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Abstract The kinematic representations of general open-loop chains in many robotic appli-
cations are based on the Denavit–Hartenberg (DH) notation. However, when the DH repre-
sentation is used for kinematic modeling, the relative joint constraints cannot be described
explicitly using the common formulation methods. In this paper, we propose a new for-
mulation of solving a system of differential-algebraic equations (DAEs) where the method
of Lagrange multipliers is incorporated into the optimization problem for optimal motion
planning of redundant manipulators. In particular, a set of fictitious joints is modeled to
solve for the joint constraint forces and moments, as well as the optimal dynamic motion
and the required actuator torques of redundant manipulators described in DH representa-
tion. The proposed method is formulated within the framework of our earlier study on the
generation of load-effective optimal dynamic motions of redundant manipulators that guar-
antee successful execution of given tasks in which the Lagrangian dynamics for general
external loads are incorporated. Some example tasks of a simple planar manipulator and
a high-degree-of-freedom digital human model are illustrated, and the results show accu-
rate calculation of joint constraint loads without altering the original planned motion. The
proposed optimization formulation satisfies the equivalent DAEs.

Keywords Denavit–Hartenberg representation · Fictitious joints · Optimization ·
Motion planning · Redundant manipulator · Lagrange multipliers · Joint constraints ·
Differential-algebraic equations

1 Introduction

Redundancy in robotics can be defined in various ways [8]. In this paper, a redundant ma-
nipulator is defined as a manipulator with larger degrees of freedom (DOF) than required
to accomplish a given task. Thus, redundant manipulators can possess an infinite number of
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configurations at one time for performing an assigned task. The redundancy of robots pro-
vides higher flexibility, dexterity, manipulability, controllability, and singularity-avoidance.
Good examples are seen in the recent developments of humanoids, bio-inspired robots, and
space robots.

The recent advancement in optimal motion planning methodologies for redundant manip-
ulators is largely due to the implementation of dynamics principles, which results in optimal
dynamic motions. Just like any other multibody system in motion, redundant manipulators
are always subject to constraint loads (forces and moments)—or sometimes called reaction
loads—between multiple connected links. Since the information on the constraint loads is
critical for robotic design and dynamics analysis, methodologies that calculate accurate con-
straint loads for manipulators in general motion with externally applied loads are essential.
Similar statements can be made for human dynamic motion, which can be predicted using
the optimization-based motion planning method [19]. The determination of constraint loads
during human motion is useful for injury prediction and stress analysis of joints and joint
replacements.

A kinematic constraint between two bodies imposes conditions on the relative motion
between the pair of bodies. Consider a system described by n generalized coordinates:
q1, q2, . . . , qn. Suppose there are m independent equality constraints and l inequality con-
straints as algebraic equations represented in terms of the generalized coordinates and time.

φj (q1, q2, . . . , qn, t) = 0 (j = 1, . . . ,m), (1)

fk(q1, q2, . . . , qn, t) ≤ 0 (k = 1, . . . , l). (2)

Constraints of this form are known as holonomic kinematic constraints [13]. The constraints
that cannot be expressed in the form of (1) or (2), but must be expressed in terms of differen-
tials of the coordinates and/or time are known as nonholonomic constraints. Our presentation
is limited to the relative joint constraints, which are holonomic, that occur at the joints of
multibody systems.

Under external load conditions (including gravity), constraint loads due to the relative
constraints are exerted to the rigid-body pairs. For example, a joint that connects the rigid
links of an open-loop system usually generates constraint loads (Fig. 1). The directions of the
constraint loads are those in which the relative motion of the links is not allowed. Similarly,
human motions always encounter constraints from internal sources; thus, for a human body
under external loads, constraint loads always exist at each joint.

Fig. 1 Joint constraint forces and moments of an open-loop system and a human body
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Determining the joint constraint loads has long been one of the main issues in the
multibody dynamics area. Many successful theories and methods have been developed for
general-purpose simulation and analysis of multibody mechanisms, and several commer-
cial software packages are available (e.g., ADAMS, DADS). The basic starting point for
associating constraint loads with the equations of motion is the method of Lagrange multi-
pliers, which has been introduced in many dynamics texts (e.g., [13]). The constraint loads
are usually obtained as solutions of the differential-algebraic equations (DAEs), which are
formulated from a set of constrained equations of motion for a system and the constraint
equations. However, the analytical complexity of nonlinear algebraic equations of kinemat-
ics and nonlinear differential equations of dynamics makes it impossible to obtain closed-
form solutions in most applications. The literature in this field, therefore, contains a large
number of specialized numerical techniques and analytical methods for solutions of DAEs
of multibody systems [15, 24]. For example, absolute (Cartesian) coordinate formulation
describes the configuration and constraints of each rigid body represented by a body-fixed
reference frame with respect to a global (inertial) frame. On the other hand, the relative
(joint) coordinate formulation describes the relative configurations of pairs of rigid bodies
that are connected by joints, and thus the number of constraint equations is reduced. To
improve computational efficiency and numerical performance, methods of coordinate parti-
tioning have also been introduced [15, 24], in which the system coordinates are partitioned
as independent and dependent variables. Other numerical analysis and methods for solving
DAEs, as well as the fundamentals, are given by Brenan et al. [7] and Hairer et al. [14].

Several up-to-date numerical methods for solving DAEs were reviewed by Cuadrado
et al. [10]. Examples were tested using different methods for each, and guidelines were
presented as to which modeling methods are most adequate for different types of multibody
systems. The formulations are very general, so they can be applied to different mechanical
systems with various cases. Numerical integration approaches for DAEs using the Runge–
Kutta method and its modification have also been widely studied in the literature [18, 23].

An extensive overview of the various state-of-the-art multibody dynamics research to
date with historical background is given in an article by Schiehlen [25], in which the ba-
sics and the applications to broad areas are also discussed. Several improvements to the
traditional methods have been made recently. For example, Blajer [5] derived pseudoin-
verse matrices to the constraint Jacobian by employing reduced-dimension formulations
with which the joint constraint loads are obtained directly in resolved forms without ma-
trix inversion, thus improving efficiency. Hemami and Wyman [16] introduced a slightly
different approach to dealing with the constraint loads as well as the actuator forces by em-
ploying the state space form. They developed stable feedback inverse systems to estimate
the forces and moments of rigid-body systems subject to holonomic and nonholonomic con-
straints. However, despite the numerous efforts in the literature so far, the complexity of the
numerical evaluations of DAEs for highly nonlinear systems has yet to be improved.

