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Abstract A variant of the generalized-α scheme is proposed for constrained mechanical
systems represented by index-3 DAEs. Based on the analogy with linear multistep methods,
an elegant convergence analysis is developed for this algorithm. Second-order convergence
is demonstrated both for the generalized coordinates and the Lagrange multipliers, and those
theoretical results are illustrated by numerical tests.
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1 Introduction

The generalized-α scheme has been initially developed for the simulation of finite ele-
ment models in structural dynamics. It allows a simple and efficient implementation, as
well as an optimal combination of accuracy at low-frequency and numerical damping at
high-frequency. This last feature is especially interesting, since it allows to eliminate the
contribution of non-physical high-frequency modes, which are generally present in finite el-
ement models. The generalized-α algorithm results from successive contributions by New-
mark [18], Hilber, Hughes and Taylor [14], and Chung and Hulbert [9]; an overview of its
properties in the non-linear regime is also given by Erlicher et al. [10].

This work concerns the employment of the generalized-α scheme for the simulation of
constrained mechanical systems. Cardona and Géradin [8] have shown that numerical damp-
ing is critical to avoid numerical oscillations in the Lagrange multipliers. Their theoretical
investigations are restricted to linear problems, but they also report consistent results in non-
linear test cases. However, it is well-known that the order of an integration algorithm can
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be reduced due to the presence of algebraic constraints [4, 13], which calls for a rigorous
convergence analysis of the generalized-α method in the context of differential-algebraic
systems. Recently, Lunk and Simeon [16] and Jay and Negrut [15] have proven second-
order convergence for regularized index-2 formulations, i.e. algorithms which make use of
kinematic constraints at both position and velocity level.

In contrast, an algorithm based on an index-3 formulation, i.e., solely based on position
level constraints, is analysed in this paper. This algorithm can deal with a non-constant mass
matrix and it computes the acceleration variables with second-order accuracy. It extends the
approach of Negrut et al. [17] who report on positive practical experience with the Hilber–
Hughes–Taylor algorithm applied to the index-3 formulation of the equations of motion in an
industrial multibody system simulation tool. Recently, Bottasso et al. [3] proposed a scaling
technique to reduce the numerical instability effects being typical of such time integration
methods for DAEs of index 3, see [1, 2, 4].

In the present paper, the analogy between generalized-α algorithms and linear multistep
integrators helps to get a simpler and more intuitive convergence proof, see also the rather
technical work of Lunk and Simeon [16] or Jay and Negrut [15]. Second-order convergence
is demonstrated for both the generalized coordinates, and the Lagrange multipliers. The
remaining part of the paper is organized as follows: the generalized-α algorithm and its
multistep representation are introduced in Sect. 2. Estimates for local and global errors are
proven in Sect. 3. Some technical parts of the proof are collected separately in Sect. 4. In
Sect. 5, the results of the theoretical investigations are illustrated by numerical tests. The
conclusions in Sect. 6 summarize essential parts of the paper.

2 The generalized-α method

Let us consider the constrained mechanical system

M(q)q̈ = f(q, q̇, t) − �T
q λ, (1)

0 = �(q, t) (2)

where (1) represents the dynamics of the mechanical system and (2) represents the kinematic
constraints. The vectors q and λ denote the generalized coordinates and the Lagrange multi-
pliers, respectively, M is the symmetric mass matrix, the vector of apparent forces f collects
external forces, internal forces and complementary inertia forces, and �q is the matrix of
constraint gradients. The mass matrix is not necessarily constant, but it may depend on the
generalized coordinates q, which allows to cover the case of mechanical systems with large
rotations. We note that the present developments could be further extended to mechatronic
problems, as suggested by Bruls and Golinval [6, 7].

2.1 Description of the algorithm

We propose an implementation of the generalized-α method which does not rely on a
weighted formulation of the residual equation. Instead, the dynamic equilibrium is enforced
exactly at every time step, with three major advantages: (i) the accelerations are computed
with second-order accuracy, (ii) the consistency of the algorithm is not affected if the mass
matrix is not constant, and (iii) the algorithm is closer to the physics of the problem, which
also simplifies theoretical investigations.



Convergence of the generalized-α scheme 187

Hence, the numerical variables qn+1, q̇n+1, q̈n+1, λn+1 satisfy (1) and (2) at time t = tn+1,
whereas, the vector a of acceleration-like variables is defined by the recurrence relation

(1 − αm)an+1 + αman = (1 − αf )q̈n+1 + αf q̈n, a0 = q̈0. (3)

We emphasize that a is an auxiliary variable, which is not equal to the true accelerations q̈.
Since M depends on q, this equation cannot be restated as a weighted form of (1). The
generalized-α scheme is obtained using a in the Newmark integration formulae

qn+1 = qn + hq̇n + h2

(
1

2
− β

)
an + h2βan+1, (4)

q̇n+1 = q̇n + h(1 − γ )an + hγ an+1 (5)

where h is the step-size. The numerical parameters αm, αf , β and γ can be selected in order
to have suitable accuracy and stability properties.

