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Abstract In this contribution, a systematic methodology for solving the kinematic and dy-
namic analyses of a modular spatial hyper-redundant manipulator built with an optional
number of serially connected three-legged in-parallel manipulators are presented.

First, the kinematics and dynamics of the base module are carried out using the theory
of screws and the principle of virtual work. Next, the expressions obtained for the base
module are extended without significant effort to the spatial hyper-redundant manipulator
under study. Finally, the proposed methodology of analysis is applied to a 18 degrees of
freedom hyper-redundant manipulator.

Keywords Hyper-redundant manipulator · Modularity · Driving force · Screw theory ·
Forward dynamics

1 Introduction

Modularity is a key concept to overcome the drawbacks of both parallel and serial manipu-
lators. In fact, the poor dexterity and reduced workspace of parallel manipulators, together
with the poor stiffness and accuracy of serial manipulators, can be ameliorated by applica-
tion of the concept of modular robotic system. Furthermore, if the modules have the possi-
bility of connect to, disconnect from, and relocate to, without external help, then it is said
that the robot is self-reconfigurable [1].

On the other hand, the redundancy concept, and its benefits, like avoidance of obstacles
and singularities, among many others has been widely studied for serial manipulators, see,
for instance [2–8]. In that way, a redundant parallel manipulator can be physically realized
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in three ways: (i) adding at least one more active equivalent limb to the existing nonredun-
dant topology, (ii) increasing the number of active joints in any limb such that the number
of active joints is higher than needed, and (iii) modifying one of the existing limbs such that
it is totally different than others with more than one active joint; for details see Dasgupta
and Mruthyunjaya [9]. It must be noted that while the second way does not increase the
motion degree of freedom of the manipulator, the remaining two do, naturally considering
that the first option implies that the additional limbs are provided with passive and active
joints. With this in mind, the redundancy in parallel manipulators can be divided into two
classes [10]: (i) actuation redundancy which refers to activating one or more of the exist-
ing passive joints of the manipulator—not increasing the motion degree of freedom, (ii)
kinematic redundancy [11, 12]; which refers to either adding a new equivalent limb to the
existing limbs of the manipulator or adding one or more active joints to one of the limbs of
the mechanism, increasing the motion degree of freedom. According to this classification,
the actuation redundancy is a subset of the kinematic redundancy.

In robot kinematics, the concepts of modularity and redundancy can be understood in dif-
ferent ways. In fact, modularity can be considered as the possibility of systematically select
and change, the kinematic pairs of serial and parallel manipulators, including hybrid appli-
cations, without affecting the performance of the mechanical system under study, especially
the freedoms of the mechanism; interchangeability is a key word in this option. In that way,
the role of the kinematic pairs can be studied applying a wide variety of strategies, including
the finite element method [13]. More popularly, modular robotic systems with redundant
freedoms can be obtained when two or more parallel manipulators are assembled in series
connection.

Examples of the performance of mechanisms with the above mentioned characteristics,
known as modular spatial hyper-redundant manipulators (hereafter MSHRM for brevity)
can be found in nature itself, giving birth to mechanical systems with illustrative names
like snake [14, 15]; serpentine [16], tentacle [17] or elephant’s trunk [18]. However, from
a rigorous mechanical point of view, most contributions dealing with the study of modular
robotic systems are dedicated or limited to the so-called serial-parallel manipulators, in other
words, mechanisms where two manipulators are assembled in series connection, see, for
instance [19–25]. Perhaps the handling of several parameters or the lack of a systematic
methodology of analysis increases the difficulty of the extension of these works to the full
dynamics of MSHRMs built with an optional number of modules.

In this work, the kinematics and dynamics of modular spatial hyper-redundant manipula-
tors formed from Revolute+Prismatic+Spherical and RPS-type limbs are addressed via the
theory of screws and the principle of virtual work.

2 Description of the modular spatial hyper-redundant manipulator

The base module of the MSHRM considered here is the well-known 3-RPS parallel manip-
ulator, Fig. 1.