In addition to the rigid-body motion, the deformations of constrained mechanical systems
are studied as flexible multibody dynamics, and a comprehensive review of the past and
recent work is given by Shabana [27]. In our presentation, we consider only the rigid-body
dynamics.

As an alternative method of solving for the joint constraint loads in robotic systems, Bay-
sec and Jones [3] introduced “the method of fictitious degrees of freedom.” They modeled
a three-link chain with a revolute and a prismatic joint at each link, which actually behaves
like various types of 3-DOF manipulators by assigning numerous combinations of revolute
and prismatic real joints. The remaining joint at each link is the fictitious joint, which is
controlled to have zero velocity and acceleration during the motion. Then the resulting ac-
tuator forces and moments of the fictitious joints are the constraint forces and moments.
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The model used for demonstration is simple such that it is relatively straightforward to de-
rive closed-form Lagrangian equations of motion and explicit expressions for the constraint
loads. In their approach, the control errors due to noise signals, overshoot, damping, etc. can
provide inaccurate values of constraint loads. In addition, the number of fictitious joints is
not general enough to model all possible components of the constraint loads.

Recently, many of the theoretical and applicative studies on multibody dynamics (includ-
ing this article) have been conducted in conjunction with human motion dynamics. McLean
et al. [22] used a variable step fourth-order Runge–Kutta method to solve the forward dy-
namics problem for the joint reaction forces and moments at the human knee during dynamic
motion. The muscle stimulation patterns as well as the initial conditions are given as inputs,
where the muscle forces are calculated from the muscle stimulation via a muscle activation
dynamics model. The resulting lower-body motions were reliable compared with the exper-
imental measurement. In their method, the motion and the other inputs such as the muscle
forces are not fully predictive, as those values are obtained through optimization of the mea-
sured data. As another rigorous formulation, Blajer and Czaplicki [6] proposed a compact
and systematic way of determining joint constraint loads in human multibody system. They
applied the previously introduced method [5] that does not involve matrix inversion to the
human dynamics model, which is thus suited for both symbolic and computational imple-
mentations. The augmented joint coordinate method is introduced as a combination of the
open-constraint coordinates for prohibited relative joint motions and the traditional joint
coordinates. The method can be used to determine only some joint reactions. Some other
groups used the inverse dynamics approach to obtain the joint constraint loads for prescribed
motions. For example, Hirashima et al. [17] used the Newton–Euler method to derive the
equations of motion for human model. Some simple motions of shoulder, elbow, and wrist
joints are given as inputs. A unique application of the joint constraint force calculation is
introduced by Biscarini and Cerulli [4]. They combined the dynamical and hydrodynamical
model to calculate the knee joint constraint forces during underwater knee extension exer-
cises. The analytical form of the constraint forces at the knee joint is derived as functions of
hydrodynamic parameters (such as drag) as well as the joint profiles. Then the problem of
inverse dynamics is solved for a given range of motion.

The Denavit–Hartenberg (DH) notation [11], which will be briefly described in the fol-
lowing section, provides an effective way of formulating the kinematics of general open-loop
chains and is, therefore, one of the most widely used kinematic representation methods in
robotics [9, 26]. Although much research has been conducted on DAEs, the common formu-
lations for explicit descriptions of relative joint constraints cannot be applied if the system is
represented by the DH notation and homogeneous transformation matrices. This is because
the DH notation assumes that there is only one relative DOF (either revolute or prismatic)
between two connected links, and the remaining DOFs are naturally constrained. In this
article, we propose a method that allows calculating the joint constraint loads during an
optimal dynamic motion of redundant manipulators described by the DH representation. To
the authors’ knowledge, there is no proposed formulation or numerical method in the current
literature that deals with this kind of problem. Various methods of multibody dynamics in
the literature are developed based on the main idea of incorporating the joint constraint loads
into the DAEs by relaxing the kinematically constrained DOFs at each joint and constrain-
ing those that are not allowed to move by Lagrange multipliers. In our approach, we will
apply this main idea to the multibody systems represented in DH notation. The contribution
and advantages of our method over the traditional ones can be summarized as follows:

(1) The proposed approach allows formulating the constrained dynamics of multibody sys-
tems that are modeled based on DH representation, and the constraint loads at specified
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joints or links can be determined. The process of extending and modifying the DH pa-
rameters at the points of interest and shifting the indices of the succeeding joints can be
easily automated.

(2) Usually, motion planning of redundant manipulators is formulated as an optimization
problem. Our proposed method is applicable within the framework of this usual opti-
mal motion planning by providing additional control variables and constraints (zero-
displacement) to the original optimization problem. The joint constraint loads are cal-
culated concurrently during the stage of motion planning, which traditionally has been
done as a post-process (numerical integration) according to the resulting motion and ac-
tuator torque profiles. It is not necessary to formulate a separate integration-based DAE
solver or to call interactive multibody dynamics software; thus, it will eventually reduce
computational cost and time. Also, the proposed method allows using the joint con-
straint loads to form certain cost functions or constraints for the optimization problem.
For example, the optimal motion can be obtained such that the magnitude of the con-
straint loads at a specific joint is minimized or is kept below certain maximum strength.
Furthermore, it will be shown later that the implementation of joint constraint loads and
the addition of fictitious joints to the formulation do not affect the original results of the
planned motion.

In the following sections, the DH kinematic modeling and the dynamic equations of
motion with general external loads for open-loop kinematic chains are briefly overviewed.
Then the structure and components of the optimal dynamic motion planning problem are
presented. Next, the modeling of fictitious joints, the corresponding DAEs, and the extended
form of optimization problem are introduced. Finally, some examples of determining joint
constraint loads during optimal motion generation using the proposed method will be illus-
trated and discussed.