Algorithm 1 solves formulae (3), (4), and (5) together with the dynamic equilibrium at
time tn+1. The correction step involves the parameters

β ′ = 1 − αm

h2β(1 − αf )
, γ ′ = γ

hβ
(6)

which satisfy the properties

∂q̈n+1

∂qn+1
= Iβ ′,

∂q̇n+1

∂qn+1
= Iγ ′. (7)

Moreover, the iteration matrix is given by

St =
[

(Mβ ′ + Ct γ
′ + Kt ) �T

q

�q 0

]
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with the tangent stiffness matrix Kt = ∂(Mq̈− f+�T
q λ)/∂q and the tangent damping matrix

Ct = ∂(−f)/∂q̇. Compared to a classical algorithm based on a weighted formulation of (1),
as described in [9, 14], Algorithm 1 involves similar computational resources. Indeed, it
only requires one additional vector a, and the correction step, which is the most demanding
part of the algorithm, is barely modified.

For small time steps h, the matrix St becomes severely ill conditioned. Bottasso et al. [3]
have proposed a scaling method in order to avoid this phenomenon, see also the closely
related scaling approach of Hairer and Wanner [13] in the classical general purpose DAE
solver RADAU5. The linear system

Stx = −r, (8)

with xT = [�qT �λT ] and rT = [(rq)T (rλ)T ] is replaced by the equivalent scaled form

Stx = −r (9)

with St = DLStDR , x = D−1
R x and r = DLr. In the numerical tests presented in Sect. 5, the

diagonal left and right preconditioners

DL =
[

Iβh2 0

0 I

]
, DR =

[
I 0

0 I/βh2

]
(10)

are used to achieve an optimal conditioning of the matrix St , see [3].

2.2 Multistep representation of the algorithm

Assuming that the mass matrix is non-singular, the dynamic equilibrium is equivalent to an
explicit form

q̈ = g(q, q̇,λ, t), (11)

0 = �(q, t) (12)

with g = M−1(f − �T
q λ). We also assume that the constrained system (11, 12) has DAE

index 3, i.e., that the matrix

�qgλ (13)

is non-singular, where gλ is given by gλ = −M−1�T
q . Since the dynamic equilibrium is

enforced at every time step, the algorithm leads to the same solution when applied to the
system (11, 12), and it is sufficient to analyse this equivalent system.

It is possible to eliminate a from the integration formulae at time steps tn−1 → tn and
tn → tn+1, leading to a two-step formulation [10]

2∑
k=0

akqn+k−1 + h

1∑
k=0

ukq̇n+k−1 = h2
2∑

k=0

bkgn+k−1, (14)

2∑
k=0

akq̇n+k−1 = h

2∑
k=0

ckgn+k−1, (15)

0 = �(qn+1, tn+1) (16)
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with the coefficients

a0 = −αm, a1 = −1 + 2αm, a2 = 1 − αm,

u0 = −αm, u1 = −1 + αm,

b0 = αf (1/2 − β), b1 = (1 − αf )(1/2 − β) + αf β, b2 = (1 − αf )β,

c0 = αf (1 − γ ), c1 = (1 − αf )(1 − γ ) + αf γ, c2 = (1 − αf )γ.

In Sect. 3 below, we will see that the detailed analysis of the error propagation in the
difference quotients

q′
n := qn − qn−1

h
≈ q̇

(
tn − h

2

)
(17)

is very useful to study the error propagation for the Lagrange multipliers λ. A two-step re-
cursion for q′ is obtained by the difference quotient of (14) in its original form and (14) with
n being substituted by n − 1. In this difference quotient, the velocities q̇ may be eliminated
using (15) resulting finally in the multistep formula

2∑
k=0

akq′
n+k−1 = h

3∑
k=0

b′
kgn+k−2 (18)

with coefficients

b′
0 = αf (1/2 + β − γ ),

b′
1 = (1 − αf )(1/2 + β − γ ) + αf (1/2 − 2β + γ ),

b′
2 = (1 − αf )(1/2 − 2β + γ ) + αf β,

b′
3 = (1 − αf )β.

(19)

2.3 Choice of the numerical parameters

In the present paper, generalized-α algorithms with fixed step-sizes h are considered. In that
case, the generalized-α algorithm for unconstrained mechanical systems is second-order
accurate provided that [9]

γ = 1

2
+ αf − αm. (20)

Note, however, that this condition is no more valid for variable step-size algorithms and
should be replaced by an update condition for the parameter γ , which means that the value
of γ should be adapted at each time step to guarantee second-order accuracy [5].

