J.: Stability analysis of complex multibody systems. Trans. ASME J. Comput.
Nonlinear Dyn. 1, 71–80 (2006)

6. Baumgarte, J.: Stablization of constraints and integrals of motion in dynamical systems. Comput. Meth-
ods Appl. Mech. Eng. 1, 1–16 (1972)

7. Book, W.J.: Recursive Lagrangian dynamics of flexible manipulator arms. Int. J. Robotics Res. 3(3),
87–101 (1984)

8. Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer.
Methods Eng. 26(11), 2403–2438 (2005)

9. Cetinkunt, S., Book, W.J.: Symbolic modeling of flexible manipulators. In: Proc. of IEEE Conf. on
Robotics and Automation, pp. 2074–2080 (1987)

10. Chang, B., Nikravesh, P.: An adaptive constraint violation stablisation method for dynamic analysis of
mechanical systems. Trans. ASME Appl. Mech. 104, 488–492 (1985)

11. Chedmail, P., Aoustin, Y., Chevallereau, Ch.: Modeling and control of flexible robots. Int. J. Numer.
Methods Eng. 32, 1595–1619 (1991)

12. Cloutier, B.P., Pai, D.K., Ascher, U.M.: The formulation stiffness of forward dynamics algorithms and
implications for robot simulation. In: Proc. of IEEE Conf. on Robotics and Automation, pp. 2816–2822.
Japan, May (1995)

13. Cyril, X.: Dynamics of flexible link manipulators. Dissertation, McGill University, Canada (1988)
14. De Luca, A., Siciliano, B.: Closed-form dynamic model of planar multilink lightweight robots. IEEE

Trans. Syst. Man Cybern. 21(4), 826–838 (1991)
15. D’Eleuterio, G.M.T., Barfooy, T.D.: Just a second, we’d like to go first: a firstorder discretized formula-

tion for structural dynamics. In: Proc. of Fourth Int. Conf. on Dynamics and Controls, pp. 1–24. London
(1999)

16. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. ASME
J. Appl. Mech. 77, 445–450 (1955)

17. Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and
applications. Trans. ASME J. Comput. Nonlinear Dyn. 1, 3–12 (2006)

18. Ellis, R.E., Ismaeil, O.M., Carmichael, I.H.: Numerical stability of forward dynamics algorithms. In:
Proc. of IEEE Conf. on Robotics and Automation, pp. 305–311. France (1992)

19. Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon,
Boston (1989)

20. Hwang, Y.I.: A new approach for dynamic analysis of flexible manipulator systems. Int. J. Non-Linear
Mech. 40, 925–938 (2005)

21. Ider, S.K.: Stability analysis of constraints in flexible multibody systems dynamics. Int. J. Eng. Sci.
28(12), 1277–1290 (1990)

22. Jain, A., Rodriguez, G.: Recursive flexible multibody system dynamics using spatial operators. J. Guid.
Controls Dyn. 15, 1453–1466 (1992)

23. Jain, A., Rodriguez, G.: Sensitivity analysis for multibody systems using spatial operators. In: Int. Conf.
(VI) on Methods and Models in Automation and Robotics, pp. 30–31. Poland (2000)

24. Jain, A., Rodriguez, G.: Multibody mass matrix sensitivity analysis using spatial operators. Int. J. Mul-
tiscale Comput. Eng. 1(2–3) (2003)

25. Kamman, J.W., Huston, R.L.: Dynamics of constrained multibody systems. ASME J. Appl. Mech. 51,
899–903 (1984)

26. Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base.
J. Guid. Control Dyn. 10(2), 139–151 (1987)

27. Kim, S.S., Haug, E.J.: A recursive formulation for flexible multibody dynamics, Part-I: Open-loop sys-
tems. Comput. Methods Appl. Mech. Eng. 71, 293–314 (1988)

28. Li, C.J., Shankar, T.S.: Systematic methods for efficient modeling and dynamics computation of flexible
robot manipulator. IEEE Trans. Syst. Man Cybern. 23(1), 77–94 (1993)

29. Martins, J.M., Miguel, A.B., da Costa, J.: Modeling for control of flexible robot manipulators. In: Proc.
of Thematic Conf. on Multibody Dynamics. Lisbon, July 1–4, 2003

