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Abstract Least action principles provide an insightful starting point from which problems
involving constraints and task-level objectives can be addressed. In this paper, the principle
of least action is first treated with regard to holonomic constraints in multibody systems.
A variant of this, the principle of least curvature or straightest path, is then investigated
in the context of geodesic paths on constrained motion manifolds. Subsequently, task space
descriptions are addressed and the operational space approach is interpreted in terms of least
action. Task-level control is then applied to the problem of cost minimization. Finally, task-
level optimization is formulated with respect to extremizing an objective criterion, where the
criterion is interpreted as the action of the system. Examples are presented which illustrate
these approaches.

Keywords Least action - Constraints - Task-level control - Musculoskeletal system -
Optimization

1 Introduction

Variational principles have shared a rich history in mathematics and physics. Their efficacy
has been particularly apparent with regard to problems in mechanics. Of special importance
among variational principles are so-called least action principles [6, 14, 20]. The fundamen-
tal theme associated with these principles is that the evolution of a dynamical system can be
revealed by examining the stationary condition for an appropriately defined action integral.
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304 V. De Sapio, O. Khatib, S. Delp

In the field of robotics, there has been more interest in the multibody equations of mo-
tion that result from such principles than in the principles themselves. However, significant
insight can be derived by using a least action principle as a point of departure for framing
problems in robotics. In this paper, we will apply this approach to holonomically constrained
systems and task-level control problems involving rheonomic servo constraints. We will also
address task-level optimization problems where a task consistent path is sought which ex-
tremizes some criterion.

We begin with the application of least action to constrained systems, which yields the
constrained Euler—Lagrange equations. A special case of this is investigated in the context
of least curvature, or straightest path, on a constrained motion manifold. An example is
presented which addresses the problem of computing geodesics for a surface, using a me-
chanical analog.

Subsequently, least action is applied to task space by interpreting the operational
space approach [18] with regard to least action for rheonomically constrained systems.
Task/posture decomposition is then applied to the problem of performing a task while min-
imizing some instantaneous criterion. Finally, by defining action in terms of a performance
criterion, task-level optimization is formulated with respect to an extremization objective.
Examples of these approaches are presented for model problems involving robotics and the
biomechanics of movement.

2 Constrained least action

While least action can refer to a general family of variational principles, perhaps the most
significant among these is Hamilton’s principle of least action. This principle states that the
path, g(¢), of a system in configuration space over an interval, [7,, ], is such that the action
is stationary under all path variations that vanish at the endpoints, g (#,) and g (¢/). It is noted
that this does not strictly imply a minimization of the action, as the name of the principle
suggests, but rather an extremization of the action. For schleronomic systems (no explicit
time dependence) the action is defined as,

Tf
I é/ L(q.q)dt (1)

where ¢ is a set of n generalized coordinates and £ = T — V is the Lagrangian of the system.
For conciseness, we will often refrain from explicitly denoting the functional dependence
of £ on ¢ and ¢. This practice will also be employed with other quantities throughout the
paper.

In the absence of constraints, least action requires that

SI1=0 V8|8q(t,) =5q(t,)=0 2)

where § represents the first variation. Least action can also be applied to multibody systems
with auxiliary holonomic constraint equations. We introduce a set of m holonomic (and
schleronomic) constraint equations, ¢(g) = 0. The first variation of the constraint equations
is 6¢p = @5q = 0, where the matrix, @ (q) = d¢/dq € R"c*" is the constraint Jacobian. In
this case, the principle of least action can be stated as,

81 =0 V8|8q(t,) =8q(t;)=0and dsq =0. 3)
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Least action principles and their application to constrained 305

Thus, least action seeks the path, q(¢), in configuration space that results in a stationary
value of action, /, under all path variations, 8¢, that vanish at the endpoints and satisfy the
constraints.