2 Kinematic modeling of open-loop chains by DH representation

The analysis of general robotic systems is always concerned with the configurations,
velocities, and accelerations of objects (e.g., robotic links, tools, and environments) in
a three-dimensional space. Given an open-loop kinematic chain (Fig. 2), the transform

Fig. 2 An n-DOF open-loop
kinematic chain
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Fig. 3 DH convention
and parameters

from frame {i} to frame {i − 1} can be represented by the homogeneous transformation
matrix i−1Ti

i−1Ti (θi , di, ai, αi) =

⎛
⎜⎜⎝

cos θi − cosαi sin θi sinαi sin θi ai cos θi

sin θi cosαi cos θi − sinαi cos θi ai sin θi

0 sinαi cosαi di

0 0 0 1

⎞
⎟⎟⎠ . (3)

If the joint is revolute, θi is called the joint variable, and the other three quantities, di, αi ,
and ai , are called link parameters. If the joint is prismatic, the joint variable is di , while
the other three are the link parameters [9]. The convention is based on DH notation, which
describes the configuration of a kinematic chain (Fig. 3).

The homogeneous transform includes the translation and rotation of one coordinate frame
relative to another, where each frame is attached, respectively, to a rigid body in space. The
homogeneous transformation matrix 0Tn that relates frame {n} to frame {0} can be obtained
by multiplying all of the intermediate transforms

0Tn(q1, . . . , qn) = 0T1(q1)
1T2(q2) . . . n−1Tn(qn), (4)

where qi is the joint variable of i−1Ti , and the set of joint variables q = [q1, . . . , qn]T ∈ Rn is
called the n × 1 joint vector. Therefore, 0Tn is a function of all n joint variables. These joint
variables uniquely determine the configuration of a manipulator system with n DOFs and are
called the generalized coordinates. Then the position vector of a point of interest attached to
the frame {n} of the end-effector can be written with respect to the global frame {0} using
the joint variables.

For the purpose of mathematical modeling, each actual kinematic joint of a system is
replaced with a set of one or more single-DOF (revolute or prismatic) joints. The DH para-
meters and the joint variable limits are assigned in such a way that the mobility associated
with the original joint is preserved.

3 Lagrange’s equations of motion

To generate the motions of a manipulator in which the externally applied forces and mo-
ments are taken into account, it is essential to formulate a comprehensive expression of the
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equations of motion that govern the dynamics of open-loop kinematic chains. The imple-
mentation of the equations of motion is also necessary for control of the manipulators, al-
though the control problems are not discussed here. In this presentation, we use Lagrangian
dynamics, which provides a systematic method of formulating the equations of motion that
are described in terms of the independent generalized coordinates. The use of Lagrangian
dynamics also allows relatively easy implementation of any kinematic constraints and the
corresponding constraint loads in a systematic manner.

For the motion of a mechanical system with finite DOFs, the Hamilton’s principle in a
given time interval [t0, t1] is formulated as the following variational equation [21]:

δ

∫ t1

t0

(T + W)dt = 0, (5)

where T is the total kinetic energy of the system, W is the virtual work of the noninertial
forces, and δ denotes the first variation. Both T and W are functions of q, q̇, and t . For a
holonomic system, it can be shown [20] that the solution q(t) of this problem satisfies the
following general form of Lagrange’s equations of motion (in vector-matrix form)

d

dt

∂L

∂q̇
− ∂L

∂q
+ d

dt

∂Wnc

∂q̇
− ∂Wnc

∂q
= 0, (6)

where L = T − V is the Lagrangian function, V is the total potential energy of the system,
and Wnc is the virtual work done by nonconservative forces.

Let us consider the case in which a general form of external loads [FT
k MT

k ]T is applied
to the point at krk location of link k, where [FT

k MT
k ]T is a 6 × 1 vector comprised of a 3 × 1

force vector Fk and a 3 × 1 moment vector Mk , and krk is a 4 × 1 position vector expressed
in terms of {k} local coordinate frame attached to link k. Note that the constraint forces
and moments due to external constraints from the environment can also be expressed in this
manner. Equation (6) can be expanded using the kinetic energy, the potential energy, and the
extended form of non-conservative work (for details, see [19]). Assuming that the velocity-
dependent force does not exist, i.e., d(∂Wnc/∂q̇)/dt = 0, the final vector-matrix form of the
equations of motion for a general open-loop kinematic chain with general external loads is
given as a coupled, nonlinear, second-order ordinary differential equation

τ = M(q)q̈ + V(q, q̇) +
∑

i

JT
i mig +

∑
k

JT
k

[
−Fk

−Mk

]
+ T(q, q̇), (7)

where τ = [τ1, τ2, . . . , τn]T is the actuator torque vector, M(q) is the mass-inertia symmetric
matrix, V(q, q̇) is the Coriolis and centrifugal force vector,

∑
JT

i mig is the joint torque
vector due to gravity, Ji is the Jacobian matrix of the position vector for the center of mass
of ith link, and Jk is the augmented Jacobian matrix of the position vector krk with respect to
{k} local coordinate frame. The vector T(q, q̇) is the torque vector due to the joint stiffness
and the dissipative forces such as viscous damping and Coulomb friction. The augmented
Jacobian matrix Jk(q) is derived from the linear relationship between the tangent spaces of
the joint variables and the Cartesian coordinates

Jk(q) = [
Jk,1(q) . . . Jk,i (q) . . . Jk,k(q)

]
6×k

, (8)
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where the ith column vectors for revolute and prismatic joints are, respectively,

Jrevolute
k,i (q) =

[
∂0Tk(q)

∂qi

krk

0zi−1(q)

]

6×1

and Jprismatic
k,i (q) =

[
∂0Tk(q)

∂qi

krk

03×1

]

6×1

.

Here, 0zi−1 (i = 1, . . . , k) is the unit z-axis vector of {i − 1} local frame expressed in terms
of the global coordinate frame. Note that in the above equation, only the first three elements
of the 4 × 1 vector (∂0Tk(q)/∂qi)

krk are used to assemble the first three rows of Jk,i (q).