The numerical solution is zero-stable (i.e. stable for h → 0) if the polynomial

�(ζ ) :=
2∑

k=0

akζ
k (21)

satisfies the root condition, i.e., if condition |ζi | ≤ 1 is satisfied for all roots ζi , i = 1,2 of
polynomial �. For multiple roots ζi , the stronger condition |ζi | < 1 has to be enforced [12].
Since the roots of � are ζ1 = 1 and ζ2 = −αm/(1 − αm), zero stability requires αm ≤ 0.5. We
note that both roots are necessarily simple.
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The algorithm is strictly stable at infinity (i.e. strictly stable for h → ∞, see [13]) if all
roots ζ ′

i of the polynomial

σ(ζ ) :=
3∑

k=0

b′
kζ

k (22)

satisfy |ζ ′
i | < 1, i = 1,2,3. Lemma 1 (see Sect. 4 below) shows that strict stability at infinity

is guaranteed if

αm < αf <
1

2
, β >

1

4
+ 1

2
(αf − αm) (23)

and the order 2 condition (20) is satisfied.
For stiff problems, the numerical solution should be computed accurately only in the

low-frequency range, whereas the high-frequency response should rather be damped out by
the algorithm. The high-frequency numerical damping is represented by the spectral radius
of the algorithm at infinity ρ∞: An undamped scheme is characterized by ρ∞ = 1, whereas
ρ∞ = 0 means asymptotic annihilation of the high-frequency response. For a given value
of ρ∞ ∈ [0,1], Chung and Hulbert [9] have proposed optimal algorithmic parameters for
second-order ODEs

αm = 2ρ∞ − 1

ρ∞ + 1
, αf = ρ∞

ρ∞ + 1
, β = 1

4

(
γ + 1

2

)2

(24)

whereas γ is computed according to (20). For ρ∞ ∈ [0,1), the resulting algorithms are both
zero-stable and strictly stable at infinity. Indeed, ρ∞ < 1 implies

αm < αf <
1

2
, γ >

1

2

and

β = 1

4

(
γ + 1

2

)2

>
1

4

(
γ + 1

2

)2

− 1

4

(
γ − 1

2

)2

= 1

2
γ = 1

4
+ 1

2
(αf − αm),

so that both conditions in (23) are satisfied.

3 Convergence analysis

3.1 Local truncation error

By definition, the method is convergent of order 2 in the classical unconstrained case if
‖q(tn) − qn‖ and ‖q̇(tn) − q̇n‖ are O(h2). In contrast, the order 2 condition (20) means that
the local error, i.e., the error after one time step, is O(h3). It can be demonstrated [12] that
this last condition is satisfied if lq

n and lq̇
n are O(h3), where the local truncation errors lq

n and
lq̇
n are defined by introducing the exact solution q(tn), q̇(tn), λ(tn) into (14) and (15)

lq
n =

2∑
k=0

akq(tn+k−1) + h

1∑
k=0

ukq̇(tn+k−1) − h2
2∑

k=0

bkg(tn+k−1), (25)

lq̇
n =

2∑
k=0

akq̇(tn+k−1) − h

2∑
k=0

ckg(tn+k−1) (26)

with the notation g(tn) = g(q(tn), q̇(tn),λ(tn), tn).
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For the extension of these results to the constrained case, see (11, 12), we consider fur-
thermore, the local truncation error lq′

n in (18)

lq′
n =

2∑
k=0

ak

q(tn+k−1) − q(tn+k−2)

h
− h

3∑
k=0

b′
kg(tn+k−2). (27)

The classical order 2 condition in (20) implies that the new consistency conditions

2∑
k=0

ak = 0 and
1

(j + 1)!
2∑

k=0

ak

(
(k − 1)j+1 − (k − 2)j+1

) = 1

(j − 1)!
3∑

k=0

b′
k(k − 2)j−1

(j = 1,2), are satisfied and the estimate ‖lq′
n‖ = O(h3) may be shown by Taylor expansion.

3.2 Error propagation in the differential solution components

When a zero-stable algorithm is used to solve an ODE, the order condition implies global
convergence [12]. The extension of this classical result from the ODE case to the constrained
system in (11, 12), i.e., to index-3 DAEs, follows the basic lines of the convergence analysis
for multistep methods applied to DAEs, see [13].

In a first step, let us analyse the error propagation during the integration process for the
differential components q, q̇ and q′. Using the multistep formulae (14), (15) and (18), the
defect (25), (26) and (27) become

lq
n =

2∑
k=0

akeq
n+k−1 + h

1∑
k=0

ukeq̇
n+k−1 − h2

2∑
k=0

bkeg
n+k−1, (28)

lq̇
n =

2∑
k=0

akeq̇
n+k−1 − h

2∑
k=0

ckeg
n+k−1, (29)

lq′
n =

2∑
k=0

akeq′
n+k−1 − h

3∑
k=0

b′
keg

n+k−2 (30)

where e(•)
n = (•)(tn) − (•)n represent a global error after n steps and

eq′
n := q(tn) − q(tn−1)

h
− qn − qn−1

h
= eq

n − eq
n−1

h
, (31)

see (17). Inspired by the identical structure of the first terms in the right-hand side
of (28–30), the three differential components q, q̇ and q′ and the corresponding local and
global errors are summarized in

v(tn) :=
⎛
⎝

q(tn)

q̇(tn)

q′(tn)

⎞
⎠ , vn :=

⎛
⎝

qn

q̇n

q′
n

⎞
⎠ ,

ev
n :=

⎛
⎝

eq
n

eq̇
n

eq′
n

⎞
⎠ , lv

n :=
⎛
⎝

lq
n

lq̇
n

lq′
n

⎞
⎠ = O

(
h3

)
.

