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Abstract When the modeling of flexible bodies is required in multibody systems, the float-
ing frame of reference formulations are probably the most efficient methods available. In the
case of beams undergoing high speed rotations, the geometric stiffening effect can appear
due to geometric nonlinearities, and it is often not captured by the aforementioned methods,
since it is common to linearize the elastic forces assuming small deformations. The present
work discusses the implementation of different existing methods developed to consider such
geometric nonlinearities within a floating frame of reference formulation in natural coordi-
nates, making emphasis on the relation between efficiency and accuracy of the resulting
algorithms, seeking to provide practical criteria of use.

Keywords Flexibility · Efficiency · Geometric stiffening · Floating frame of reference

1 Introduction

One of the most widely used methods for flexible body modeling in multibody systems is the
floating frame of reference approach (FFR) described by Shabana [1], in which a local frame
of reference is attached to the flexible body, so that the elastic deformation is measured in
the local frame and superimposed to the large amplitude motion, undergone by the reference
frame. In most cases, component mode synthesis is used to approximate the deformation
field, in order to improve the efficiency, thus restricting the application of these methods to
small deformation problems. In specific applications, involving beams under high rotational
speeds, such as helicopter rotor or turbine blades, the stiffening effect appears due to the
geometrical nonlinearity. This effect has been studied by many authors, like Kane et al. [2],
Mayo et al. [3, 4], Sharf [5], Shi et al. [6], or Valembois et al. [7]. Helicopter rotor blades, a
typical example, are bent by their own weight, but the rotation speed makes them rise toward
the horizontal position, due to centrifugal forces, as if the bending stiffness is increasing. In
a linear model, this effect is not captured due to the absence of coupling between axial and
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transversal deformation, which implies that rotational speed has no effect on bending, but
only on the radial displacement.

There exist several techniques aimed to include this effect in beams. In this paper, the im-
plementation of two of them in a FFR formulation is described, and the results are compared
to reference solutions obtained with fully nonlinear methods, such as the Absolute Nodal
Coordinate Formulation (ANCF) proposed by Shabana [1] or the Finite Element Method
(FEM) [8].

2 The specific FFR formulation

The equations of motion, according to an index-3 augmented Lagrangian formulation in
natural dependent coordinates, García de Jalón and Bayo [9], Cuadrado et al. [10], are stated
in the form,

Mq̈ + �T
q α� + �T

q λ∗ = Q (1)

where q is the vector of natural coordinates, M is the mass matrix, � and �q are the con-
straints vector and its Jacobian matrix, α is the penalty factor, Q is the vector of elastic,
applied and velocity-dependent inertia forces, and λ∗ is the Lagrange multipliers vector,
obtained from an iterative process carried out within each time-step,

λ∗
i+1 = λ∗

i + α�i+1 i = 0,1,2, . . . (2)

which starts with λ∗
0 equal to the value of λ∗ obtained in the previous time-step. In the first

time-step, λ∗
0 can be initialized to zero. These equations are integrated in time by means of

a Newmark-type integrator [11] (the trapezoidal rule), along with velocity and acceleration
projections at the end of each time-step to preserve stability, Cuadrado et al. [10].

The case of a planar flexible beam is to be described for the sake of simplicity. However,
the procedure can be generalized to the 3D case. The considered FFR approach defines
the deformation of a flexible planar beam in a local reference frame, which is attached to
a material point of the beam and undergoes the large amplitude rigid-body motion. The
position r of any point of the solid can be expressed as

r = r0 + A (r̄u + δr̄) (3)

where r0 is the position of the local frame origin, A the rotation matrix defined by the two
orthogonal local unit vectors [u|v], r̄u the undeformed position in local coordinates, and δr̄
the local elastic displacement (see Fig. 1).

Using the finite element method to discretize the beam with 2D beam elements, the neu-
tral axis displacement within a finite element e, δr̄e

0, can be interpolated from its nodal dis-
placements, qe

f , by means of the interpolation matrix, Se , which can be split into longitudinal
and transversal interpolation submatrices, Se

l and Se
t ,

δr̄e
0 =

{
u0

v0

}
= Seqe

f =
[

Se
l

Se
t

]
qe

f (4)

where u0 and v0 are the local components of δr̄e
0.