4 Optimal dynamic motion planning for redundant manipulators

The problem of optimal dynamic motion planning for redundant manipulators is defined
as follows (Fig. 4): The inputs to the algorithm are the link parameters of the manipulator,
dynamic parameters (such as mass, centers of mass, moments and products of inertia, joint
stiffness, and damping coefficients), joint variable limits, actuator torque limits (possibly
as functions of joint velocity), points of application and components of external loads, and
task-based constraints (such as the time desired to perform the task, end-effector path and
orientations). Then it is desired to generate the joint profiles that guarantee the execution
of the task, where the external loads can have broad ranges of magnitudes. To resolve the
redundancy, the problem is formulated as an optimization problem, where the outputs are
the joint variable profiles, the required actuator torques, and the energy rates as functions of
time. The proposed optimal motion planning problem is stated as:

Find: Joint control points (P(nc×n))

To minimize: Energy consumption (E)

Subject to constraints:
Joint limits (qL ≤ q ≤ qU)

Actuator torque limits (τL ≤ τ ≤ τU)

Path constraints (‖x(q(t)) − path(t)‖ ≤ ε).

It should be emphasized that the general external loads term as well as the inertia and grav-
ity, must be included in the calculation of actuator torques that are used for the constraints
(torque limits) and/or the cost function. The load-effective motions are defined as the fea-
sible motions in which the general external loads are taken into account for the calculation
of required actuator torques to guarantee the execution of the planned motion [20]. The en-
ergy consumption or the norm of torque vector used as the cost function will result in the

Fig. 4 Problem of optimal motion planning for redundant manipulators
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most efficient motion. If the optimization is solved while the external loads are not con-
sidered for the dynamics calculation, then the actual required actuator torques may exceed
the maximum torque limits that the actuators can provide; thus, the planned motion may
not be executable (i.e., uncontrollable) in reality, especially when large external loads are
desired.

Due to the redundancy of the human body, the approach for human motion prediction
is basically the same as that described for the redundant manipulators. This is based on the
assumption that humans naturally generate effective motion to accomplish a given task in
such a way as to minimize certain cost function(s). Note that the problem for manipulators
is “motion planning,” while for humans it is “motion prediction.” For convenience, we will
use the term “motion generation” for both manipulators and humans. The details of each
component of the optimization problem are described in the following sections.

For the numerical optimization algorithm, we use the sequential quadratic programming
(SQP) method. The SQP uses quasi-Newton approximations to the Hessian of the aug-
mented Lagrangian and obtains search directions from a sequence of quadratic programming
subproblems. SQP methods have proved reliable and highly effective for solving constrained
optimization problems with smooth nonlinear cost function and constraints. The details on
the SQP method can be found in optimization texts (e.g., [2]).

4.1 Joint variable profiles using B-spline curves

Since the joint variables as functions of time are nonuniform curves, we use the B-spline
curves [1], which have many beneficial properties such as continuity, differentiability, end-
point interpolations, local control, and convex hull. We use the recursive formula to represent
the B-spline, such that its control points will be calculated as a result of the iterative numeri-
cal optimization algorithm. Let nk be the number of knots and U = {u0, . . . , unk−1} be a knot
vector with a nondecreasing sequence of knots. The ith B-spline basis function of p-degree
(order p + 1), denoted by Ni,p(u), is defined as

Ni,0(u) =
{

1 if ui ≤ u < ui+1,

0 otherwise,
(9)

Ni,p(u) = u − ui

ui+p − ui

Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u).

To enforce endpoint interpolations and continuity, we choose a (nk × 1) nonperiodic knot
vector that has multiplicities at the start and the end as follows:

U = {a, . . . , a︸ ︷︷ ︸
p+1

, up+1, . . . , unk−p−2, b, . . . , b︸ ︷︷ ︸
p+1

}.

Then the pth-degree B-spline curve for each joint can be written as

qj (u) =
nc−1∑
i=0

Ni,p(u)Pi,j (a ≤ u ≤ b; j = 1, . . . , n), (10)

where n is the total DOF of the system, nc is the number of control points, and {Pi,j } rep-
resents the (i, j) components of the control points matrix P(nc×n). Here, the degree p, the
number of the control points nc, and the number of knots nk are related by nk = nc + p + 1.
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The degree and the multiplicity of the knots of the B-spline curve determine the continu-
ity and differentiability. A smooth joint motion requires continuity in acceleration, which
will in turn require the joint B-spline curve to be at least of degree-3, i.e., p = 3. Let
the initial time a = 0 and the final time b = tf , and a total of 11 distinct knots are used:
0,0.1tf ,0.2tf , . . . , and tf . Therefore, nk = 17 and nc = 13, i.e., each joint B-spline curve
has 13 control points.

4.2 Energy consumption

Energy has a unifying property into which the dynamic as well as the kinematic character-
istics of manipulator motion are incorporated. We use an approximate form of manipulator
energy consumption as a cost function for our optimization problem. The actual formula
representing the energy consumption for a manipulator varies depending on the specific de-
sign of the system, as well as the types of actuators. Therefore, unless the details of the
specific machine information and physical characteristics are provided, it is not possible to
obtain the exact formula for the energy consumption. For this reason, simplified forms of the
general energy consumption are widely used in literature. Usually, the energy consumption
is modeled to be proportional to the actuator torques. We use the squared norm of the actu-
ator torque vector function as an approximate form of the energy consumption from time t1
to t2

E = ∥∥τ (t)
∥∥2 =

∫ t2

t1

n∑
i=1

(
τi(t)

)2
dt, (11)

where the actuator torque vector τ (t) = [τ1(t), . . . , τn(t)]T is obtained from the equations of
motion.

The use of energy consumption as a cost function implies several important points. First
of all, minimum energy consumption indicates minimum fuel usage. Secondly, for smooth
movement of each joint, the magnitude of the second derivatives of the joint curves needs
to be minimized to avoid an abrupt change in the joint velocity. The joint accelerations
(second derivatives) term that constitutes the actuator torques in (7) provides a natural way
to ensure the smooth movement of each joint by reducing unnecessary fluctuations in the
joint profiles.