This popular in-parallel manipulator was introduced by Hunt [26] and consists of a mov-
ing platform and a fixed platform connected to each other by means of three extendible
limbs type RPS. The limbs are connected, respectively, at the moving platform and at the
fixed platform by means of three distinct spherical joints and three distinct revolute joints.
According to the classical Kutzbach–Grübler criterion, this spatial mechanism has three de-
grees of freedom, two rotations, and one translation. Usually, the prismatic joints are chosen
as the active joints.
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Fig. 1 3-RPS parallel
manipulator

The 3-RPS parallel manipulator has been the motive of an exhaustive research field ap-
proaching a wide variety of topics like kinematic and dynamic analyses, synthesis, singular-
ities, and so on, see, for instance [27–29]. In particular, screw theory has been proved to be
an efficient mathematical resource for determining the kinematic characteristics of 3-RPS
parallel manipulators [30–32]; including the instantaneous motion of the mechanism at the
level of velocity analysis [33–35]; and the acceleration analysis [36, 37]. In Alizade and
Bayram [38], the structural synthesis of two 3-dof parallel manipulators assembled in series
connection is carried out firstly identifying the number of different structural groups, and
secondly using the principle of interchangeability of kinematic joints. In Lu and Leinonen
[24], the position analysis of a mechanism composed of two 3-RPS parallel manipulators
assembled in tandem, called the spatial 2(3-RPS) manipulator is investigated. The computa-
tion of driving or generalized forces of a similar mechanism, called 2(3-SPR) manipulator,
was approached in Lu and Hu [25] applying the principle of virtual work and the so-called
CAD variation geometry.

It is well known that lower mobility parallel manipulators, in other words spatial mech-
anisms with fewer than six freedoms, strangely known as defective parallel manipulators,
cannot perform sophisticated motions. Moreover, in order to operate properly a defective
parallel manipulator, it is necessary to take into account that when the configuration space
is a constraint singularity, distinct modes of operation are expected for the parallel ma-
nipulator, Zlatanov et al. [39]. Furthermore, with the purpose to improve the mobility and
manipulability of a 3-RPS parallel manipulator, a serial-parallel manipulator or double par-
allel manipulator can be obtained assembling in series two 3-RPS parallel manipulators; a
suitable topology is presented in Fig. 2.

The topology proposed in Fig. 2 has the advantage that unlike the method of position
analysis introduced in Lu and Leinonen [24], the kinematics of the first parallel manipulator
is applicable, without significative changes to the second parallel manipulator, only it is nec-
essary to take into proper account the corresponding reference frames avoiding the inclusion
of a large number of parameters. Furthermore, the topology presented in Fig. 2 is compact
and can be extended to any number of modules; this is the idea of the present work. In fact,
once a module is chosen as the base of the MSHRM, the next module is added in such a
way that the axes of its revolute joints are concurrent at the geometric centers of the corre-
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Fig. 2 2(3-RPS) manipulator
with a compact topology

Fig. 3 3-RS structure

sponding spherical joints of the previous module. The process is continued until the specific
MSHRM has been reached. In particular, the last platform is called the output platform.

3 Kinematic model

3.1 Finite kinematics

In this subsection, the forward position analysis (FPA) of the proposed hyper-redundant
manipulator is carried out analytically using simple geometric procedures for a detailed
explanation of the FPA of a 3-RPS parallel manipulator, which has a direct connection with
this subsection; the reader is referred to [36, 40, 41].

Consider the 3-RPS parallel manipulator shown in Fig. 1. When the three prismatic joints
are locked, the parallel manipulator becomes the 3-RS structure shown in Fig. 3.
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Under this consideration, the FPA of the parallel manipulator is established as follows.
Given the limb lengths qi , i ∈ {1,2,3}, compute the feasible locations of the moving plat-
form, body 1, with respect to the fixed platform, body 0, through the computation of the
coordinates of the centers of the spherical joints attached at the moving platform, points ai ,
i ∈ {1,2,3}, expressed in the reference frame XYZ.