The dimension of the finite element model is reduced by using component mode syn-
thesis, in this case, a Craig–Bampton reduction, Craig and Bampton [12], with static and
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Fig. 1 Deformed 2D beam

dynamic modes, as done by Cuadrado et al. [10]. This reduction consists of approximating
the vector of nodal displacements by means of a linear combination of ns static modes �i

and nd dynamic modes �j ,

qf =
ns∑

i=1

�iηi +
nd∑

j=1

�j ξj (5)

where qf is a vector grouping all the nodal displacements of the beam, and the coefficients ηi

and ξj are the modal amplitudes. The static modal amplitudes must be bound to the natural
coordinates of the corresponding joints through kinematic constraints. Equation (5) can be
written in a more compact matrix form,

qf = [
�1 · · · �ns �1 · · · �nd

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1

...

ηns

ξ1

...

ξnd

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= Xy (6)

Finally, the vector of variables for a single flexible beam results,

qT = {
rT

0 uT vT η1 · · · ηns ξ1 · · · ξnd

} = {
rT

0 uT vT yT
}

(7)

With all the flexible body kinematics defined, the mass matrix can be calculated. The
elastic displacement can be specified for node i as δr̄i

0 = qi
f = Xiy, being Xi the couple of

rows of X corresponding to the longitudinal and transversal displacements of node i. The
absolute velocity of node i, vi , can be calculated by substituting its elastic displacement in
(3), and differentiating with respect to time,

vi = ṙ0 + Ȧ
(
r̄i

0 + Xiy
) + AXi ẏ (8)

At this point, the corotational approach proposed by Géradin and Cardona [13] is adopted
in order to simplify the mass matrix calculation, Cuadrado et al. [10]. Although it is not fully
consistent with the FFR formalism, the finite element displacement interpolation matrices
Se are used to interpolate nodal velocities, an approximation that becomes exact when the
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element size tends to zero. Accordingly, the kinetic energy can be written in terms of the
nodal velocities v and the finite element mass matrix Mfe,

T = 1

2

∫
V

ṙT ṙ dm = 1

2

∫
V

vT ST Sv dm = 1

2
vT Mfev (9)

where S contains the assembled interpolation matrices of all the finite elements of the flexi-
ble body. Equation (8) can be written in matrix form for all the nodes, since it is linear with
respect to the generalized velocities q̇,

v = B (q) q̇ (10)

Finally, this relationship can be substituted into (9) to obtain the mass matrix,

M = BT MfeB (11)

The velocity-dependent inertia forces vector Qv = −BT MfeḂq̇ must be added to the
generalized forces vector Q. The calculation of the elastic forces will be addressed in the
following section.

3 Geometric nonlinearity consideration

The elastic displacements field δr̄ (x, y) of an Euler–Bernoulli beam takes the following
vector form, Sharf [5],

δr̄ (x, y) =
{

u

v

}
=

{
u0 − yv′

0

v0

}
(12)

where u0 and v0 are the axial and transversal displacements of the neutral axis, and the
apostrophe indicates differentiation with respect to the x coordinate. The nonlinear strain-
displacement relationship in x direction can be expressed as

εxx = u′ + 1

2

(
u′2 + v′2) ∼= u′ + 1

2
v′2 (13)

where the term u′2 is dropped since it is much smaller than u′. The elastic potential of the
beam, after applying the stress-strain relation is

U = 1

2

∫
V

Eε2
xx dV (14)

where E is the Young modulus and V is the volume of the beam. Introduction of the dis-
placement field described by (12) in the strain-displacement relation, yields the deformation
energy of the beam in terms of the neutral axis deformed shape [5],

U = 1

2

∫ L

0
EAu′

0
2 dx + 1

2

∫ L

0
EIv′′

0
2 dx︸ ︷︷ ︸

Linear formulation

+ 1

2

∫ L

0
EAu′

0v
′
0

2 dx︸ ︷︷ ︸
First nonlinear

+ 1

8

∫ L

0
EAv′

0
4 dx︸ ︷︷ ︸

Second nonlinear

(15)
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with A the cross-sectional area and I the second moment of area with respect to the neutral
axis.

Different levels of approximation can be achieved depending on which terms of (15) are
kept: They are discussed in the following subsections.