For human motion prediction, the metabolic energy consumption that was derived previ-
ously [19] will be used as a cost function for the optimization problem

EMetabolic ≈
∫ t2

t1

n∑
i=1

∣∣τi(t)q̇i (t)
∣∣dt +

∫ t2

t1

n∑
i=1

hi
m

∣∣τi(t)
∣∣dt +

∫ t2

t1

Ḃ dt, (12)

where hi
m (i = 1, . . . , n) are the coefficients of the generalized maintenance heat and Ḃ is the

basal metabolic rate. It was shown that hi
m is inversely proportional to the maximum torque

limit of joint i. Therefore, for small joint velocities, the human motion of minimum energy
(thus, minimum weighted torques) implies that humans tend to use the stronger joints to
accomplish a given task rather than the weaker ones. This means that the actuator torques
are distributed so that the larger torques are exerted at the stronger joints and vice versa,
which can be observed in real-world human tasks.

4.3 Constraints

The following is a list of basic constraints that are typically given from the manipulator
design and the task requirements. Depending on the task definition and the environment,
various other constraints can be imposed in addition.
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(1) Joint variable limits Each joint variable has bilateral constraints imposed in the form
of

qL
i ≤ qi ≤ qU

i (i = 1, . . . , n), (13)

where qL
i and qU

i are the lower and upper limits for each joint variable, respectively. These
joint limits are usually given from the design of the manipulator.

(2) Actuator torque limits The torque limit is usually a function of the joint velocity, which
is represented as a torque-speed curve of each actuator. The torque-speed curves depend on
the class and capacity of the actuators and are usually supplied by the manufacturer

τL
i (q̇i (t)) ≤ τi ≤ τU

i (q̇i (t)) (i = 1, . . . , n), (14)

where τL
i and τU

i are the lower and upper limits, respectively, for each actuator torque.
Generally, τL

i is negative and τU
i is positive.

(3) Position and orientation constraints In general, the configuration of a single rigid body
in space is uniquely determined in terms of three independent position coordinates and three
independent orientation angles. Thus, the configuration of a link of a manipulator system
can be described uniquely by assigning its position and orientation. Depending on the task
requirements, some of these six coordinates can be constrained, while the rest are left as free
DOFs. For position constraints, the Cartesian coordinates of the point as a function of the
joint variables are constrained. For orientation constraints, the direction of the unit vectors
of the link local frame is constrained in terms of the global frame.

(4) Path constraints Every manipulator motion generates an end-effector path along the
time in Cartesian space. This end-effector path may be either constrained by task require-
ments or naturally unconstrained. Usually, the path is given as a task requirement. For ex-
ample, the end-effector paths of drawing a straight line or welding on a surface are pre-
determined from the task requirements. Suppose the end-effector path for the task is as-
signed as a parametric curve in Cartesian space such as

path(t) = [
xpath(t), ypath(t), zpath(t)

]T
. (15)

To ensure that the end-effector point characterized by x = [x, y, z]T as a function of joint
variables stays on the path during the motion, the distance from the end-effector point to the
desired path in the Cartesian space is enforced as a constraint

∥∥x
(
q(t)

)− path(t)
∥∥≤ ε, (16)

where 0 ≤ t ≤ tf and ε is a small positive number as a specified tolerance (e.g., 0.001).

5 Modeling of fictitious joints

In a three-dimensional space, the relative configuration between two unconstrained rigid
bodies has six DOFs. In a general robotic motion, certain constraint loads exist at joints be-
cause some or all of the six relative DOFs between the two connected links are not allowed,
i.e., they are constrained. This feature is equivalent to a system with two links connected
by six joints that represent the six relative DOFs, with some of these constrained. Based
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Fig. 5 Modeling of fictitious
joints

on this concept, additional joints are modeled besides the real joints to formulate the joint
constraint loads. When the DH representation method is used, a single joint represents one
DOF, which is either revolute or prismatic. Therefore, for a single joint, the remaining five
DOFs are constrained between the two links. We add these five joints to the real joint. If the
real joint is revolute, then the other five are composed of two revolute and three prismatic
joints (Fig. 5). If the real joint is prismatic, then the other five are composed of two prismatic
and three revolute joints. Since these are not the real joints, they are called fictitious joints.

Consider an open-loop system of n generalized coordinates. Let f be the number of fic-
titious joints at the point of interest. For convenience and without loss of generality, denote
the additional fictitious joint variables as qn+1, qn+2, . . . , qn+f . Because of the addition of
fictitious joints, the total number of DOFs is now increased to n + f . It is thus necessary to
enforce additional constraints, the number of which is same as the number of fictitious joints.
In reality, the fictitious joints cannot generate any displacements. Thus, the additional con-
straints are the zero-displacement constraints at the fictitious joints. Mathematically, these
are the equality constraints expressed as follows:

fict� =
⎡
⎢⎣

qn+1
...

qn+f

⎤
⎥⎦

f ×1

= 0. (17)

Then the actuator forces and torques corresponding to the fictitious joints are the joint con-
straint loads. In the context of constrained dynamics, the joint constraint loads can be ob-
tained from coordinate transformations of the Lagrange multipliers λ1, . . . , λf associated
with the constraint equation (17). In this manner, the method of Lagrange multipliers can
be formulated for the systems represented by DH notation. Since the fictitious joints are not
real, the link lengths, masses, and moments/products of inertia are all zero for the associated
fictitious links. Note that, although these zero parameters may lead to sparsity in the matrices
of the equations of motion (7), the proposed method does not encounter the usual numerical
difficulties of ill-conditioning. This is because this method does not involve any forward
dynamics approach, and the numerical integration or matrix inversion of the equations of
motion is not required.
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5.1 Formulation of DAEs

A system of DAEs can be formulated with the fictitious joints. The Jacobian matrix of the
constraints (17) is calculated as follows

fict�q = ∂

∂[q1 . . . qn+f ]T

⎡
⎢⎣

qn+1
...

qn+f

⎤
⎥⎦

f ×1

= [
0f ×n If ×f

]
f ×(n+f )

. (18)

Here, we use the popular notation fict�q for the constraint Jacobian matrix, while J has been
used to represent the configuration Jacobian matrices in the equations of motion. For each
generalized coordinate qi of the system, there exists a corresponding generalized constraint
force Ci . The generalized constraint force vector C can be obtained from the constraint
Jacobian matrix and the Lagrange multipliers

C =
⎡
⎢⎣

C1
...