From the geometry of the mechanism, see Fig. 3, the closure equations of the parallel
manipulator can be written as follows

(ai − Ai ) · ûi = 0, i ∈ {1,2,3},
(ai − Ai ) · (ai − Ai ) = q2

i , i ∈ {1,2,3},
(a2 − a3) · (a2 − a3) = b23

2,

(a1 − a3) · (a1 − a3) = b13
2,

(a1 − a2) · (a1 − a2) = b12
2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where ûi = (uXi,0, uZi) is the i-th unit vector along the screw axis of the i-th revolute joint,
and Ai , i ∈ {1,2,3} are the nominal coordinates of the three distinct revolute joints attached
to the fixed platform.

Expressions (1) represent a system of 9 equations in the unknowns Xi , Yi , Zi , i ∈
{1,2,3}. After a few computations, a higher nonlinear system of three equations in the un-
knowns Z1, Z2, and Z3 are obtained as follows:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where K ′∗, K ′′∗ , and K ′′′∗ are coefficients that are calculated according to the parameters and
generalized coordinates of the parallel manipulator.

In order to solve (2), the application of the Sylvester dyalitic elimination method leads to

M1

[
Z3

1

]

=
[

0
0

]

, (3)

and

M2

⎡

⎢
⎢
⎣

Z3
2

Z2
2

Z1
2

1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ , (4)

where

• M1 =
[

p1p5 − p2p4 p1p6 − p3p4

p3p4 − p1p6 p3p5 − p2p6

]

,
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•

M2 =

⎡

⎢
⎢
⎣

0 p12 p13 p14

p13p7 − p12p8 p14p7 − p12p9 −p12p10 −p12p11

p12 p13 p14 0
p12p9 − p7p14 p12p10 + p13p9 − p8p14 p12p11 + p13p10 p13p11

⎤

⎥
⎥
⎦ ,

• p1,p2,p3 are second-order polynomials in Z2,
• p4,p5,p6, . . . ,p14 are second-order polynomials in Z1.

Thus, from (3), one eliminant is obtained when det M1 = 0, canceling the variable Z3.
Furthermore, a 16-th order polynomial expression in the unknown Z1 is derived taking into
account that in order to avoid arbitrary solutions necessarily from (4), det M2 = 0, cancel-
ing Z2. Once the 16 solutions of Z1 are calculated, the feasible values for the coordinates of
the points a1, a2, and a3 are obtained using (1).

At this point, it is prudent to emphasize that as it is pointed out by one of the reviewers,
the solution of a higher nonlinear system of equations using the Sylvester dyalitic elimina-
tion method, in general, is not free of spurious solutions. Thus, the user must check in the
closure equations each one of the possible 16 solutions.

Once the coordinates of the points a1, a2, and a3 are calculated,1 the geometric center
of the moving platform expressed in the reference frame XYZ, vector 0ρ1 = (ρX,ρY , ρZ)

results in

0ρ1 = (a1 + a2 + a3)/3. (5)

Furthermore, since the coordinates of the points ai , i ∈ {1,2,3} are easily expressed
in the reference frame xyz, the corresponding 4 × 4 transformation matrix between the
reference frames XYZ and xyz, 0T1, results in

0T1 =
[

0R1 0ρ1

01×3 1

]

, (6)

where 0R1 is the rotation matrix.
The computation of the rotation matrix 0R1 with the resulting coordinates, expressed in

the reference frame XYZ, of the three points a1, a2, and a3 can be simplified by choosing
appropriate locations for the reference frames XYZ and xyz.

Consider a rigid plate A1A2A3; see Fig. 4 with a reference frame XYZ attached to it,
and consider that after a Euclidean displacement, the pose of the plate changes according to
the coordinates of the points a1, a2, and a3, expressed in the reference frame XYZ. Further-
more, by assuming that the Y axis of the reference frame XYZ is perpendicular to the plane
A1A2A3, while the y axis of the reference frame xyz is perpendicular to the plane a1a2a3.
The rotation matrix 0R1 between these reference frames results in

0R1 = [ûx ûy ûz], (7)

where

• ûx = ((ρ − a2) + λ(a3 − a2))/‖((ρ − a2) + λ(a3 − a2))‖ is a unit vector along the x axis,
• λ = d/‖a3 − a2‖,

1It is straightforward to show that once the feasible values for Z1 are calculated, the remaining components
of the coordinates of the points ai are easily obtained from (1).
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Fig. 4 Euclidean displacement
of a rigid plate

• d = r sin θ/ sin(π − β − θ),
• ûy = (a1 − a2) × (a3 − a2)/‖(a1 − a2) × (a3 − a2)‖ is a unit vector along the y axis, and
• ûz = ûx × ûy is a unit vector along the z axis.