3.1 Linear formulation

The linear formulation includes only the first two terms of (15) in the elastic potential, ne-
glecting the higher order ones. Introducing the finite element discretization into the equation
and integrating the interpolation functions, the following expression can be obtained for the
elastic potential in terms of the finite element coordinates,

U = 1

2
qT

f Kfe
L qf (16)

Here, Kfe
L is the linear stiffness matrix, which is constant, and qf is a vector containing the

nodal displacements of the whole beam. This potential can be projected into the modal base
by using matrix X,

U = 1

2
yT XT Kfe

L Xy = 1

2
yT KLy (17)

By differentiation of the elastic potential, an expression for the elastic forces is obtained,

Fel = −
(

∂U

∂y

)T

= −KLy (18)

which is a linear relationship between the forces and the modal amplitudes.
A closer look to the elastic potential expression used in this formulation, constituted by

the first two terms of (15), reveals the cause of its inability to capture the geometric stiffening
effect: axial and transversal displacements separately contribute to the deformation energy.
Only transversal forces can produce transversal displacements, therefore, the axial forces
introduced by the rotation have no effect on the deflection.

3.2 First nonlinear formulation

When the third term of (15) is considered also, the coupling between axial and transversal
deformation is introduced through the integral of u′

0v
′
0

2. This allows us to capture the geo-
metric stiffening effect, since it couples the longitudinal and the transversal displacements,
but at the cost of a nonconstant stiffness matrix.

The same steps as in the linear formulation must be carried out to obtain the elastic
potential: the u0 and v0 derivatives are substituted by their finite element interpolations, and
the integrals are evaluated; then writing it in matrix form, Mayo et al. [3, 4],

U = 1

2
qT

f

(
Kfe

L + Kfe
G

)
qf (19)

The geometric stiffness matrix Kfe
G is variable, and must be calculated at every time-step. In

case that the axial displacement u0 has a linear distribution, the strain is constant along the
whole beam, and Kfe

G can be expressed as the product of a scalar variable times a constant
matrix. But in any other case, this is only applicable to each finite element, and the matrix
must be assembled at every time-step, which is rather inefficient.
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It is better to express u0 and v0 in terms of the mode shapes and then carry out the spatial
integration. First, the neutral axis displacements are approximated by the modal superposi-
tion,

u0(x) =
ns∑

i=1

φl
i (x)ηi +

nd∑
j=1

ψ l
j (x)ξj

v0(x) =
ns∑

i=1

φt
i (x)ηi +

nd∑
j=1

ψ t
j (x)ξj

(20)

where the superindices l and t indicate longitudinal or transversal component, respectively.
These approximated displacements are then used to calculate the integral. The analytical
functions of the mode shapes are usually known for a beam and, therefore, they can be
directly integrated. In the case that the modes are finite element displacement vectors, the
integrals must be calculated by using the interpolation functions. The geometric stiffness
matrix, already projected into the modal subspace, takes the following linear combination
form, with the modal amplitudes as coefficients,

KG =
ns∑

i=1

ηiKGi +
nd∑

j=1

ξj KGj (21)

where all the KGi and KGj matrices are constant, and have the form,

KGi =
∫ L

0
EAφ′l

i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′t
1

...

φ′t
ns

ψ ′t
1

...

ψ ′t
nd

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

{
φ′t

1 · · · φ′t
ns ψ ′t

1 · · · ψ ′t
nd

}
dx (22)

with ψ ′l
j instead of φ′l

i for KGj . These matrices are nonzero for mode i or j only if the mode
is longitudinal, so that there is one matrix for each axial mode. According to this, in order
to obtain a nonzero KG matrix, this method needs to incorporate at least one axial mode.

Differentiation of the elastic potential with respect to y, neglecting the term which con-
tains the derivative of KG, yields the elastic forces vector,

Fel = −
(

∂U

∂y

)T

= − (KL + KG)y (23)

The modifications with respect to the linear formulation are minimal. All the integrals
of (22) must be calculated in a preprocessing stage, thus obtaining one constant matrix for
each axial mode. Since the stiffness matrix is no longer constant, it must be calculated at
every integrator iteration by adding the variable KG to the linear stiffness matrix KL.

3.3 Second nonlinear formulation

In this formulation, the four terms of the elastic energy in (15) are considered, being the most
suitable for severe deformation conditions but logically at the cost of a higher computational
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effort

U = 1

2
qT

f

(
Kfe

L + Kfe
G + Kfe

H

)
qf (24)

The inclusion of the higher order term adds a second-order nonlinear matrix Kfe
H , and the

elastic forces are obtained by differentiation,

Fel = −
(

∂U

∂qf

)T

= − (
Kfe

L + Kfe
G + Kfe

H

)
qf + Qg (25)

where all the terms depending on the derivatives of the nonconstant K matrices are grouped
into the generalized nonlinear forces vector Qg. The main problem of this formulation is that
it needs a high number of axial modes to obtain accurate results, Mayo et al. [3, 4], making
its use inefficient.