For forced systems, the principle of least action is modified such that the variation in the
action is given by

Ly ty
51:5/ Ldt+/ v 5qdr. @)
to to

Calculus of variations and integration by parts can be applied to this problem [14]. The
derivation is straightforward and leads to

froL daL
81:/ — ————+71)-dqdt. (@)
» \0q dtdq

This makes use of the condition that the path variations vanish at the endpoints. The addi-
tional condition,

8I=0 Véq|®5q=0 (6)

applied to (5) implies the following orthogonality relation at any instant,

<_—_———r>-8q:0 Véq € ker(P) 0

where ker() represents the kernel or null space operator. Thus,
<——, - = r) € ker(®)" =im(®") 8)

where im() represents the image or range operator. This implies the familiar constrained
Euler-Lagrange equations,

— - =1t4+0"x 9)

where A is a set of m unknown Lagrange multipliers. Identical equations could have been ob-
tained by embedding the constraints directly in the Lagrangian. In this case, the Lagrangian
in (4) would be replaced by the following augmented Lagrangian with the constraints ad-
joined,

Lag(q,4. M) = L(q,q)+ 1" d(q) (10)

and the stationary value of / would be sought for all variations that vanish at the endpoints.
We note that,

8Lawg =L+ A8 =8L+ 1" Dq. (1

Using indicial notion with summation over repeated indices, we can express (9) as,

T . N *T . 8T+8V o 12)
—— G, —q; — — =T ik

3g;9q; ' 0g;dq; " dqi g s
N—— N e’ ——"

M;j b; 8i
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or in standard matrix form,
M(q)§+b(q.¢)+g@) =1 +® L (13)

subject to ¢(q) = 0. For the stationary value of [ to correspond to a minimum requires that
the second variation, 821, be greater than or equal to zero. In [27], this condition is shown to
be satisfied, for sufficiently small time intervals, [#,, ¢ /], if the following is satisfied,

1y
/(mﬁmqm>o (14)
to
which corresponds to M being positive definite over the actual path. For classical La-
grangian systems, this condition is met.

Since (13) forms a set of second order differential equations, it is appropriate to comple-
ment it with the second derivative of the constraint equations,

d=0G+D4=0. (15)

In practice, the integration of the forward dynamics would also require constraint stabiliza-
tion to mitigate drift in the constraints. Baumgarte stabilization [3] involves replacing our
original acceleration constraint equations with a linear combination of acceleration, velocity
and position constraint terms,

b+ pd+ap==>G+ DG+ PG+ ad=0. (16)

3 Least curvature or straightest path

In the previous section, we reviewed the application of the principle of least action to a gen-
eral class of holonomically constrained multibody systems. In this section, we will restrict
the domain of our examination to investigate alternate statements of least action.

The special case of a particle moving in n dimensions, r(t) = ¢(¢) € R", under holo-
nomic constraints but no applied force can be described by,

Mi=®TL subjectto ¢(r)=0. a7

This system can be equivalently represented using Gauss’ principle of least constraint [9,
11, 13] which states that the Gauss function, G, is stationary under all acceleration variations
that satisfy the constraints. That is,

3G =0 V§5|8q €ker(P). (18)

Since the Gauss function is a positive definite quadratic form, Gauss’ principle is a strict
minimization principle. For this system, the Gauss function is defined as

A 1 . oo T yoe o
Q:EM(r—r*) (F—F,) (19)
where F, is the unconstrained acceleration of the system. That is, ¥, is the acceleration that

the system would exhibit in the absence of constraints. In this case, where no applied forces
are present, ¥, = 0. So

S Y 0,
=3 rr_2 (r,r).
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The vector r can be parameterized in terms of arc length, s, in which case we have the
following relationships,

. dr drds
F=— = —— 1)
dt ds dt
and
ddr d (ds\*® drd’s
F=——=—(— - (22)
dt dr  ds*\ dt ds dt?

Substituting (22) into (20), and noting that ||dr /ds||* =1 and < ||dr /ds||* = 0, we have

1 ds\* [d*s\*
o= pfe(8) - ()]

subject to the constraints, where the term k = ||d?r /ds?| = ||r”| is the extrinsic path curva-
ture. The term ds/dt is the particle speed, determined from the system state, and d’s/dt>
is the tangential acceleration. Both k% and (d’s/dt?)? are positive numbers. Additionally,
they can be selected (and minimized) independently of each other. Therefore, minimizing G
subject to the constraints implies that k? (and k) is minimized subject to the constraints and
that d%s /dt> = 0.