Cn+f

⎤
⎥⎦

(n+f )×1

= −fict�T
qλ = −

[
0n×f

If ×f

]

(n+f )×f

⎡
⎢⎣

λn+1
...

λn+f

⎤
⎥⎦

f ×1

= −

⎡
⎢⎢⎢⎣

0n×1

λn+1
...

λn+f

⎤
⎥⎥⎥⎦

(n+f )×1

.

(19)

The constrained equations of motion is then

τ = M(q)q̈ + V(q, q̇) +
∑

i

JT
i mig +

∑
k

JT
k

[ −Fk

−Mk

]
+ T(q, q̇) + fict�T

qλ (20)

subject to

fict� = [qn+1 . . . qn+f ]T
f ×1 = 0. (21)

The Lagrange multiplier form of the equations of motion (20) and the constraint equations
(21) must be satisfied simultaneously at all times, which constitutes a set of mixed DAE of
index-3 [7]. Let Q(q, q̇) be the vector that contains the external and nonconservative forces
as well as the velocity-dependent inertia forces as follows

Q(q, q̇) = τ − V(q, q̇) −
∑

i

JT
i mig −

∑
k

JT
k

[ −Fk

−Mk

]
− T(q, q̇). (22)

Then the constrained equations of motion (20) can be written as

Mq̈ + fict�T
qλ = Q(q, q̇). (23)

Equation (23), combined with the double time-derivatives of the constraint functions (21),
forms the following standard matrix equation called DAE of index-1

[
M fict�T

q
fict�q 0

]{
q̈

λ

}
=
{

Q(q, q̇)

−fict�̇qq̇ − fict�̇t

}
, (24)

where the upper dot indicates the total derivative with respect to time, and the subscript
indicates partial derivatives. For a nonredundant manipulator with known actuator torques,
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the total number of equations is the same as the total number of unknown variables, i.e., q’s
and λ’s. As mentioned earlier, solving these equations for nonredundant systems with q and
λ as unknowns usually requires numerical integration methods [7, 15].

The above equations of motion can be simplified by noting that there is no actuator
torque or force at the fictitious joints (i.e., no energy input is provided). Thus, by moving
the generalized constraint load vector term in (20) to the left-hand side, we obtain

[
τ1 . . . τn,−λn+1 . . . − λn+f

]T

(n+f )×1

= M(q)q̈ + V(q, q̇) +
∑

i

JT
i mig +

∑
k

JT
k

[ −Fk

−Mk

]
+ T(q, q̇). (25)

If the negatives of Lagrange multipliers are regarded as the actuator torques corresponding
to the fictitious joints, (25) is equivalent to the equations of motion for nonconstrained dy-
namics. Therefore, in practice, the fictitious joints are treated exactly like the real ones, and
the routine calculation of actuator torques using optimization will solve for the constraint
loads as well.

5.2 Optimization problem for motion generation and joint constraint loads determination

Since the joint constraint loads may vary with time, the λ’s will also, in general, be functions
of time. In our dynamics formulation, the λ’s are evaluated at each time step. The control
variables, cost function, and constraints for the optimization are the same as those described
previously, except for some following differences due to the addition of the fictitious joints.
The fictitious joint variables are treated like real joint variables, and the corresponding con-
trol points P̂(nc×f ) serve as additional variables. However, it is important to note that the
constraint loads from the fictitious joints should not be included in the energy calculation.
In other words, only the actuator torques from the real joints are used to calculate the energy
consumption. Another notable difference is the addition of constraints due to the fictitious
joints. The additional constraints imposed on the fictitious joints can be treated like real
joint limits with both the lower and upper limits zero. Also note that unlike the real joints,
the fictitious joints do not have any maximum force limit constraints. The final optimization
problem for the joint constraint loads and motion planning of redundant manipulators can
be stated as follows:

Find: Joint control points (P(nc×n)) and fictitious joint control points (P̂(nc×f ))

To minimize: Energy consumption (E)

Subject to constraints:
Joint limits (qL ≤ q ≤ qU)

Actuator torque limits (τL ≤ τ ≤ τU)

Path constraints (‖x(q(t)) − path(t)‖ ≤ ε)

Fictitious joint limits (fict� = 0).

At each time interval, the joint variables, required actuator torques, energy rates, and
joint constraint loads are calculated.

6 Example results and discussion

The proposed method will be demonstrated using a 3-DOF planar manipulator (motion plan-
ning) and a 21-DOF human model (motion prediction). For each case, the optimal motion is
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−π ≤ q1 ≤ π; −8500 ≤ τ1 ≤ 8500

−π ≤ q2 ≤ π; −4300 ≤ τ2 ≤ 4300

−π ≤ q3 ≤ π; −1500 ≤ τ3 ≤ 1500

Fig. 6 A 3-DOF planar manipulator

Table 1 The DH parameters for
the 3-DOF planar manipulator Joint θ d α a

1 q1 0 0 1

2 q2 0 0 1

3 q3 0 0 1

generated first without calculating the joint constraint loads. Next, the same optimal motion
problem is solved with the proposed method associated with the fictitious joints, and the
results will be analyzed and compared. Although simple tasks are illustrated as examples in
this presentation, our method can be easily applied to more complicated tasks.

Redundant manipulator Consider a 3R planar manipulator (Fig. 6) where each link is
modeled as a thin rod with 1 m of length and 10 kg of mass. The DH parameters are listed
in Table 1. For the equations of motion, we neglect the torques due to the stiffness and
dissipative properties at the joints. The joint variable limits (radians) and the actuator torque
limits (Nm) are given as shown below.

The task is defined in the X–Y plane as follows. Given (2.6, 0.866, 0) (m) and
(1.5, 0.866, 0) (m) as the initial and the final global coordinates of the end-effector, re-
spectively, the manipulator is required to pull (or drag) in the −X direction along a straight
line with external forces at the end-effector. The time duration is given as 2 seconds. How-
ever, depending on the task requirements or user input, different time durations can be used.
This task represents simple manipulations such as pulling an object or opening a door. To
compare the resulting motions from two extreme cases, we use 1 N and 10000 N as pulling
forces. The generated motions and joint profiles are shown in Figs. 7, 8, from which we
can see that each joint moves smoothly toward the final position. The computing times of
the optimization process for the 1-N- and 10000-N-pulling are 16.72 and 15.39 seconds,
respectively.