3.4 Foreshortening formulation

The axial shortening of a beam due to its deflection is known as foreshortening (Fig. 2). This
effect cannot be captured by using the linear or first nonlinear formulations. The explicit
inclusion of the foreshortening effect in the model leads to a simpler and more efficient
method, Mayo et al. [3, 4], and provides the same level of accuracy as the second nonlinear
formulation.

The longitudinal displacement of any point at the neutral axis can be divided into the
axial deformation produced by the actual axial forces, s, and the shortening produced by the
deflection uf s ,

u0 = s + uf s (26)

The foreshortening of a curve infinitesimal ds can be obtained, as shown in Fig. 3, from the
projection of ds − dx into the undeformed neutral axis,

df s = (ds − dx) cosα =
(

1 − dx

ds

)
dx =

⎛
⎝1 − 1√

1 + v′
0

2

⎞
⎠ dx (27)

This expression can be simplified for small values of v′
0, by developing it into a Taylor series

up to second order,

df s ≈ 1

2
v′

0
2 dx (28)

Fig. 2 Foreshortening produced
by deflection
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Fig. 3 Foreshortening of a curve
infinitesimal

The total shortening accumulated from a reference point x0, which has zero axial displace-
ment is then obtained by integration,

uf s(x) = −1

2

∫ x

x0

v′
0

2 dx (29)

Substituting the longitudinal displacement of (26) into (15), yields the following expression
for the elastic potential,

U = 1

2

∫ L

0
EAs ′2 dx + 1

2

∫ L

0
EIv′′

0
2 dx (30)

It is observed that the elastic energy has the same form as in the linear formulation, although
the meaning is different. The stiffness matrix is the same as the one used for the linear
case KL, and so happens with the elastic forces. Therefore, the stiffening effect does not
appear now in the elastic forces; it is translated to the inertia and constraint forces, since the
foreshortening is introduced at kinematic level.

In order to calculate the total foreshortening on a finite element, the nodal displacement
must be modified so that

δr̄e
0 =

{
u0

v0

}
=

[
Se

l

Se
t

]
qe

f +
{

ue
f s

0

}
(31)

where ue
f s is the foreshortening produced in that finite element by its own deflection, and

can be calculated by applying (29) over the whole length of the element, Le . Substituting v′
0

by its interpolation,

ue
f s = −1

2

∫ Le

0
qeT

f

∂Se
t

∂x

T ∂Se
t

∂x
qe

f dx = −1

2
qeT

f Heqe
f (32)

The shortening suffered by one element is then a quadratic function of the nodal coordinates,
where He is a constant matrix depending only on the transversal interpolation functions and
the length of the element.

The total shortening accumulated by the finite elements located between the reference
node (with zero axial displacement) and the finite element n, itself included, is the sum of
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Fig. 4 Accumulated
foreshortening at element n

all the element-level shortenings, as shown in Fig. 4

un
f s = −1

2

n∑
e=1

qeT
f Heqe

f (33)

This expression can be written in matrix form for each element, assembled for all the finite
element coordinates of the beam, and then projected into the modal subspace,

un
f s = −1

2
qT

f Hn
accqf = −1

2
yT XT Hn

accXy = −1

2
yT Gny (34)

If analytical functions are available for the mode shapes, these Gn matrices can be directly
calculated by using the second expression of (20) to evaluate (29),

Gn =
∫ Ln

0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ′t
1

...

φ′t
ns

ψ ′t
1

...

ψ ′t
nd

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

{
φ′t

1 · · · φ′t
ns ψ ′t

1 · · · ψ ′t
nd

}
dx (35)

where Ln is the length of the beam from the reference point to the end node (node i) of
finite element n. If the modes are finite element displacement vectors, the integrals must be
calculated by using the interpolation functions.