(32)
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With this compact notation, the error recursion defined by (28), (29) and (30) may be written
as

ev
n+1 = −a0

a2
ev
n−1 − a1

a2
ev
n +O(h)

1∑
k=0

∥∥eq̇
n+k−1

∥∥ +O(h)

3∑
k=0

∥∥eg
n+k−2

∥∥ +O
(
h3

)

= −a0

a2
ev
n−1 − a1

a2
ev
n +O(h)

3∑
k=0

(∥∥ev
n+k−2

∥∥ + ∥∥eλ
n+k−2

∥∥) +O
(
h3

)
. (33)

The propagation of the errors eq
n, eq̇

n and eq′
n is dominated by the recursion coefficients a0, a1

and a2, and it is coupled with the errors eλ
n in the algebraic components λ by O(h) coupling

coefficients.

3.3 Error propagation in the algebraic solution components

For the analysis of the error propagation in the algebraic solution components λ, we assume
that throughout integration the numerical solution (qn, q̇n,λn) remains in a small neighbour-
hood of the analytical solution (q(tn), q̇(tn),λ(tn))

∥∥eq
n

∥∥ ≤ Ch,
∥∥eq̇

n

∥∥ ≤ Ch,
∥∥eλ

n

∥∥ ≤ Ch (n ≥ 0) (34)

with a constant C > 0 that is independent of n and h.
Because of the O(h2) error bounds for ‖eq

n‖, ‖eq̇
n‖, ‖eλ

n‖ in (41) below, the additional
assumption in (34) is always satisfied if h > 0 is sufficiently small and the initial values of
the numerical solution are sufficiently close to the analytical solution (see also part (c) of
the proof of Theorem VII.3.5 in [13] for a more detailed discussion).

The conditions on ‖eq
n‖, ‖eq̇

n‖, ‖eλ
n‖ in (34) allow to get an estimate for

∑
k b′

keλ
n+k−2

from (30). With

ψ(ϑ) := g
(
qn+k−2 + ϑeq

n+k−2, q̇n+k−2 + ϑeq̇
n+k−2,λn+k−2 + ϑeλ

n+k−2, tn+k−2
)

we have

eg
n+k−2 = ψ(1) − ψ(0) =

∫ 1

0
ψ ′(ϑ)dϑ

=
∫ 1

0
gλ

(
qn+k−2 + ϑeq

n+k−2, q̇n+k−2 + ϑeq̇
n+k−2,λn+k−2 + ϑeλ

n+k−2, tn+k−2

)
eλ
n+k−2 dϑ

+O(1)
(∥∥eq

n+k−2

∥∥ + ∥∥eq̇
n+k−2

∥∥)
= gλ(tn)eλ

n+k−2 +O(h)
∥∥eλ

n+k−2

∥∥ +O(1)
(∥∥eq

n+k−2

∥∥ + ∥∥eq̇
n+k−2

∥∥)
(35)

since qn+k−2 + ϑeq
n+k−2 = q(tn+k−2) +O(h) = q(tn) +O(h) etc., see (34). As before, the

notation gλ(tn) is used as abbreviation for gλ(q(tn), q̇(tn),λ(tn), tn).
The matrix product �q(q(tn), tn)gλ(tn) is non-singular by the index-3 assumption, see

(11–13). Therefore, the estimate for
∑

k b′
keλ

n+k−2 may be obtained multiplying (35) by
[(�qgλ)

−1�q](q(tn), tn) from the left and using the error recursion for eg
n from (30):
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3∑
k=0

b′
keλ

n+k−2 = [
(�qgλ)

−1�q
](

q(tn), tn
) ·

3∑
k=0

b′
keg

n+k−2

+O(1)

3∑
k=0

(∥∥eq
n+k−2

∥∥ + ∥∥eq̇
n+k−2

∥∥ + h
∥∥eλ

n+k−2

∥∥)

= O(1)

∥∥∥∥�q
(
q(tn), tn

) · 1

h

2∑
k=0

akeq′
n+k−1

∥∥∥∥ +O
(

1

h

)∥∥lq′
n

∥∥

+O(1)

3∑
k=0

(∥∥eq
n+k−2

∥∥ + ∥∥eq̇
n+k−2

∥∥ + h
∥∥eλ

n+k−2

∥∥)
. (36)