The implication that curvature is minimized reflects Hertz’ principle of least curvature
[15, 19, 22] which states that under force-free constrained motion, a system will follow the
path of least extrinsic curvature, k, on the constrained motion manifold, Q7. Further, this
constrained minimization implies V> LT, (QP”), where T,(Q") denotes the tangent space of
QP at the point r. We note

9 d*r
Vi = "1P=2r"=2"— 24
P =2r" =27 (24)
SO
d*r
—1T.(07). 25
LT (07) @5)
This implies that the covariant derivative, D/ds, of the path tangent vanishes,
D dr d dr d*r
— — =proj,| —— ) =proj;( — ) =0 26
ds ds prOJT(ds ds) prOJT<d52> (26)

where projr () denotes the projection of a vector onto the tangent space. The intrinsic geo-
desic curvature of the path,

27)

g=

D dr
ds ds

is thus zero. This implies that under force-free constrained motion a system will follow
geodesics (paths for which k, = 0) on the constrained motion manifold. This is illustrated
in Fig. 1.

Since a geodesic path minimizes arc length, the condition of zero geodesic curvature
is equivalent to finding a path which minimizes the action defined in terms of arc length.
That is

81:8/ds:0 (28)
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Fig. 1 Geodesic force-free paths
on a constrained motion
manifold. Force-free motion
minimizes the extrinsic path
curvature, k, subject to the
constraints, yielding zero
geodesic (intrinsic) curvature, kg

subject to the constraints. Equivalently, for a system with no external forces, this fact can be
concluded from Jacobi’s form of least action [14] which states,

51:6/thdt=0 (29)
o
subject to the constraints. In this case, the Lagrangian has been replaced by the kinetic
energy alone (no potential energy). Since
dt =/M/2T ds (30)
we have
81:8/ MT/2ds =0. (€20)

Because T is constant for this system (31) implies that arc length is minimized on the con-
strained motion manifold.

3.1 Computing geodesics using a mechanical analog

One application of the least curvature principle involves computing the geodesics of a sur-
face by solving an analogous mechanical system. By the principle of least curvature, solu-
tions of this system will trace out geodesics on the constrained motion surface Q7 C R3.
Given the system

Mi=®T)\ subjecttop(r)=0 (32)
where ¢ (r) = 0 is an implicit representation of the surface represented parametrically by
r(u, v). Using the acceleration form of the constraint equation, the system of (32) can be
solved to yield the differential equations,

F=—o'(00”) 'éF 33)
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or, incorporating constraint stabilization
F=—0T(007) (bF + fBF + a). (34)

Thus, (34) represents a mechanically derived approach for computing geodesics. Equa-
tion (34) is not limited to R? and can be used to compute geodesics in R”.

3.1.1 Example

We can apply (34) to the problem of computing geodesics for the surface,

1 2
¢(X,y,z)=4+x2+y2—(z—§c0s3xcos3y> =0. (35)

The constraint Jacobian is computed directly from ¢ as

— (% 99 3_¢> (36)
" \ox 3y 9z

and (34) yields a system of 3 second order nonlinear differential equations in x, y and z,
G55 =—0"(@07) (bF + fOF + ad). 37

Specifying the point (x,, y,, z,) = (.25, —.25, —1.85) as one initial condition, we can solve
(37) using different departure directions, (x,, Y., Z,). It is noted that the choice of the initial
condition and departure directions must be consistent with the kinematics of the system.
That is, ¢ (X, Yo, 20) =0, and @7 (%,¥,%,) = 0. The resulting geodesics are shown in Fig. 2.
It is noted that the specific time parameterization used does not affect the shape of the paths,
only the speed at which they are traversed. Therefore, only the direction (not the magnitude)
of the initial velocity dictates the shape of the path.

Fig. 2 Solving the system of
(34) geodesic force-free paths
were computed for the surface

2 2
6= 4+x 4y p=4+1" +y
(z— cos 3xcos3y)2 =0. All : (2 — L cos 3z cos 3y)’ =
paths were chosen to emanate
from the point (:25,—.25,~1.85)

(0.25, —-0.25, —1.85)
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4 Least action in task space

The task space description of robotic systems, as formalized by Khatib with the operational
space approach [17], presents an avenue of investigation with regard to the principle of
least action. This is fundamentally due to the observation that tasks can be interpreted as
rheonomic constraints enforced by a control law. The task space control problem can thus
be interpreted as a rheonomically constrained least action problem.