The computation of the rotation matrix using the procedure introduced here, as far as the
authors are aware, is original and can be considered as an additional novel outcome of this
contribution.

Finally, assuming that a MSHRM is composed of n modules, then the transformation
matrix of each moving platform, with respect to the fixed platform, body 0 is obtained
applying recursively the procedure described in this subsection. Indeed,

0Tk =
k−1∏

j=0

j Tj+1, k ∈ {1,2, . . . , n}. (8)

3.2 Infinitesimal kinematics of the modular spatial hyper-redundant manipulator

In this subsection, the velocity and acceleration analyses of the MSHRM are carried out by
means of the theory of screws. The kinematics of open serial chains using screw theory is
the basis of this subsection; for a detailed explanation of it the reader is referred to [42–44].

Consider the 3-RPS parallel manipulator shown in Fig. 1. In order to satisfy the rank of
the Jacobian matrix spanned by the infinitesimal screws of the limbs of the mechanism, the
parallel manipulator is modeled as a 3-CPS manipulator (CPS = Cylindrical + Prismatic +
Spherical), in which the translational displacements of the cylindrical joints are null. Fig-
ure 5 shows the infinitesimal screws of one limb of the 3-CPS parallel manipulator.

With this consideration, the velocity state 0V1
O = [0ω1 0v1

O ]T and the reduced acceleration
state 0A1

O = [0ω̇1 0a1
O − 0ω1 × 0v1

O ]T of the moving platform, body 1, with respect to the
fixed platform, body 0, can be obtained, respectively, in screw form through any of the i-th
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Fig. 5 The limb of a 3-CPS
parallel manipulator with its
infinitesimal screws

limbs, i ∈ {1,2,3}, of the parallel manipulator as follows

0V1
O =

[
0ω1

0v1
O

]

=
5∑

j=0

jω
i
j+1

j $j+1
i (9)

and

0A1
O =

[
0ω̇1

0a1
O − 0ω1 × 0v1

O

]

=
5∑

j=0

j ω̇
i
j+1

j $j+1
i + $Liei

(10)

where

• 0ω1 and 0ω̇1 are the angular velocity and acceleration of the moving platform,
• 0v1

O and 0a1
O are the velocity and acceleration of a point O fixed to the moving platform

which is instantaneously coincident with a point of the fixed platform,
• kω

i
k+1 and kω̇

i
k+1 are the joint velocity and acceleration rates of body k + 1 with respect to

the adjacent body k, both in the same limb. Particularly, 2ω
i
3 = q̇i is the joint velocity rate

of the i-th actuated prismatic joint associated to the extendible limb, while 0ω
i
1 = 0 is the

joint velocity rate of the i-th prismatic joint associated to the corresponding cylindrical
joint,

• $Liei
is the i-th Lie screw given by

$Liei
=

5∑

j=0

⎡

⎣
jω

i
j+1

j $j+1
i

5∑

k=j+1

kω
i
k+1

k$k+1
i

⎤

⎦

and the brackets [∗ ∗] denote the Lie product.

Thus, if the motion of the moving platform is described by the velocity state 0V1
O and the

reduced acceleration state 0A1
O , the required joint rates that satisfy these kinematic states,

or in other words, the inverse infinitesimal kinematics of the 3-CPS parallel manipulator are
calculated by means of the expressions

0�1
i = (

0J1
i

)−1 0V1
O (11)

and

0�̇1
i = (

0J1
i

)−1(0A1
O − $Liei

)
, (12)
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therein

• 0J1
i = [0$1

i
1$2

i
2$3

i
3$4

i
4$5

i
5$6

i ] is the i-th Jacobian matrix of the i-th limb,
• 0�1

i = [0ω
i
1 1ω

i
2 2ω

i
3 3ω

i
4 4ω

i
5 5ω

i
6]T is the i-th matrix of joint velocity rates of the i-th

limb,
• �̇i = [0ω̇

i
1 1ω̇

i
2 2ω̇

i
3 3ω̇

i
4 4ω̇

i
5 5ω̇

i
6]T is the i-th matrix of joint acceleration rates of the i-th

limb.