With Lemma 3, see Sect. 4 below, we get

3∑
k=0

b′
keλ

n+k−2 = O
(

1

h2

) 3∑
k=0

∥∥�(qn+k−2, tn+k−2)
∥∥ +O

(
1

h

)∥∥lq′
n

∥∥

+O(1)

3∑
k=0

(∥∥eq
n+k−2

∥∥ + ∥∥eq̇
n+k−2

∥∥ + h
∥∥eλ

n+k−2

∥∥)

+O(1)

2∑
k=0

∥∥eq′
n+k−1

∥∥. (37)

The equilibrium conditions at t = tn+k−2 enforce �(qn+k−2, tn+k−2) = 0 and (37) may be
summarized in the compact form

eλ
n+1 = −b′

0

b′
3

eλ
n−2 − b′

1

b′
3

eλ
n−1 − b′

2

b′
3

eλ
n +O(1)

3∑
k=0

∥∥ev
n+k−2

∥∥+O(h)

3∑
k=0

∥∥eλ
n+k−2

∥∥+O
(
h2

)
. (38)

The propagation of the errors eλ
n is dominated by the recursion coefficients b′

0, b′
1, b′

2 and b′
3

and it is coupled with the errors ev
n in the differential components q, q̇, q′ by O(1) coupling

coefficients.
We note that the terms ‖�(qn+k−2, tn+k−2)‖/h2 in (37) vanish in the formal convergence

analysis, but may cause severe problems in a practical implementation of the method. Stop-
ping the Newton iteration in Algorithm 1 with non-zero residuals rq, rλ may introduce small
errors in ‖�(qn+k−2, tn+k−2)‖ that are amplified by the large factor 1/h2 during time inte-
gration [1]. Therefore, the scaling method of Bottasso et al. [3] was used in the numerical
tests of Sect. 5 to keep ‖�(qn+k−2, tn+k−2)‖ as small as possible, see also [13].

3.4 Synthesis

The error propagation in multistep methods may be studied in compact form writing the
multistep method as one-step method in a higher dimensional configuration space [12].

With the error vectors

Ev
n =

⎛
⎝

ev
n

ev
n−1

ev
n−2

⎞
⎠ , Eλ

n =
⎛
⎝

eλ
n

eλ
n−1

eλ
n−2

⎞
⎠ ,
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the propagation relations in (33) and (38) get the form

Ev
n+1 = AEv

n +O(h)
(∥∥Ev

n

∥∥ + ∥∥Eλ
n

∥∥) +O
(
h3

)
, (39)

Eλ
n+1 = B′Eλ

n +O(1)
∥∥Ev

n

∥∥ +O(h)
∥∥Eλ

n

∥∥ +O
(
h2

)
(40)

with error amplification matrices

A =
⎛
⎜⎝

−a1

a2
I −a0

a2
I 0

I 0 0

0 I 0

⎞
⎟⎠ and B′ =

⎛
⎜⎜⎝

−b′
2

b′
3

I −b′
1

b′
3

I −b′
0

b′
3

I

I 0 0

0 I 0

⎞
⎟⎟⎠ .

In the unconstrained case, zero stability of the multistep method implies ‖A‖ = 1 in a
suitable norm ‖.‖ and second-order convergence follows by standard arguments from
‖Ev

n+1‖ ≤ (1 +O(h))‖Ev
n‖ +O(h3), see [12].

In the constrained case, a similar argument is used to show that strict stability at infin-
ity implies ‖B′‖ < 1 in a (possibly different) norm ‖.‖ for the algebraic solution compo-
nents [13]. More precisely, the method is strictly stable at infinity if the roots ζ ′

i , i = 1,2,3,
of the polynomial σ in (22) are bounded by ζ ′

max := maxi |ζ ′
i | < 1, see Lemma 1 below, and

‖B′‖ = ρ < 1 may be achieved for any ρ > ζ ′
max using an appropriate norm ‖.‖ for the alge-

braic components [13].
Taking norms in (39) and (40), we obtain

(‖Ev
n+1‖

‖Eλ
n+1‖

)
≤

(
1 +O(h) O(h)

O(1) ρ +O(h)

)(‖Ev
n‖

‖Eλ
n‖

)
+

(O(h3)

O(h2)

)

and we deduce, as in [13], that the global errors after n steps satisfy

(‖Ev
n‖

‖Eλ
n‖

)
= O(1)

∥∥Ev
0

∥∥ + (
O(h) +O(1)ρn

)∥∥Eλ
0

∥∥ +O
(
h2

)
. (41)

Note, that strict stability at infinity allows to prove second-order convergence for all solu-
tion components despite the local error O(h2) in the algebraic solution components, see (40).
Furthermore, ρ < 1 implies also that errors Eλ

0 in the initial values of the Lagrange multipli-
ers are damped out rapidly.