Therefore, the elastic displacement of node i is now,

δr̄i
0 = qi

f +
{

un
f s

0

}
= Xiy +

{
un

f s

0

}
= Xiy − 1

2

{
1

0

}
yT Gny (36)

Substituting this displacement into (3), and carrying out the time derivative results for the
nodal velocity,

vi = ṙ0 + Ȧ
(
r̄i

u + Xi
f s

) + A
(
Xi

f s ẏ + Ẋi
f sy

)
(37)

where Xf s is a variable matrix, which depends linearly on the modal amplitudes y,

Xi
f s = Xi − 1

2

{
1

0

}
yT Gi (38)

In order to implement the foreshortening in the equations of motion, the Gn accumulated
shortening matrices must be first calculated and stored in a preprocessing stage. Then the
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new Xf s matrix, which is no longer constant, is calculated at every time-step and used to
calculate matrix B, as it was done in (8).

These changes affect the mass matrix, the velocity-dependent inertia forces and the ap-
plied forces. Moreover, those constraints involving nodes undergoing foreshortening must
also be modified, since transversal modes affect the beam length. Therefore, the geometric
stiffening effect is considered now through inertia and constraint forces, instead of through
the elastic forces, as it happened in the first and second nonlinear formulations.

4 Examples and results

The example system is a typical case of geometric stiffening, Kane et al. [2], Mayo et al.
[3, 4], Sharf [5], Shi et al. [6], Valembois et al. [7]: a beam pinned at one of its ends, as
shown in Fig. 5, which rotates an angle θ(t) about the origin,

θ(t) =
⎧⎨
⎩

ωs

Ts
( t2

2 + ( Ts

2π
)2[cos( 2πt

Ts
) − 1]) 0 ≤ t < Ts

ωs(t − Ts

2 ) Ts ≤ t

(39)

The characteristics of the beam are: length L = 10 m, cross-sectional area A = 4 · 10−4 m2,
second moments of area Iy,z = 2 · 10−7 m4, density ρ = 3000 Kg/m3 and Young modulus
E = 7 · 1010 N/m2.

4.1 Two-dimensional case

In [2–7], this example is treated as a 2D problem, studying the behavior of the beam in
the xy plane in absence of gravity acceleration. The measured variable is the in-plane tip
deflection, for Ts = 15 s and ωs = 6 rad/s.

A discretization into 10 finite elements is used, using one transversal static mode and
two transversal dynamic modes. A reference solution has been calculated with a global,
finite-element based formulation, the ANCF, Shabana [1], which uses absolute positions and
slopes as coordinates in a global inertial reference frame. This formulation applies nonlin-
ear strain-displacement relationships, so capturing all nonlinear effects, including geometric
stiffening. In the simulation of reference the beam is discretized into 15 elements, using an
ANCF-based 2D beam element developed by Omar and Shabana [14].

The results obtained for the linear formulation reveal that as expected, it cannot account
for the geometric stiffening effect. As can be seen in Fig. 6, the tip deflection becomes too
large, crashing the simulation before its end.

The first nonlinear formulation needs to include at least one axial mode, as the geometric
stiffness matrix depends on the axial deformation. In the example, the axial displacement,
caused by centrifugal forces, has a nonlinear distribution, so that the first dynamic axial

Fig. 5 Spin-up beam
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Fig. 6 Linear formulation vs.
ANCF in the first example

Fig. 7 First nonlinear
formulation vs. ANCF in the first
example

mode is required to achieve reasonable accuracy. Figure 7 shows that using only one linear
static mode (FNL1 curve) yields unacceptable results, increasing the stiffness excessively.
Therefore, two axial modes are needed at least to correctly simulate the motion of the beam
(FNL2 curve).

The foreshortening formulation (FS curve in Fig. 8) achieves the best results, despite the
absence of axial modes. The quality of the correlation becomes more obvious at the steady-
state stage, where the first nonlinear formulation shows a higher oscillation amplitude.

Table 1 shows the CPU-times for all the simulations, run with the same integrator and
parameters, with a time-step of 0.01 s. The formulations are sorted by accuracy, from lower
to highest, according to the error measurement defined in (41): first nonlinear with one axial
mode (FNL1), first nonlinear with two axial modes (FNL2), and foreshortening (FS0). The
FS method is the fastest, due to the lower number of modes used, and to the absence of high
frequency axial modes.
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Fig. 8 Foreshortening
formulation vs. ANCF in the first
example

Table 1 CPU-times for all the
formulations in the 2D spin-up
beam

Formulation FNL1 FNL2 FS0

Time (s) 0.281 0.297 0.250

�y (mm) 28.295 6.486 2.614

4.2 Three-dimensional case

In this example, a gravity acceleration of 9.81 m/s2 is added to the problem, in the negative
direction of the z axis, leading to a three-dimensional problem. One static and two dynamic
transversal modes are added in the z direction to capture vertical deflections, making a total
of six modes, plus the eventually needed axial ones in the FNL method. Before starting the
simulation, the beam is let to reach its equilibrium position.