On the other hand, by applying the concept of reciprocal screws, via the Klein form of
the Lie algebra e(3), {∗; ∗} to expressions (9) and (10), the forward infinitesimal kinematics
of the 3-CPS parallel manipulator is solved by means of the expressions

(
0J1

)T
	 0V1

O = 0Q1
vel (13)

and
(

0J1
)T

	 0A1
O = 0Q1

accel (14)

where

• 0J1 = [4$5
1

4$5
2

4$5
3

3$4
1

3$4
2

3$4
3] is the active Jacobian matrix of the parallel manipulator,

• 0Q1
vel = [0q̇1

1
0q̇1

2
0q̇1

3 0 0 0]T is a matrix composed of the active joint velocity rates of
the parallel manipulator,

• 0Q1
accel =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 q̈1
1+{4$5

1;$Lie1 }
0 q̈1

2+{4$5
2;$Lie2 }

0 q̈1
3+{4$5

3;$Lie3 }
{3$4

1;$Lie1 }
{3$4

2;$Lie2 }
{3$4

3;$Lie3 }

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is a matrix due to the active joint acceleration rates of the

parallel manipulator, and
• 	 = [ 0 I3

I3 0

]
is an operator of polarity.

Taking into proper account the reference frames, the velocity state, and the reduced ac-
celeration state of the k-th platform with k ∈ {1,2, . . . , n} are obtained as follows

0Vk
O =

k−1∑

j=0

j Vj+1
O ,

0Ak
O =

k−1∑

j=0

j Aj+1
O +

k−2∑

j=1

⎡

⎣j Vj+1
O

k−1∑

i=j+1

iVi+1
O

⎤

⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (15)

Furthermore, the angular velocity of the k-th platform, with respect to the fixed platform,
is obtained as the primal part of the velocity state, 0ωk = P(0Vk

O), while the translational
velocity of the center of the same platform, with respect to the fixed platform, vector vCk ,
is calculated according to the condition of helicoidal fields [45, 46]; using the dual part,
D(0Vk

O), of the six-dimensional vector 0Vk
O , as follows

vCk = D
(

0Vk
O

) + P
(

0Vk
O

) × 0ρk, (16)

where 0ρk is a vector from the origin of the reference frame XYZ to the center of the k-th
platform.

Similarly, the angular acceleration of the k-th, platform, with respect to the fixed plat-
form, is obtained as the primal part of the accelerator 0Ak

O , indeed 0ω̇k = P(0Ak
O), while
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Fig. 6 Closed chain

the translational acceleration of the center of the k-th platform, vector aCk , expressed in the
reference frame XYZ using classical kinematics results in

aCk = 0ak
O + 0ω̇k × 0ρk + 0ωk × (

0ωk × 0ρk
)
, (17)

where the translational acceleration 0ak
O is calculated from the dual part of the accelerator,

D(0Ak
O), as follows

0ak
O = D

(
0Ak

O

) + 0ωk × 0vk
O.

4 Computing the driving forces of the modular spatial hyper-redundant manipulator

In this section, the principle of virtual work and the theory of screws are used to compute
the generalized forces of the MSHRM; for a detailed explanation of this systematic method,
the reader is referred to [47].

The computation of driving forces in parallel manipulators becomes a hazardous task
when traditional strategies such as the Newton–Euler method or the Lagrangian formulation
are employed. In fact, the Newton–Euler method usually requires large computation time,
since it needs the computation of all the internal reactions of constraint of the system, even
if they are not employed in the control law of the manipulator. On the other hand, the La-
grangian formulation is based on the computation of the energy of the whole system with
the adoption of a generalized coordinate framework. These computations are unnecessary
when the theory of screws and the principle of virtual work are used systematically.