Summary In the constrained case, the generalized-α method with fixed time step-size h

has global errors O(h2) in q, q̇ and λ if the order 2 condition in (20) and the stability
conditions in (23) are satisfied and the errors Ev

0, Eλ
0 in the initial values are O(h2). The

CH-α algorithm with ρ∞ ∈ [0,1), see (24), may be considered as a typical example of a
second-order convergent method for constrained systems.

4 Technical details of the error estimates

In the present section, some technical details of the convergence analysis are summarized.
Readers, who are mainly interested in the basic steps of the analysis, may skip this section
and continue with the results of numerical tests in Sect. 5 below.
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Lemma 1 A generalized-α scheme with parameters that satisfy the order 2 condition in (20)
and the stability conditions in (23) is strictly stable at infinity, i.e., all roots ζ ′

i of polynomial
σ(ζ ), see (22), are inside the unit circle: |ζ ′

i | < 1, i = 1,2,3.

Proof Polynomial σ(ζ ) may be written as

σ(ζ ) =
3∑

k=0

b′
kζ

k = β
(
(1 − αf )ζ + αf

)(
ζ 2 +

1
2 + γ − 2β

β
ζ +

1
2 − γ + β

β

)

with roots

ζ ′
1 = − αf

1 − αf

, ζ ′
2,3 = −

1
2 + γ − 2β

2β
± R

2β
and

R :=
((

1

2
+ γ − 2β

)2

− 4β

(
1

2
− γ + β

))1/2

.

Because of αf < 1/2 we get |ζ ′
1| < 1, see (23).

If the roots ζ ′
2, ζ ′

3 are complex, we have ζ ′
2 = ζ̄ ′

3 and Vieta’s Theorem implies

∣∣ζ ′
2

∣∣ = ∣∣ζ ′
3

∣∣ = (
ζ ′

2ζ
′
3

)1/2 =
( 1

2 − γ + β

β

)1/2

<

(
β

β

)1/2

= 1

since αm < αf ⇒ γ > 1/2, see (20).
For real roots ζ ′

2, ζ ′
3, we observe

R2 =
(

1

2
+ γ

)2

− 4β <

(
1

2
+ γ

)2

⇒ R <
1

2
+ γ,

R2 =
(

4β −
(

1

2
+ γ

))2

− 8β(2β − γ ) <

(
4β −

(
1

2
+ γ

))2

⇒ −R > −
(

4β −
(

1

2
+ γ

))

since 2β − γ > 0 and 4β − ( 1
2 + γ ) = 2(β − 1

4 ) + (2β − γ ) > 0, see (20) and (23).
Therefore, real roots ζ ′

2, ζ ′
3 are bounded by

ζ ′
2,3 < −

1
2 + γ − 2β

2β
+

1
2 + γ

2β
= 2β

2β
= 1,

ζ ′
2,3 > −

1
2 + γ − 2β

2β
− 4β − ( 1

2 + γ )

2β
= −2β

2β
= −1

and |ζ ′
i | < 1, i = 1,2,3 is guaranteed also in that case. �

Lemma 2 For vectors qn+k−2 with ‖eq
n+k−2‖ = O(h), k = 0,1,2,3, the terms

�q(q(tn), tn)e
q′
n+k−1, k = 0,1,2, satisfy (the arguments t in � and �q are omitted for sim-

plicity)

�q
(
q(tn)

)
eq′
n+k−1 = 1

h

(
�(qn+k−2) − �(qn+k−1)

) − ∂

∂q

(
�q(q) eq

n+k−2

)∣∣
q=q(tn)

· q̇(tn)

+O(h)
(∥∥eq

n+k−1

∥∥ + ∥∥eq
n+k−2

∥∥ + ∥∥eq′
n+k−1

∥∥)
(h → 0). (42)
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Proof To keep notation compact, the proof is given for k = 2 and the argument t in �(q, t)

is omitted. The extension to k = 0,1 and to � = �(q, t) is straightforward.
For linear time-invariant constraints �(q(t)) = Cq(t) − z = 0, the proposition of the

lemma is trivial since �q ≡ C, �qq ≡ 0 and eq′
n+1 = (eq

n+1 − eq
n)/h, see (31):

Ceq′
n+1 = C

(
q(tn+1) − q(tn)

h
− qn+1 − qn

h

)
= z − z

h
− (�(qn+1) + z) − (�(qn) + z)

h
.

In the non-linear case, the identity

−�(qn) = �
(
q(tn)

) − �(qn) =
∫ 1

0
�q

(
qn + ϑeq

n

)
eq
n dϑ (43)

is used that follows from

ψ(1) − ψ(0) =
∫ 1

0
ψ ′(ϑ)dϑ with ψ(ϑ) := �

(
qn + ϑeq

n

)
, ψ ′(ϑ) = �q

(
qn + ϑeq

n

)
eq
n.