We begin by expressing the dynamical equations for an unconstrained and fully actuated
system in the form:

t=J"f+N't,=Mj+b+g (38)

where the control torque has been decomposed into a fask component, J7f, and a null space
or posture component, N' T p- The term J(q) = dx/dg € R"7*" is the Jacobian associated
with task vector, x(q) € R”7. The term f € R"7 is the operational space force, N(q)7 =
1- JTjT € R™" is the null space projection matrix, and jT € R™7*" is the dynamically
consistent inverse [18] of the task Jacobian. The term 7, € R" is an arbitrary generalized
force vector that is projected into the null space, N7 . Projecting (38) into task space yields
the operational space equations [18],

f=Al@x+nq,q) +pq) (39)

where A(g) € R"T*™T is the operational space mass matrix, u(q,q) € R"T is the opera-
tional space centrifugal and Coriolis force vector, and p(g) € R™7 is the operational space
gravity vector [18],

A=IM g7 (40)
w=AJM'b—AJq, (41)
p=AJM'g. (42)

As suggested earlier, tasks can be viewed as rheonomic servo (control) constraints [2, 5,
11] which enforce some motion control objective. In particular, we can express a task in the
form of a set of rheonomic trajectory constraints, x(q) = x,(t), where x, is a desired task
space trajectory.

Noting that éx; = 0, since time is fixed under all virtual variations, we have éx = Jdq
= 0. Application of the principle of least action then yields:

81 =0 V5|éq(t,) =6q(ty) =0and Jéq =0. (43)
Thus,
rraL  d oL
8l = — ———]-8qdt=0 Viq|Jéq=0. 44
fto <3q dzaq) q qlJdq (44)
This implies the following Euler—Lagrange equations,
d oL oL T
—— ——= . 45
dt 9q  0q I'f )

As in Sect. 2, identical equations could have been obtained by embedding the rheonomic
constraints directly in the Lagrangian. Adjoining the constraints yields

Lag(q.4.0) 2 L(q.§) + [ [x(g) —x4(1)] (46)
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and the stationary value of / would be sought for all variations that vanish at the endpoints.
Recalling that éx; =0,

8Lug =8L +fT8x=8L+f"Joq. (47)
In either case, (45) can be expressed as
J'f=Mj+b+g (48)

subject to ¥(q) = X,(¢). This is similar to (38) except that no null space term is present. That
is, T = JTf (absent any null space torque) achieves the control objective consistent with
least action. Projecting (45) into task space yields the operational space equations noted
earlier,

f=AX+pn+p. (49)

Since the trajectory constraints are being imposed by a servo, in practice they cannot be
perfectly achieved in open loop and drift would occur. Consequently the trajectory constraint
equations need to be augmented with feedback terms. For example, the expression

F=fT =200 + Ky [£a () — %] + Ky [xa () — x] (50)

represents a linear servo control law. This is analogous to the numerical constraint stabiliza-
tion that was employed in (16). The equations of motion for our servo enabled system are

f=Af +i+p (5D

where the ” represents estimates of the dynamic properties since the servo is assumed not
to have perfect knowledge of the system. Equation (51) provides feedback linearization by
compensating for the dynamics of the system.

5 Least action of cost criteria

We now pose the problem of minimizing a cost criterion subject to a motion control task.
This can be performed for an instantaneous potential based criterion, U (q), by using a gra-
dient descent method in conjunction with the task/posture decomposition of (38). Given the
Lagrangian form of the system equations of motion

doL odL
T=——— (52)
dt aq 0q
our overall control torque is
t=J'f+N'z,. (53)

The posture term, 7, can be chosen to correspond to the gradient descent, —dU /dq, of our
cost criterion. In this case, the equations of motion are

d oL 0L oUu
Tf=— 2 2L NT = 54
e e e (54)
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or in matrix form
J'f=Mj+b+g+N'g, (55)

subject to the task ¥(q) = X,(¢). The term g, is the gradient of the potential, U, analogous
to the gravity vector, g, in the Lagrangian system (gradient of the potential energy, V). We
complement (55) with the task space control law given by (50) and (51).

Gradient descent seeks to reduce an instantaneous criterion rather than extremize a cri-
terion over an integration interval. To address this latter case, we define the action integral
associated with a cost criterion as

IéffL(q,fndr (56)

where L(q, q) is an instantaneous criterion. If no task trajectory constraints are specified
we have

SI=0 V8|8q(t,) =dq(t;) =0. (57)

It is noted that (56) and (57) represent an optimization problem where a path, g (¢), is sought

[4] rather than an optimal control problem where a control history, u(z), is sought. The

optimal control problem will not be discussed here but the reader is referred to [7, 25].
Equations (56) and (57) result in the Euler—Lagrange equations,

——— = —=0. (58)
dt 0q 0q
Using indicial notion, we can express (58) as
02L 9%L oL
—— i+ ———4; — =0 (39)
04:idq; ~ 94idq; " da;
S~—— —
My br;+8rL;
or, in matrix form,
M.(q,9)4 +br(q,9)+g.(q)=0. (60)

As in Sect. 2, if M is positive definite over the actual path the stationary value of I corre-
sponds to a minimum (given a sufficiently small time interval).