The required actuator torques (Fig. 9) for the generated motions satisfy the torque lim-
its, and thus guarantee the successful execution of the task. Each motion profile is a load-
effective motion for the given pulling force under specified actuator capacity limits. The
details are reported in our previous work [20], and some important differences from the
comparison of the two results are briefly explained below.

For the 1-N pulling, the positive torque values of joint 2 are mostly used to sustain the
gravity. It is shown that the values of the link weights dominate the motion and the effect of
the small pulling force is negligible. For the 10000-N pulling, the successful execution of the
task can be explained by analyzing the manipulator configurations and the force equilibrium
of the system free-body diagram at each time step. It is observed that the manipulator tries
to maintain the alignment of links 2 and 3 with the line of application of the large pulling
force (Fig. 7(b)); this is not notable for the small pulling force. Since the magnitude and
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Fig. 7 Generated pulling motions of a 3-DOF planar manipulator

(a) 1 N

(b) 10000 N

Fig. 8 Generated joint profiles for pulling motion
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(a) 1 N

(b) 10000 N

Fig. 9 Required actuator torque profiles for pulling motion

direction of the pulling force is constant, the actuator torque values to sustain the pulling
force at joint 1 in Fig. 9(b) are almost constant (except for the initial and final stages) due
to the constant moment-arm length. The actuator torques at joints 2 and 3 can be roughly
calculated as the product of the constant pulling force and the offset distance perpendicular
from the line of the pulling force (of course, the inertia forces and gravity should be added
to obtain exact torque values). Thus, in the case of the large-force pulling task in which
the effects of the link weights are relatively small, the actuator torques are mostly used to
sustain the large pulling force. By positioning joints 2 and 3 as close to the line of force as
possible, the actuator torque values for those joints are minimized. Note that a similar trend
is observed in human arm motion when pulling with large force.

Next, let us generate the optimal motion for the same task, while calculating the joint con-
straint forces. In addition to the usual outputs, it is required to determine the joint constraint
forces between links 2 and 3. Since the model is two-dimensional, we need two fictitious
prismatic joints between links 2 and 3 to achieve the full three DOFs in the plane. Let us
renumber these fictitious joints as joints 3 and 4 and the original joint 3 as joint 5 (Fig. 10).
Then the DH parameters are extended to include the fictitious joints between links 2 and 3
(Table 2).

The calculated results for joint variables and required actuator torques are exactly same
as our previous results (Figs. 7–9). At this point, it is important to note that the addition
of the fictitious joints for joint constraint loads calculation does not affect the original opti-
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Fig. 10 The fictitious joints of a 3-DOF planar manipulator

Table 2 Extended DH
parameters for the 3-DOF
planar manipulator

Joint θ d α a

1 q1 0 0 1

2 π/2 + q2 0 π/2 0

3 π/2 1 + q3 π/2 0

4 π/2 q4 π/2 0

5 q5 0 0 1

mal motion results. With the extended optimization formulation, the joint constraint forces
are the calculated actuator forces at joints 3 and 4 (Fig. 11). The computing times of the
optimization with fictitious joints for the 1-N- and 10000-N-pulling are 149.16 and 136.84
seconds, respectively. Considering that the closed form of the Lagrangian equations of mo-
tion (7) has order of O(N4), the difference between the computing times with and without
fictitious joints is plausible. However, depending on the formulation types of the equations
of motion, the time difference can be further reduced (e.g., O(N) for the recursive Newton–
Euler method).

As a quick intuitive validation, the above results for joint constraint forces can be eas-
ily verified by writing force equilibrium for the free-body diagram of links 2 and 3. The
constraint forces at joints 3 and 4 should mainly sustain the applied pulling force (1 N and
10000 N) and the weight of link 3 (and inertia forces, of course). For example, since link
3 is kept almost horizontal during the 10000-N pulling motion, it is easy to check that our
result for fictitious joint 3 is approximately −10000 N throughout the motion.

For more rigorous verification of our method and results, the equations of motion (20)
with given actuator torques, external loads (including gravity), and constraint loads should
be integrated to obtain the joint variable profiles (forward dynamics). The initial conditions
should be read from the joint variable profiles. Note that now the differential equations of
motion should be solved instead of the DAEs, since the Lagrange multipliers are known, and
thus the algebraic constraint equations are dropped. On the other hand, as another way to
verify the solution of the equations of motion, the inverse dynamics with given joint variable
profiles can be solved for the actuator torques and the constraint loads. This idea is based
on the existence and uniqueness theorem for the solution of forward dynamics with fixed
initial conditions. For multibody systems with no friction or contacts, there exists a unique
set of forward dynamics solutions for given initial conditions. The details of the theorem
and proof can be found in texts of nonlinear dynamics and differential equations (e.g., [28]).
For systems with frictional contact, the existence and uniqueness criteria of the forward
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(a) 1 N

(b) 10000 N

Fig. 11 Joint constraint force profiles for pulling motion

dynamics solution are more complicated [12]. Since no friction or discontinuity is involved
in our problems, our results were verified by solving the inverse dynamics problem using the
joint variable profiles obtained previously. The resulting actuator torques and the constraint
loads are shown to be identical to the ones obtained through our optimization algorithm.
Therefore, the proposed method is proven to determine accurate joint constraint loads for a
given motion of a 3-DOF planar manipulator.

Human model Consider the 21-DOF SantosTM digital human model of the torso and right
arm (Fig. 12), which is described in detail by Kim et al. [19]. It is desired to predict the
motion of pulling a lever with a constant 500-N force from an initial position (−30, 10, 60)
(cm) to a final position (−30, 10, 20) (cm) in the global coordinate frame, where the path of
the lever is given as a straight line. The time duration for the task is given as 2 seconds. For
simplicity, the actuator torque limits are not taken into account in this example.