30. Meirovitch, L.: Analytical Methods in Vibrations. Macmillan, New York (1967)
31. Mohan, A., Saha, S.K.: A recursive, numerically stable, and efficient simulation algorithm for serial

robots. Multibody Syst. Dyn. 17, 291–319 (2007)
32. Neto, M.A., Ambrosio, J.: Stabilization methods for the integration of DAE in the presence of redundant

constraints. Multibody Syst. Dyn. 10(1), 81–105 (2000)
33. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, New Jersey (1988)

A recursive, numerically stable, and efficient simulation algorithm 35

34. Pederson, N.L.: On the formulation of flexible multibody systems with constant mass matrix. Multibody
Syst. Dyn. 1, 323–337 (1997)

35. Saha, S.K.: A decomposition of manipulator inertia matrix. IEEE Trans. Robotics Autom. 13(2), 301–
304 (1997)

36. Saha, S.K.: Dynamic modeling of serial multi-body systems using the decoupled natural orthogonal
complement matrices. ASME J. Appl. Mech. 29(2), 986–996 (1999)

37. Saha, S.K.: Analytical expression for the inverted inertia matrix of serial robots. Int. J. Robotics Res.
18(1), 116–124 (1999)

38. Saha, S.K.: Simulation of industrial manipulators based on UDUT decomposition of inertia matrix.
Multibody Syst. Dyn. 9, 63–85 (2003)

39. Saha, S.K., Angeles, J.: Dynamics of nonholonomic mechanical systems using a natural orthogonal
complement. ASME J. Appl. Mech. 58, 238–243 (1991)

40. Schiehlen, W.O.: Recent developments in multibody dynamics. J. Mech. Sci. Technol. 19(1), 129–141
(2005)

41. Shabana, A.A.: Dynamics of flexible bodies using generalized Newton–Euler equation. ASME J. Dyn.
Syst. Meas. Control 112(3), 496–503 (1990)

42. Shabana, A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst.
Dyn. 1, 189–222 (1997)

43. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)
44. Sharf, I.: Nonlinear strain measure, shape functions and beam elements for dynamics of flexible beams.

Multibody Syst. Dyn. 3, 189–205 (1999)
45. Sharf, I., Damaren, C.: Simulation of flexible link manipulators: basis functions and non-linear terms in

motion equations. In: Proc. of IEEE Conf. on Robotics and Automation, pp. 1956–1962. France (1992)
46. Shim, Y.J., Sung, Y.: Stability and four posture control for non-holonomic mobile robots. IEEE Trans.

Robotics Autom. 20(1), 148–154 (2004)
47. Stejskal, V., Valasek, M.: Kinematics and Dynamics of Machinery. M. Dekkar, New York (1996)
48. Strang, G.: Linear Algebra and Its Applications. H.B. Jovanovich Pub., Florida (1980)
49. Theodore, R.J., Ghosal, A.: Comparison of the assumed modes and finite elements modes for flexible

multilink manipulators. Int. J. Robotics Res. 14(2), 91–111 (1995)
50. Thompson, W.T.: Theory of Vibration with Applications. Prentice Hall, London (1988)
51. Usoro, P.B., Nadira, R., Mahil, S.S.: A finite element/Lagrangian approach to modeling light weight

flexible manipulators. ASME J. Dyn. Syst. Meas. Control 108, 198–205 (1986)
52. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms. ASME J. Dyn.

Syst. Meas. Control 104, 205–211 (1982)
53. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. ASME J. Appl.

Mech. Rev. 56(6), 553–613 (2003)
54. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of

constrained dynamic systems. ASME J. Mech. Des. 104, 247–255 (1982)

	A recursive, numerically stable, and efficient simulation algorithm for serial robots with flexible links
	Abstract
	Introduction
	Kinematic description
	Some definitions
	Dynamic modeling
	The DeNOC matrices for flexible robots
	Dynamic modeling of flexible robots

	Forward dynamics algorithm
	Step A. Solution for phi:
	Step B. Solution for phi:
	Step C. Solution for qi:
	Computational complexity
	Comparison

	Simulations
	Both links flexible
	Space shuttle remote manipulator system robot

	Numerical stability and CPU time
	Numerical stability
	CPU time

	Conclusions
	Acknowledgement
	Appendix A: Denavit and Hartenberg parameters
	Appendix B: Derivation of (21)
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