Thus far, the sets of second order differential equations that have been derived from least
action principles have been assumed to form initial value problems (IVP). That is, the initial
conditions ¢ (¢,) and ¢ (¢,) were assumed to be specified, rather than the boundary conditions,
q(t,) and ¢ (ts), that appear in the action integral. It may, however, be more appropriate to
pose the system of (58) as a two point boundary value problem (TPBVP) where ¢ (#,) and
q(tr) are specified. In this case, various shooting methods can be employed to solve the
TPBVP. These solution methods will not be addressed here but the reader is referred to [7,
23].

Imposing rheonomic task trajectory constraints, x(q) = x,(¢), implies

81=0 V8|8q(t,) =58q(t;)=0and J5g =0 (61)

which yields the system
d oL oL

= _ =g 62
dt 3¢ dq 4 62)
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or
J'A=M,§+b.+g, (63)

subject to X¥(q) = X,(¢). Projecting (63) into task space yields the operational space equa-
tions for this system:

A=A(q. )%+ n.(q.9) +p.(q) (64)

where A, u;, and p; are analogous to A, , and p. That is, they have the same form as the
expressions in (40) through (42), but with M, b, and g replaced by M, b;,and g, .
Applying constraint stabilization, the trajectory constraints can be expressed as

¥=A"=X,(0) + B[xa(t) — x| + x4 (1) — x] (65)
and the constraint stabilized system is

A=A\ 4, +p,. (66)

5.1 Robotic cost criterion

The norm of the torque change in a robotic system serves as one example of a mechani-
cal performance criterion. Using this criterion, we may seek a motion which extremizes the
integral of the torque change over the movement interval (see Sect. 5.2). If we apply this op-

timization to the actuator torque associated with overcoming gravity, we have the following
action integral.

tf tf
1= tq.part [Tggar (®7)
to to

5.1.1 Example

We wish to solve the optimization problem of (56) and (61) for the n = 4 degree-of-freedom
robot manipulator shown in Fig. 3. Specifically, a trajectory, g (¢), is sought which moves the

100

-100 s s s n
0 500 1000 1500 2000

time (ms)

Fig. 3 (Left) A redundant torque actuated robot. Initial and final configurations, g (#,) and q(t ), associated
with movement to a target, x , along a prescribed path, x4 (?), are shown. (Right) Time history of the robot
between configurations ¢(f,) and g(t f). Motion corresponds to extremization of the gravity torque change
action integral, subject to the rheonomic constraint
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20 15}
—~
X .,
> g
N
L5 ' 10}
— A L)
=) Z
2 <
o =
=
1.0 = 5t
=
Xl
L(t,)
0.5 . n L 0 2 . " R
0 500 1000 1500 2000 0 500 1000 1500 2000
time (ms) time (ms)

Fig. 4 (Left) Time history of end effector trajectory for the robot manipulator showing compliance with
the rheonomic constraint. (Right) Time history of gravity torque change, L(q,q) = g - g, associated with
extremizing the action integral (67), subject to the rheonomic constraint

robot end effector to a target location, x s, along a prescribed path, x, (), while extremizing
the action integral of (67) associated with gravity torque change. The manipulator is kine-
matically redundant with respect to the my = 2 degree-of-freedom motion task specified.

It is noted that for the specific definition of L used in this example the expression,

v o 0L
Lij — aqlaqj

(63)

cannot generally be shown to be positive definite over any path that yields stationary action
for arbitrary endpoint boundary conditions and task trajectory constraints. So, while least
action will always yield an extremal solution it will not necessarily yield a minimal one in
all cases.

Under task constraints, the system which extremizes the action is given by (63), (65),
and (66). Figures 3 and 4 display time histories of joint motion, endpoint motion, and torque
change for a simulation run. The solution yields the path between configurations ¢ (#,) and
q(ty) which extremizes gravity torque change, given rheonomic constraints on the end ef-
fector of the robot, x = x,4(¢).