Figures 13, 14 show the predicted motions and calculated results of several notable joints.
The digital human extends its torso backward to use its own body weight to sustain the large
pulling force at the right hand. In Fig. 14, the large negative actuator torque values for torso
axial rotations (joints 3, 6, 9, and 12) and clavicle/shoulder abductions (joints 14 and 16) for
the 500-N lever-pulling indicate the major contributions of these joints to the pulling mo-
tion. These large actuator torques are used to generate the motion while resisting the large
pulling force in the forward direction. In this way, the digital human can also straighten its
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Fig. 12 A 21-DOF human model and its fictitious joints

Fig. 13 Predicted motion of
500-N one-arm lever-pulling

right arm in the initial posture to minimize the actuator torques at the wrist and elbow. This
trend is similar to the previous load-effective motion results for the 3-DOF planar manipu-
lator. These features are commonly observed in real-world human motion. When pulling or
dragging a heavy object, a human usually leans his or her body in the desired direction of
pulling. In other words, to accomplish a given task, humans naturally generate the effective
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Fig. 14 Predicted joint variable, actuator torque, and energy rate profiles for lever-pulling (q2—torso
flexion/extension; q15—shoulder flexion/extension; q16—shoulder abduction/adduction; q18—elbow flex-
ion/extension; q21—wrist flexion/extension)

motion that minimizes the required actuator torques within the actuator capacities (torque
limits). A similar argument can be made for the motion of pushing a heavy object, where it
is frequently observed that a human leans his or her body in the direction of pushing. The
details of the results and discussion are presented by Kim et al. [19].

Next, the same task motion will be predicted along with the constraint loads at the el-
bow. Two revolute joints represent the motion of the elbow (flexion/extension and supina-
tion/pronation). Therefore, four fictitious joints are added to the right elbow to allow full
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Table 3 Extended DH
parameters for human upper body Joint θ d α a

19 −π/2 + q19 0 −π/2 0

20 −π/2 + q20 0 −π/2 0

21 0 q21 π/2 0

22 π/2 q22 π/2 0

23 π/2 24.7 + q23 π/2 0

24 π/2 + q24 0 π/2 0

25 q25 0 0 0

Table 4 Calculated joint constraint forces and moments

Fictitious joint Due to applied force Due to gravity Total constraint

force/moments

20 −38.63 (Nm) −0.0226 (Nm) −38.65 (Nm)

21 −155.67 (N) 0.0037 (N) −155.67 (N)

22 81.50 (N) 21.24 (N) 102.74 (N)

23 −468.11 (N) 3.70 (N) −464.41 (N)

Fig. 15 Free-body diagram of the forearm and the hand with joint constraint loads

DOFs, and thus the total number of DOFs of the model is increased to 25. The fictitious
joints (Fig. 12) are one revolute joint (joint 20) and three prismatic joints (joints 21, 22,
and 23). The DH parameters from joint 1 to joint 18 remain the same as in the original
model. The DH parameters of the modified model from joint 19 to joint 25 are given in
Table 3.

The optimization results for the motion and the required actuator torques are almost
identical to the previous results (again, adding the fictitious joints in the formulation did
not affect the original optimal motion results); thus we will limit our discussion to the joint
constraint loads. The calculated joint constraint forces and moments at all four fictitious
joints (joints 20, 21, 22, and 23) for the motion at time 0 are listed in Table 4.

Again, the results can be roughly validated by analyzing the free-body diagram of the
system (forearm and hand, Fig. 15). The calculated constraint force at joint 23 due to the
applied force (−468.11 N) is very close to the amount of applied pulling force (500 N).
Considering that the forearm of the motion at time 0 is almost horizontal, our result is correct
(where the inertia force should be added). Also, in this configuration, the constraint force at
joint 22 is almost vertical. Since the total mass of the forearm and the hand is given as 2.2 kg,
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Fig. 16 Joint constraint force
profile for joint 23

the weight of the forearm and hand is 21.56 N, which matches the calculated constraint force
at joint 22 due to gravity (21.24 N).

The constraint force profile during the motion for joint 23 is shown in Fig. 16. Here we
show only the result of joint 23 since it is the dominant constraint force among the others
in terms of magnitude. Throughout the motion, the constraint force at joint 23 is maintained
very close to −500 N. This is because the forearm is almost horizontal during the motion,
and thus the magnitude of the constraint force at joint 23 has to be almost the same as the
applied force to satisfy the force equilibrium.

For more accurate verification, our results were validated against the inverse dynamics
solutions using the given joint variable profiles (as explained previously, this works for the
case where no friction or discontinuity is involved). The resulting actuator torques and the
constraint loads were shown to be identical to the ones obtained through our optimization
algorithm, which verifies our results.

Although our example shows the determination of constraint load components at the
elbow, the method can be applied to any joint of the human body, such as hips, spine, shoul-
ders, knees, ankles, or wrists. It can also be used to determine the internal reaction forces
and moments at the points that are not real joints. For instance, the reaction forces at the
middle of a link can be determined by adding full six-DOF fictitious joints to the point of
interest.

7 Conclusion

We proposed a method of solving for the joint constraint loads (Lagrange multipliers)
for load-effective optimal dynamic motions of redundant manipulators represented in DH
notation. When the DH representation is used for kinematic modeling, the relative joint
constraints cannot be described explicitly using common formulation methods such as the
Cartesian approach. By adding fictitious joints (thus increasing DOFs), the joint constraint
loads can be obtained for the manipulators modeled in DH representation. The optimiza-
tion formulation for redundant manipulator dynamic motion planning is extended to include
the Lagrange multipliers associated with the fictitious joints and the corresponding zero-
displacement constraints. The joint constraint loads are calculated concurrently during the
process of optimal motion planning, which traditionally has been done as a post-process
according to the resulting motion profiles. The results from our calculation were verified
against both intuitive check and numerical inverse dynamics solutions. Furthermore, it was
shown that the implementation of joint constraint loads by adding fictitious joints to the
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formulation do not affect the original results of the planned motion. Although the DH pa-
rameters should be modified at the specified joints, this process can easily be automated as
future work. The calculated joint constraint loads can be used for stress-strain analysis of ro-
botic systems, design of joints and links of manipulators, prediction of human injury at joints
and bones, and so on. Our method will provide a viable alternative to the determination of
joint constraint loads, where the equivalent DAEs are satisfied.
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