The extension of both the FNL and FS methods to the three-dimensional case is straight-
forward, since the effects in y and z directions can be considered independent. In the FNL
formulation, there are no substantial changes, and in the FS case, the foreshortening can be
obtained from the following expression, where w0 is the neutral axis displacement in the z

direction [6, 7],

uf s(x) = −1

2

∫ x

x0

(
v′

0
2 + w′

0
2)dx (40)

Only the first nonlinear and the foreshortening methods are addressed in this example,
and since the results in the y direction are approximately the same as obtained in the plane
case, only the displacements in x and z directions are now shown and discussed. These
results are compared to a reference solution obtained with a nonlinear finite element model,
discretized into 20 elements and with the same integration parameters. In order to obtain a
numerical value for the error, the position of the beam tip (in the local frame) is compared
to that of the reference solution. For the x direction,

�x = 1

ns + 1

ns∑
i=0

∣∣xi − x∗
i

∣∣ (41)
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Fig. 9 First nonlinear formulation vs. FE in the second example

where xi and x∗
i are the calculated and reference values respectively, and ns is the number

of time-steps. The same may be done for y and z directions.
The first nonlinear formulation, whose results are shown in Fig. 9, does not obtain ac-

ceptable results for the axial displacement, no matter how many axial modes are introduced.
This happens because the KG elements corresponding to axial modes are equal to zero, thus
introducing no modification in their associated stiffnesses. At the equilibrium position, there
is a tip displacement of more than 6 cm in the z direction, which is not captured, and the er-
ror at the steady-state stage is about 3.5 mm with respect to the reference. This is because the
large deflection makes the foreshortening effect much more relevant than the actual beam
shortening. As it happened in the y direction, the beam with only one axial mode (FNL1) is
excessively rigidized, needing an extra mode (FNL2) to obtain reasonably accurate results.

In the case of the foreshortening method, as can be seen in Fig. 10, the precision in the
x direction is significantly improved. The steady-state error is around 0.5 mm with no axial
modes, lowering to 0.01 mm if one axial mode is added. In the vertical direction, the results
are approximately the same obtained with the FNL2 formulation, despite using only bending
modes.

In Table 2, the CPU-times and deviations from the reference solution are shown for all
the formulations. The FS values are shown for none, one, and two axial modes, although
Fig. 10 represents the results for the first case. It can be seen that the FNL formulation is
faster for the same number of modes, but when the efficiency is compared for a similar level
of accuracy in y and z directions, the FS method is slightly faster (i.e., FNL2 vs. FS0).

5 Conclusion

The implementation of two techniques for accounting for the foreshortening effect into a
FFR formulation in natural coordinates has been presented. Both of them are easy to imple-
ment, and obtain very good performance if compared to ANCF or nonlinear FEM.

As it has been shown in the tests, the linear formulation yields incorrect results, which
means that any of the higher order formulations must be used. The first nonlinear formula-



160 U. Lugrís et al.

Fig. 10 Foreshortening formulation vs. FE in the second example

Table 2 CPU-times for all the formulations in the 3D spin-up beam

Formulation FNL1 FNL2 FS0 FS1 FS2

Time (s) 0.328 0.359 0.336 0.367 0.399

�x (mm) 27.921 27.921 0.647 0.387 0.387

�y (mm) 28.295 6.486 2.614 2.612 2.611

�z (mm) 32.066 4.119 3.462 3.464 3.465

tion is very easy to implement, but presents some problems, since only one axial mode is not
sufficient for obtaining accurate results, and the use of axial modes of high natural frequen-
cies hinders the integration process. If the deflections are large enough, this method fails
also to accurately measure the x displacements. The foreshortening formulation has proven
to be the fastest and also the most accurate. It does not require axial modes for obtaining
good results for the transversal deflections and, in case that axial stresses are needed, longi-
tudinal modes can be added without problems. For the same number of modes, it is slightly
slower since it involves more operations, but if the efficiency/accuracy ratio is considered, it
is always advantageous to include the foreshortening in the kinematic modeling.
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