5.2 Biomechanical cost criterion

We begin with a general consideration of biomechanical effort measures. An instantaneous
effort measure can be used to seek a trajectory, consistent with task constraints, that mini-
mizes the integral of that measure over the time interval of motion.

As a prelude to the muscle effort measure used here, we consider two effort measures
based on skeletal dynamics. Mechanical power, P, can be used as an instantaneous effort
measure. Power integrated over the movement interval yields

A (Y oo
W:/ Pdt:/ T-qdt. (69)
to to

The minimum work model [24] thus seeks a trajectory, consistent with task constraints,
that minimizes the work function, W. Rather than minimizing mechanical work another
objective which may characterize human movement is the minimization of torque change.
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The norm measure of instantaneous torque change is || 7]|> = 7 - 7. Integrating this measure
over the movement interval yields

Iy
Ié/ T-tdt. (70)
to

The minimum torque change model [26] thus seeks a trajectory, consistent with task con-
straints that minimizes this integral.

The minimum work and minimum torque change models utilize quantities that are deriv-
able purely from skeletal kinematics and that are not specific to muscle actuation. It is
thus useful to consider an analogous measure which encodes information about the muscu-
loskeletal system. Activation, which represents the normalized exertion of muscles, provides
a natural starting point for constructing such a measure of neuromuscular action. Specifi-
cally, the magnitude of the muscle activation vector, a, has been used as an optimization
criterion in both static and dynamic optimizations [1, 8].

We begin by defining an instantaneous muscle effort measure, L = ||a||?. To express this
measure in joint space, we first represent the joint torques, 7, in terms of muscle activation.
To do this we employ a Hill-type active state model [28] with a stiff tendon assumption
[10, 12]. In a Hill-type active state model, activation dynamics is modeled as a first order
differential equation, relating muscle activation to muscle excitation. We will not consider
activation dynamics in the subsequent analysis since the dynamics of our musculoskeletal
system will be assumed to be much slower than the activation dynamics. Nevertheless, it
may be desirable to consider it for application of the subsequent methodology to fast dy-
namic motions.

Given a stiff tendon assumption, the following relationship can be established,

t=K.(q,9)a (71)

where K. (q, ¢) is the muscle torque-activation gain matrix. That is, for a system of » mus-
cles and n generalized coordinates it maps muscle activation, a, to joint torque, t. The
muscle torque-activation gain matrix is computed as

ar\" ,
K. = —<%> diag(fs)=—L" Ky (72)

where I(q) is the vector of total muscle-tendon path lengths and f (I, I ) is the vector of
muscle forces at full activation (saturation), as a function of the muscle lengths and muscle
contraction velocities. For a given muscle-tendon pair, the muscle length and contraction
velocity can be computed from the total muscle-tendon path length/velocity as

Iy=1—Ipr=I;, and [y =I. (73)

The term [ is the tendon length and it is constant in the stiff tendon model. Thatis, Ir =17,
where [7, is a constant tendon slack length.

The term L(q) = 9l/0q in (72) is the muscle Jacobian and K ((q, ¢) = diag(f ;) maps
muscle activation, a, to muscle force, f. The saturation muscle forces, f g, used to construct
K s are computed from a constitutive model [10]. A typical muscle force-length-velocity
surface at full activation is shown in Fig. 5. The normalization constants f,, I3;,, and vy,
represent the maximum isometric force, optimal fiber length, and maximum contraction
velocity, respectively. These are parameters specific to an individual muscle.

@ Springer



316 V. De Sapio, O. Khatib, S. Delp

There are typically more muscles spanning a set of joints than the number of generalized
coordinates used to describe those joints. Thus, (71) will have an infinite set of solutions
for a. Choosing the solution, a,, which has the smallest magnitude yields,

a,=K t=K'(K.K")"'z (74)

where K7 is the pseudo-inverse of K. Our instantaneous muscle effort measure can then
be expressed as

-1
L=la,*=7"(K.K]) 7. (75)
Expressing this effort measure in constituent terms and dissecting the structure, we have

muscular capacity

T T T -1
L=7"[ L" (K;K}) L ]'z (76)
kinematics Kinetics kinematics

This allows us to gain some physical insight into what is being measured. The terms inside
the brackets represent a measure of the net capacity of the muscles. This is a combination
of the force generating kinetics of the muscles as well as the mechanical advantage of the
muscles, as determined by the muscle path geometry. The terms outside of the brackets
represent the kinetic torque requirements of the task/posture.