Figure 6 shows a closed chain in which a body n of mass mn and centroidal inertia
matrix In is under the action of gravitational and inertial forces. In addition, the body n is
supporting an external force fe and an external torque τe . The velocity state Vn = [ωn vn]T

and the reduced acceleration state An = [ω̇n an −ωn ×vn]T describe the motion of rigid body
n taking its mass center as representation point, in other words, vn and an are, respectively,
the translational velocity and acceleration of the mass center. The overall wrench acting on
body n, Fn = [fn τn]T is given by

Fn = Finertial + Fgrav + Fexternal, (18)

where
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• Finertial = [ −mnan

−Inω̇n−ωn×Inωn

]
is the inertial wrench according with D’Alembert’s principle.

In this wrench, the centroidal inertia matrix In can be calculated as follows

In = RIxyz(R)T,

where Ixyz is the centroidal inertia matrix of body n expressed in the reference frame xyz
and R is the rotation matrix between the frames xyz and XYZ,

• Fgrav = [ mng
0

]
is the gravity wrench,

• Fexternal = [ fe
τe

]
is the external wrench.

Consider the output platform, body n, of the SHRM. Then according to (13) and (15),
the velocity state of the output platform with respect to the fixed platform, six-dimensional
vector 0Vn

O = [0ωn 0vn
O ]T results in

0Vn
O = [(

0J1
)T

	
]−1 0Q1

vel +
[(

1J2
)T

	
]−1 1Q2

vel + · · · + [(
n−1Jn

)T
	

]−1 n−1Qn
vel. (19)

A brief inspection of (19) reveals that the velocity state 0Vn
O depends on the instantaneous

geometry and generalized speeds of the SHRM and, therefore, it is possible to rewrite (19)
in terms of first order influence coefficients; see [48] as follows:

0Vn
O = 0M1 0Q1 + 1M2 1Q2 + · · · + n−1Mn n−1Qn (20)

where

i−1Mi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

i−1Gωx1
i i−1Gωx2

i i−1Gωx3
i

i−1Gωy1
i i−1Gωy2

i i−1Gωy3
i

i−1Gωz3
i i−1Gωz3

i i−1Gωz3
i

i−1Gvx1
i i−1Gvx2

i i−1Gvx3
i

i−1Gvy1
i i−1Gvy2

i i−1Gvy3
i

i−1Gvz3
i i−1Gvz3

i i−1Gvz3
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, i = 1,2, . . . , n

is the matrix of influence coefficients of the i-th module,2 and

i−1Qi =

⎡

⎢
⎢
⎣

i−1q̇ i
1

i−1q̇ i
2

i−1q̇ i
3

⎤

⎥
⎥
⎦ , i = 1,2, . . . , n

is a matrix formed with the generalized speeds of the i-th module.
Assuming that the SHRM undergoes virtual velocities i−1δqi

k , i = 1,2,3; k = 1,2,3,
the virtual power δwn produced by the resulting wrench Fn, with fn = fnx î + fny ĵ + fnzk̂

and τn = τnx î + τny ĵ + τnzk̂, acting on body n on a generic motion 0Vn
O , can be calculated

using the Klein form as follows

δwn = {
Fn; 0Vn

O

}
. (21)

2i−1GωAq
i and i−1GvAq

i are the first order influence coefficients, or partial contributions, of the general-
ized speed q over the angular velocity and the linear velocity of the moving platform of the i-th module along
the A axis.
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The principle of virtual work states that if a closed chain is in equilibrium under the effect
of external actions, then the global work produced by the external forces with any virtual
velocity must be null. Under such assumption, (21) leads to

(
i−1Gvx1

i fnx + i−1Gvy1
i fny + Gvz1i fnz

+ i−1Gωx1
i τnx + i−1Gωy1

i τny + i−1Gωz1
i τnz + ξ1i

)
i−1δqi

1

+ (
i−1Gvx2

i fnx + i−1Gvy2
i fny + Gvz2i fnz

+ i−1Gωx2
i τnx + i−1Gωy2

i τny + i−1Gωz2
i τnz + ξ2i

)
i−1δqi

2

+ (
i−1Gvx3

i fnx + i−1Gvy3
i fny + Gvz3i fnz

+ i−1Gωx3
i τnx + i−1Gωy3

i τny + i−1Gωz3
i τnz + ξ3i

)
i−1δqi

3 = 0,

i = 1,2, . . . , n (22)

where ξ1i , ξ2i , ξ3i , i ∈ {1,2, . . . , n} are the generalized forces also known as the driving
force, acting on the i-th module.