Because of (43), and the corresponding identity with n being substituted by n + 1, we have

1

h

(
�(qn) − �(qn+1)

)

= 1

h

∫ 1

0
�q

(
qn+1 + ϑeq

n+1

)
eq
n+1 dϑ − 1

h

∫ 1

0
�q

(
qn + ϑeq

n

)
eq
n dϑ

=
∫ 1

0
�q

(
qn+1 + ϑeq

n+1

)
eq′
n+1 dϑ

+ 1

h

∫ 1

0

(
�q

(
qn+1 + ϑeq

n+1

) − �q
(
qn + ϑeq

n

))
eq
n dϑ (44)

since (eq
n+1 − eq

n)/h = eq′
n+1. The first term in the right-hand side of (44) may be written as

∫ 1

0
�q

(
qn+1 + ϑeq

n+1

)
eq′
n+1 dϑ = �q

(
q(tn)

)
eq′
n+1 +O(h)

∥∥eq′
n+1

∥∥ (45)

because qn+1 + ϑeq
n+1 = q(tn+1) +O(h) = q(tn) +O(h).

The second term in (44) contains curvature terms �qq. It vanishes in the linear time-
invariant case, but needs special care for non-linear constraints. The term may be expressed
as

1

h

∫ 1

0

(
ψ(1;ϑ) − ψ(0;ϑ)

)
dϑ (46)

with ψ(ϑ̄;ϑ) := �q(q̄(ϑ̄;ϑ))eq
n and generalized coordinates

q̄(ϑ̄;ϑ) := qn + ϑ̄(qn+1 − qn) + ϑ
(
eq
n + ϑ̄

(
eq
n+1 − eq

n

)) = q(tn) +O(h).

With these notations, we get in (46)

1

h

∫ 1

0

(
ψ(1;ϑ) − ψ(0;ϑ)

)
dϑ = 1

h

∫ 1

0

∫ 1

0

∂

∂ϑ̄
ψ

(
ϑ̄;ϑ)

dϑ̄ dϑ

= 1

h

∫ 1

0

∫ 1

0

∂

∂q

(
�(q)eq

n

)∣∣
q=q̄(ϑ̄;ϑ)

· ∂

∂ϑ̄
q̄
(
ϑ̄;ϑ)

dϑ̄ dϑ



Convergence of the generalized-α scheme 197

=
∫ 1

0

∫ 1

0

∂

∂q

(
�(q)eq

n

)∣∣
q=q̄(ϑ̄;ϑ)

· q̇(tn)dϑ̄ dϑ +O
(∥∥eq

n

∥∥) · max
ϑ,ϑ̄

∥∥∥∥ 1

h

∂

∂ϑ̄
q̄
(
ϑ̄;ϑ) − q̇(tn)

∥∥∥∥
=

∫ 1

0

∫ 1

0

∂

∂q

(
�(q)eq

n

)∣∣
q=q(tn)

· q̇(tn)dϑ̄ dϑ +O(h)
∥∥eq

n

∥∥

+O
(∥∥eq

n

∥∥) · max
ϑ,ϑ̄

∥∥∥∥q(tn+1) − q(tn)

h
− (1 − ϑ)eq′

n+1 − q̇(tn)

∥∥∥∥
= ∂

∂q

(
�(q)eq

n

)∣∣
q=q(tn)

· q̇(tn) +O(h)
∥∥eq

n

∥∥ +O(h)
∥∥eq′

n+1

∥∥ (47)

since ‖eq
n‖ = O(h) by assumption and q(tn+1) − q(tn) = hq̇(tn) +O(h2). The proof is com-

pleted substituting (45–47) in (44). �

Lemma 3 With the assumptions of Lemma 2, the first term in the right-hand side of (36)
satisfies (the arguments t in � and �q are again omitted):

�q
(
q(tn)

) · 1

h

2∑
k=0

akeq′
n+k−1 = O

(
1

h2

) 3∑
k=0

∥∥�(qn+k−2)
∥∥

+O(1)

( 3∑
k=0

∥∥eq
n+k−2

∥∥ +
2∑

k=0

∥∥eq′
n+k−1

∥∥)
. (48)

Proof The one-step nature of the generalized-α scheme results in a very special multistep
representation of the error recursion in components q′

n because a1 = −1 + 2αm = −(1 −
αm) + αm = −a2 − a0:

1

h

2∑
k=0

akeq′
n+k−1 = (1 − αm)

eq′
n+1 − eq′

n

h
+ αm

eq′
n − eq′

n−1

h
. (49)

Multiplying (49) by �q(q(tn)) and applying Lemma 2 to

�q
(
q(tn)

)eq′
n+k−1 − eq′

n+k−2

h
= 1

h
�q

(
q(tn)

)
eq′
n+k−1 − 1

h
�q

(
q(tn)

)
eq′
n+k−2 (k = 1,2),

we see that the estimate in (48) is a straightforward consequence of (49), Lemma 2 and

− ∂

∂q

(
�(q)

eq
n+k−2 − eq

n+k−3

h

)∣∣∣∣
q=q(tn)