It is noted that the solution of (71) expressed in (74) corresponds to a constrained min-
imization of ||a||>; however, this solution does not enforce the constraint that muscle ac-
tivation must be positive (muscles can only produce tensile forces). Imposing inequality
constraints, a; 2> 0, on the activations requires a quadratic programming approach to per-
forming the constrained minimization. In this case, the solution of (71) which minimizes
la|l?> and satisfies a; > 0 can be represented in shorthand as

a,=qp(K., 7, llal*, a >0) (77)

where gp(-) represents the output of a quadratic programming function (e.g., quadprog ()
in the Matlab optimization toolbox [21]). Our muscle effort criterion is then L = la, %,

Fig. 5 Muscle
force-length-velocity surface at
full activation. The terms f,,
Ipm,»and vy, are the maximum
isometric force, optimal fiber
length, and maximum contraction
velocity, respectively. These are
used as normalizing constants

ce-velocity
profile
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where a, is given by (77). Despite the preferred use of quadratic programming for compu-
tational purposes, (76) provides valuable insights at a conceptual level.

5.2.1 Example

In this problem, we consider a simplified n = 3 degree-of-freedom model of the human arm
actuated by r = 14 muscles. The model is depicted in Fig. 6. The system is kinematically
redundant with respect to the m; = 2 degree-of-freedom task of positioning the hand. The
muscle attachment and force-length data were taken from the study of [16]. The maximum
isometric forces, f,, optimal fiber lengths, /,,, and tendon slack lengths, I7,, are shown
in Table 1.

We wish to control the hand to move to a target, x s, location while minimizing an instan-
taneous muscle effort criterion defined as

-1
Ug)=g"(K.K7) g (78)
where K, € R®!2 is computed from (72) and each muscle force is modeled as

Lq) 2
*S(M*I)

fs(q) = foe (79)

In (78), the general torque term, 7, has been replaced by the gravity torque, g, since gravity
terms dominate in this example where the motion is relatively slow. No task trajectory, x4 (),
will be specified, just the final target location, x s.

The system given by (50), (51) and (55) can then be solved. We use a simplified form of
(50) and (51) such that,

[ =ky(xy —x) — kX, (80)

Fig. 6 A simplified model of the
human arm actuated by r = 14
muscles. The muscle attachment
and force-length data were taken
from the study of [16]

EIP
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Table 1 Maximum isometric

forces, f,, optimal fiber lengths, Muscle Span joint Jo (N) Ip, (cm) l1, (cm)

lp,» and tendon slack lengths,

ITO, for the 14 muscles used in DELT1 shoulder 1142.60 9.76 9.30

t}tl;gl?:;llf;g%of;i: H;ESE:; DELT3 shoulder 259.88 13.67 3.80

o ot d§ of (1) TMAJ shoulder 425.39 16.24 2.0
TMIN shoulder 354.25 7.41 7.13
PECM1 shoulder 364.41 14.42 0.28
PECM3 shoulder 390.55 13.85 13.20
BRA elbow 987.26 8.58 5.35
TLAT elbow 624.30 11.38 9.80
TMED elbow 624.30 11.38 9.08
PT elbow 566.22 4.92 9.80
FDSM wrist 91.03 7.49 31.80
FDPM wrist 81.65 8.35 29.30
EPL wrist 39.46 5.40 22.05
EIP wrist 21.70 5.89 20.50

f=r+p. 81

In this case, no model of the dynamic properties (except for the gravity term, p) is included
in (81). Also, the terms ¥,(¢) and x,(¢) have been omitted in (80) and x,(z) has been re-
placed by the final target location, x s, since the goal is to move to a target location without
specifying a trajectory.

To the posture space portion of (55), we add a dissipative term, k;q, and a gain, k,, on
the gradient descent term, g, . Finally, the gravity vector, g, is perfectly compensated for in
the overall control torque. Thus, we have

Jf=Mg+b+N"(k.g, +kiq). (82)

Figures 7 and 8 display time histories of joint motion, hand motion and muscle effort for
a simulation run. We can see that the controller achieves the final target objective while the
null space control simultaneously seeks to reduce the instantaneous muscle effort (consistent
with the task requirement). It is recalled that no compensation for the dynamics (except for
gravity) was included in (81). Thus, there is no feedback linearization present in the control.
Normally, perfect feedback linearization without explicit trajectory tracking would produce
straight line motion to the goal. In the absence of feedback linearization, nonstraight line
motion results.