Finally, in order to avoid arbitrary and trivial solutions, (22) requires necessarily that

i−1Gvx1
i fnx + i−1Gvy1

i fny + Gvz1i fnz

+ i−1Gωx1
i τnx + i−1Gωy1

i τny + i−1Gωz1
i τnz + ξ1i = 0,

i−1Gvx2
i fnx + i−1Gvy2

i fny + Gvz2i fnz

+ i−1Gωx2
i τnx + i−1Gωy2

i τny + i−1Gωz2
i τnz + ξ2i = 0,

i−1Gvx3
i fnx + i−1Gvy3

i fny + Gvz3i fnz

+ i−1Gωx3
i τnx + i−1Gωy3

i τny + i−1Gωz3
i τnz + ξ3i = 0,

i = 1,2, . . . , n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (23)

which allows to compute directly the driving forces ξ1i , ξ2i , and ξ3i in each module of the
SHRM required for controlling the motion of the output platform n.

Finally, it is straightforward to demonstrate that the procedure described here is available
to compute the driving forces required to control the motion of any body of the SHRM.

5 Case study

In order to illustrate the proposed methodology of analysis, in this section, a numerical
example is provided which consists of solving the kinematics and dynamics of a MSHRM
built with six modules.

The parameters of the base module of the MSHRM mechanism, using SI units, are listed
in Table 1, only the masses and the centroidal inertia matrices of the moving platforms are
considered in this section. While the generalized coordinates are governed by the periodical
functions provided in Table 2.

On the other hand, the acceleration of the gravity is given by g = −9.80665ĵ , and the
external wrench expressed in the reference frame attached at the output platform over the
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Table 1 Parameters of the base
module A1 = (.353,0., .353),A2 = (.129,0.,−.482),A3 = (−.482,0., .129)

û1 = (.7071,0.,−.7071), û2 = (−.965,0.,−.258), û3 = (.258,0., .965)

b12 = b13 = b23 = √
3/2

Mass platform = 18.914

Centroidal inertia matrix =
⎡

⎢
⎣

0.809 0 0

0 1.615 0

0 0 0.809

⎤

⎥
⎦

Table 2 Periodical functions
selected for the active joints Module 1:

q1 = 0.5 + 0.2 sin(t) cos(t), q2 = 0.5 + 0.2 sin2(t),

q3 = 0.5 + 0.125 sin(t)

Module 2:

q1 = 0.5 + 0.175 sin(t), q2 = 0.5 + 0.25 sin(t) cos(t),

q3 = 0.5 + 0.175 sin(t)

Module 3:

q1 = 0.5 + 0.125 sin(t)(1.0 + sin(t) cos2(t)),q2 = 0.5 + 0.25 sin2(t),

q3 = 0.5 + 0.275 sin(t) cos2(t)

Module 4:

q1 = 0.5 + 0.15 sin(t), q2 = 0.5 + 0.15 sin(t),

q3 = 0.5 + 0.15 sin(t)(1.0 + sin(t) cos(t))

Module 5:

q1 = 0.5 + 0.15 sin(t) sin(t), q2 = 0.5 + 0.135 sin2(t),

q3 = 0.5 + 0.125 sin2(t)

Module 6:

q1 = 0.5 + 0.125 sin2(t), q2 = 0.5 + 0.1 sin(t) cos(t)(sin(t) + cos(t)),

q3 = 0.5 + 0.125 sin(t) cos(t)

0 ≤ t ≤ 2π

output platform is chosen as follows

Fexternal =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
−2500

0
0

150
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus, the 16 solutions of the variable Z1 of the base module are listed in Table 3.
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Table 3 The sixteen values
of Z1

−0.08861590520 2.692797540 2.694972365 −0.3513357122

0.1395527109 0.02668240816 0.3536130188 0.3538438343

0.5303476302 0.1392160780 0.1392419181 0.3541170683

2.701360478 0.8026916179 −0.3534021282 −0.3526948579

Fig. 7 Home position of the
MSHRM

Ignoring spurious solutions, there is only one real solution available for the forward po-
sition analysis of the first module:

a1 = (.3536130188,−.4999992483, .3536130188)

a2 = (.1292239221,−.4999992482,−.4828375377)

a3 = (−.4811619757,−.4999992475, .1287759479)