· q̇(tn) = − ∂

∂q

(
�(q)eq′

n+k−2

)∣∣
q=q(tn)

· q̇(tn)

= O
(∥∥eq′

n+k−2

∥∥)

for k = 1,2. �

5 Numerical tests

The following numerical tests have been developed in the formalism described by Géradin
and Cardona [11], which allows to account for flexible bodies. Hence, the equations of
motion are obtained in terms of absolute nodal coordinates with respect to the inertial frame.
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Fig. 1 Slider–crank mechanism

Fig. 2 Crank angle θ1 and position of the additional mass x4

5.1 Slider–crank mechanism

The first example is a slider–crank mechanism with a spring-mass system attached to the
sliding body (see Fig. 1). A similar benchmark has been considered in [16]. This planar
system has two degrees-of-freedom that can be represented by the crank angle θ1 and the
displacement of the additional mass x4. The model involves 10 generalized coordinates: the
positions of the centers of mass of body 1 and 2, (x1, y1, x2, y2), their orientation (θ1, θ2),
the position of bodies 3 and 4 (x3, x4) and the position of the hinge connecting body 1 and 2
(x5, y5). This set of coordinates has to satisfy 8 non-linear kinematic constraints.

The spring stiffness is k = 1000 N/m, the length of bodies 1 and 2 are l1 = 0.3 m and
l2 = 0.6 m, and the masses are m1 = 0.36 kg, m2 = 0.15 kg, m3 = 0.1 kg and m4 = 0.7 kg.
Initially, θ1 = π/2, the spring is undeformed and the mechanism is at rest. A constant
torque T = 1 Nm is applied to the crank and the initial conditions are computed so that
the constraints are satisfied at position, velocity and acceleration level. The parameters of
the generalized-α algorithm have been selected according to (24). The spectral radius of the
algorithm is set to the typical value ρ∞ = 0.7, which leads to a sufficient amount of high-
frequency numerical dissipation for the problem at hand. For a time step h = 5.0e−3 s, the
numerical results are given in Fig. 2.

A convergence study has been realized for h → 0, and the results are plotted in Fig. 3.
The reference solution has been computed using a smaller time step. Second-order conver-
gence is observed both for the generalized coordinates and the Lagrange multipliers.

5.2 Andrews’ mechanism

Andrews’ squeezing mechanism, which is represented in Fig. 4, consists of seven artic-
ulated rigid bodies moving in a plane. This standard benchmark, described in details by
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Fig. 3 Convergence of relative
errors at final time (t = 1 s) for a
generalized coordinate (θ1) and a
Lagrange multiplier (λ1)

Fig. 4 Andrews’ squeezing
mechanism

Schiehlen [19], has been largely exploited to demonstrate the performance of DAE time-
integration schemes. The mechanism has only one degree-of-freedom, and a constant torque
is applied at point O . In the original benchmark, the equations of motion are explicitly given
in terms of relative coordinates. In this work, one absolute rotation is defined for each body,
whereas two translation coordinates are defined for each moving joint and each center of
mass. Hence, the model involves a total of 31 generalized coordinates and 30 kinematic
constraints. Initially, the mechanism is at rest, and the initial conditions are computed so
that the constraints are satisfied at position, velocity and acceleration level.

As in the previous example, the parameters of the generalized-α algorithm have been
selected according to (24) with a spectral radius ρ∞ = 0.7. For a time step h = 3.0e−4 s, the
numerical results are illustrated in Figs. 5, 6 and 7. Numerical damping is quite important
to ensure a stable numerical solution, and a stable error propagation. For instance, Fig. 8
gives some results for the undamped algorithm (ρ∞ = 1), which are strongly affected by
numerical oscillations.

The results of a convergence analysis are plotted in Fig. 9. In the published benchmark,
a reference solution is given for the body angles at final time. For the multipliers, we have
computed a reference solution using a smaller time step. Second-order convergence is ob-
served both for the generalized coordinates and the Lagrange multipliers. However, for very
small h, the Lagrange multipliers are more sensitive to numerical errors.
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Fig. 5 Motion snapshots of the squeezing mechanism

Fig. 6 (x, y)-position of point P and angle β

Fig. 7 (x, y)-accelerations of point P and Lagrange multipliers

6 Conclusions

This paper analyses the accuracy of the generalized-α method for constrained mechan-
ical systems. We note that the proposed algorithm, which is a variant of the original
generalized-α algorithm, can deal with a non-constant mass matrix and that the accelera-
tions are computed with second-order accuracy.
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Fig. 8 Without numerical damping: (x, y)-accelerations of point P and Lagrange multipliers associated with
the (x, y) internal forces in body 1

Fig. 9 Convergence of relative
errors at final time (t = 0.03 s)
for a generalized coordinate (β)
and a Lagrange multiplier (λ1)

Using the analogy with multistep algorithms, global second-order convergence has been
proven both for the generalized coordinates and the Lagrange multipliers. Those properties
have been illustrated by numerical tests.
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