We now wish to solve the optimization problem of (56) and (61). Specifically, a trajectory
is sought which moves the hand to a target location (see Fig. 9), while extremizing muscle
action,

Ié/fL(q,q)dr. (83)

In this case, we will define the instantaneous criterion as

L =y \ L I\
L(q,q>=2<u> +Z(ﬁ) + 3. (84)

i=1 lei i=1 0;
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0 400 800 1200
time (ms)

Fig. 7 (Left) A redundant muscle-actuated model of the human arm. Initial and final configurations, g (#,)
and ¢(ty), associated with gradient descent movement to a target, x 7, are shown. (Right) Time history of
the arm motion to the target. Motion corresponds to gradient descent of the muscle effort, subject to the task
requirement

ut,)

0 w0 500 1200 100 500 1200
time (ms) time (ms)

Fig. 8 (Left) Time history of hand trajectory for human arm model. (Right) Time history of muscle effort
criterion, U (q) = gT (KK Z)*lg, associated with gradient descent. The null space control seeks to reduce
the muscle effort but is also constrained by the task requirement

It is noted that this is a modification of (76). Nevertheless, the criterion of (84) is just as suit-
able as (76) to demonstrate the relevant methods, and, it is computationally less demanding
to generate and solve the Euler-Lagrange equations for (84) than for (76). The term 43 is
included to mitigate excessive flexion-extension of the wrist.

As in Sect. 5.1.1, for the specific definition of L used in this example, the expression

9L

=— (85)
0gi0q;

Ljj
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4
lg 100
—~
B t
% q2 q( /)
< 50
~
o
0 q(t,) 4,
0 200 400 600 800 1000

time (ms)

Fig. 9 (Left) A redundant muscle-actuated model of the human arm. Initial and final configurations, g (#,)
and q(7f), associated with movement to a target, x ¢, are shown. (Right) Time history of the arm motion
between configurations ¢(,) and ¢ (ty). Motion corresponds to extremization of the muscle effort action
integral

L(t,)

200 100 500 500 1000 0 200 400 600 800 1000
time (ms) time (ms)

Fig. 10 (Left) Time history of hand trajectory for human arm model. (Right) Time history of muscle effort
criterion associated with extremizing the action integral (84)

cannot generally be shown to be positive definite over any path that yields stationary action
for arbitrary endpoint boundary conditions and task trajectory constraints.

Under task constraints the system which extremizes the muscle action is given by equa-
tions (63) and (66), where the servo law,

F=A=alk, —x)—px (86)

is used. The solution yields the muscle action extremizing path between configurations ¢q (7,)
and ¢(ty), given the hand target constraint. Figures 9 and 10 display time histories of joint
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motion, hand motion and muscle effort for a simulation run. The straight line motion of the
hand results from the feedback linearization employed.

6 Conclusion

In this paper, least action principles have been used as a template for investigating problems
involving constraints and task-level control. With regard to constraints the principle of least
action and the principle of least curvature were addressed for holonomically constrained
multibody systems. In particular, the principle of least curvature was demonstrated as an
insightful means of computing geodesics, using a mechanical analog.

Least action also provides a perspective for interpreting task-level control problems in
terms of rheonomic servo constraints. Control in task space, as governed by the operational
space equations of motion, was shown to involve the rheonomically constrained minimiza-
tion of action. This fact provides a basis for investigating the constrained extremization of
cost criteria. Replacing the Lagrangian, £, with a cost criterion, L, least action can be used
to formulate an extremization problem. From the corresponding Euler-Lagrange equations,
we derived the task space description of the system, given a set of rheonomic trajectory
constraints.

Examples of action extremization were presented for a problem involving a torque actu-
ated robot manipulator and for problems involving muscle-based actuation of a human arm
model. The action extremization problem was solved for the example of a four degree-of-
freedom robot using a torque change criterion. Subsequently, a Hill-type model was used
to establish a muscle-based cost criterion. An example was presented which demonstrated
the gradient descent minimization of a muscle-based potential for a three degree-of-freedom
human arm model. Another example was presented which demonstrated the extremization
of a muscle-based action integral for the same arm model. These examples serve to illus-
trate the efficacy of our approaches and provide a practical motivation for addressing more
complex problems of this type in robotics and biomechanics.
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