⎫
⎪⎪⎬

⎪⎪⎭

Naturally, according to the periodical functions assigned to the generalized coordinates,
this solution is the same taking properly the local reference frames attached to the cor-
responding moving platforms, for the remaining modules and, therefore, this solution is
chosen as the home position of the SHRM, Fig. 7.
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Fig. 8 Time history of the
forward kinematics of the output
platform of the MSHRM

Finally, the most relevant numerical results generated for the forward kinematics of the
output platform are summarized in Fig. 8, whereas the resulting driving forces to control
each one of the moving platforms of the MSHRM are provided in Fig. 9.

6 Conclusions

In this work, the kinematic and dynamic analyses, including the computation of the driving
forces of a modular spatial hyper-redundant manipulator formed from identical mechanical
modules are approached using an harmonious combination of the theory of screws and the
principle of virtual work.

Firstly, the kinematics up to the acceleration analysis of the base module, which is a
three-legged in-parallel manipulator with linear active joints is carried out by means of the
theory of screws. Secondly, the expressions thus obtained for the base module are applied
recursively to accomplish the kinematics of the modular spatial hyper-redundant manipu-
lator under study. To this end, the application of the concept of reciprocal screws allows
to simplify considerably the forward acceleration analysis. Finally, the expressions to solve
the driving forces of the MSHRM are systematically obtained using the Klein form of the
Lie algebra. Conveniently, unlike the classical Newton–Euler method, such expressions do
not require the instantaneous values of the internal reactions of constraint nor the compu-
tation of the energy of the whole system, which is an unavoidable step of the Lagrangian
formulation. In order to illustrate the efficacy of the chosen method of analysis, a case study
which consists of solving the kinematics, dynamics, and computation of driving forces of a
MSHRM built with 6 modules (18 degrees of freedom) is provided.

Acknowledgements This work was supported by Dirección General de Educación Superior Tecnológica,
DGEST, and the National Council of Science and Technology, Conacyt, two important institutions of México.
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Fig. 9 Time history of the
driving forces in each module of
the MSHRM

Appendix A: The Lie algebra e(3) of the Euclidean group E(3)

In this Appendix, a brief summary of well-known concepts dealing with the Lie algebra e(3)

of the Euclidean group E(3), which is isomorphic to the theory of screws is recalled.
A screw is a straight line with which a definite linear magnitude termed the pitch is asso-

ciated, Ball [49]. Furthermore, a screw, $ = (ŝ, sO), can be considered as a six-dimensional
vector composed of a primal part and a dual part, where the primal part, ŝ, is a unit vector
along the screw axis, while the dual part, sO , is the moment produced by ŝ about a selected
point O which is instantaneously coincident with a point of a reference frame. The moment
sO is calculated as follows

sO = hŝ + ŝ × rO/P ,

where rO/P is a vector pointed from a point P on the screw axis to O . Any lower kinematic
pair can be represented either by a screw or a group of screws.

The screw algebra is the set of elements of the form $ = (ŝ, sO) with the following oper-
ations.

∀$1 = (ŝ1, sO1),$2 = (ŝ2, sO2) ∈ e(3) and λ ∈ 	
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• Addition

$1 + $2 = (ŝ1 + ŝ2, sO1 + sO2),

• Multiplication by a scalar

λ$1 = (λŝ1, λsO1),

• The Lie product, also known as dual motor product

[$1 $2] = (ŝ1 × ŝ2, ŝ1 × sO2 − ŝ2 × sO1),

• The Killing form

Ki : e(3) × e(3) → 	, Ki($1,$2) = ŝ1 • ŝ2,

• The Klein form

{$1;$2} : e(3) × e(3) → 	, {$1;$2} = ŝ1 • sO2 + ŝ2 • sO1,

where × and • denote, respectively, the cross product and the inner product of the usual
three-dimensional vectorial algebra.
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