
Multibody Syst Dyn (2008) 19: 3–20
DOI 10.1007/s11044-007-9051-9

On the optimal scaling of index three DAEs in multibody
dynamics

Carlo L. Bottasso · Daniel Dopico · Lorenzo Trainelli

Received: 22 September 2006 / Accepted: 12 March 2007 /
Published online: 20 June 2007
© Springer Science+Business Media, Inc. 2007

Abstract We propose a preconditioning strategy for the governing equations of multibody
systems in index-3 differential-algebraic form. The method eliminates the amplification of
errors and the ill-conditioning which affect numerical solutions of high index differential
algebraic equations for small time steps. We develop a new theoretical analysis of the pertur-
bation problem and we apply it to the derivation of preconditioners for the Newmark family
of integration schemes. The theoretical results are confirmed by numerical experiments.

Keywords Differential algebraic equations · Constraints · Lagrange multipliers ·
Multibody dynamics · High index

1 Introduction

Errors and perturbations due to finite precision arithmetics pollute the numerical solution of
high index differential algebraic equations (DAEs). This pollution causes disastrous effects
for small values of the time step size. In fact, state variables and Lagrange multipliers are
affected by increasing errors as the time step size decreases. Similarly, the system Jacobian
matrix becomes severely ill-conditioned.

Various remedies to this problem have been offered in the multibody dynamics literature.
Basically, all remedies point to the reduction of the index from 3 to 2 or 1. Among many oth-
ers, examples are the well known GGL method [4] or the more recent Embedded Projection
Method [1]. However, these approaches require the rewriting of the governing equations.
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This either increases the cost, since additional constraints and multipliers are introduced, or
causes additional problems, like the drift of constraint violations.

A radically different approach consists in the preconditioning of the index-3 governing
equations. Reference [7] proposed a simple scaling transformation which led to a partial
improvement for both the sensitivity of the solution fields with respect to perturbations and
the conditioning of the Jacobian matrix. In References [2, 3] it was shown that the pollution
problem can be completely eliminated for BDF schemes by a proper scaling, achieving
perfect independence on the time step size. This is the same behavior observed in the case
of ordinary differential equations.

In this paper we offer a new theoretical analysis of the perturbation problem. Based on the
results of the analysis, we propose a preconditioning strategy for the case of the Newmark
family of integration schemes, which is representative of a larger class of commonly used
time integrators (e.g., modified-α (HHT), generalized-α, etc.) The procedure amounts to
a simple scaling of the unknowns which cures the pollution problem, and another similar
scaling of the equations which eliminates the ill-conditioning of the Jacobian matrix.

The paper is organized as follows. In Sect. 2 we present the asymptotic analysis in a
general setting in a way that clearly separates the effects of time discretization and the per-
turbations which are due to finite precision arithmetics. In Sect. 3 we start by reviewing the
index-3 governing equations together with their time discretization according to the New-
mark family of schemes. Next, we analyze two of the various possible implementations
of the scheme, and in particular we consider the three-field (displacements, velocities and
multipliers) and the two-field (displacements and multipliers) approaches. The former, al-
though probably never employed in practice, is presented since it helps in the understanding
of the general features of the proposed methodology, while the latter is obtained by static
condensation of the velocities at each time step, and is substantially more efficient in terms
of computational costs. For both settings, the asymptotic analysis resulting from Sect. 2 is
carried out. Section 4 discusses the preconditioning strategy for the three and two-field ap-
proaches. Numerical results confirming the predicted behaviors are shown in Sect. 5. Some
concluding remarks are finally exposed in Sect. 6.

2 Asymptotic analysis for a linearized dynamic problem

Any implicit method for the numerical integration of the equations governing the dynamics
of a non-linear system leads to the iterative solution of a linearized problem

Jq = −b, (1)

in the time step (tn, tn+1), with time step size h := tn+1 − tn. In the preceding equation,
q represents the vector of increments for the unknowns in the time step, b represents the
residual vector, and J is the Jacobian matrix of the problem, i.e., the tangent matrix of the
residual vector with respect to the unknowns.

It goes without saying that b, J and q all depend on the time step size h. Furthermore,
to model the effects of finite precision arithmetics, we introduce the dependence of all terms
appearing in Eq. 1 on a small parameter ε. Expanding in Taylor series about ε = 0, we have

b(h, ε) = b(h,0) + ε
∂b

∂ε

∣
∣
∣
∣
(h,0)

+ O
(

ε2
)

, (2a)



On the optimal scaling of index three DAEs in multibody dynamics 5

J (h, ε) = J (h,0) + ε
∂J

∂ε

∣
∣
∣
∣
(h,0)

+ O
(

ε2
)

, (2b)

q(h, ε) = q(h,0) + ε
∂q

∂ε

∣
∣
∣
∣
(h,0)

+ O
(

ε2
)

. (2c)

For infinite precision arithmetics, i.e. for ε = 0, one has at convergence of the Newton
process

lim
h→0

b(h,0) = 0, lim
h→0

q(h,0) = 0, (3)

so that

lim
h→0

b(h, ε) = ε lim
h→0

(
∂b

∂ε

)∣
∣
∣
∣
(h,0)

+ O
(

ε2
)

, (4a)

lim
h→0

q(h, ε) = ε lim
h→0

(
∂q

∂ε

)∣
∣
∣
∣
(h,0)

+ O
(

ε2
)

. (4b)

Inserting the previous expansions into Eq. 1 yields

ε lim
h→0

J (h,0) lim
h→0

(
∂q

∂ε

)∣
∣
∣
∣
(h,0)

= −ε lim
h→0

(
∂b

∂ε

)∣
∣
∣
∣
(h,0)

+ O
(

ε2
)

. (5)

Therefore, neglecting higher order terms, we get

ε lim
h→0

(
∂q

∂ε

)∣
∣
∣
∣
(h,0)

= −ε lim
h→0

J (h,0)−1 lim
h→0

(
∂b

∂ε

)∣
∣
∣
∣
(h,0)

, (6)

or, in other words,

lim
h→0

q(h, ε) = − lim
h→0

J−1(h,0) lim
h→0

b(h, ε). (7)

Taking norms, we find

∣
∣
∣lim
h→0

qi(h, ε)

∣
∣
∣ ≤

∑

j

∣
∣
∣lim
h→0

J−1
ij (h,0)

∣
∣
∣

∣
∣
∣lim
h→0

bj (h, ε)

∣
∣
∣, (8a)

≤
∥
∥
∥lim

h→0
J −1(h,0)

∥
∥
∥∞

∥
∥
∥lim

h→0
b(h, ε)

∥
∥
∥∞

. (8b)

Equation 8b should be interpreted on a block by block basis for problems characterized by
different sets of equations (e.g., dynamic equilibrium, kinematic, etc.) and different sets of
unknowns (e.g., displacements, velocities, etc.); this will become clearer in the next section.

The previous result can be interpreted as follows: a perturbation in the evaluation of
the residual (the term b(h, ε), which will differ from zero at convergence because of finite
precision operations or because the Newton correction has been arrested to a certain given
tolerance) will induce a perturbation in the Newton corrections (the term q(h, ε), which,
therefore, will also not be zero at convergence). Such perturbation can be further amplified
by the exact inverse of the Jacobian (the term J −1(h,0)). When the inverse Jacobian matrix
and/or the residual become large as h goes to zero, i.e. when these functions depend on
negative powers of h, large perturbations in the Newton corrections are observed.
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Equation 8a suggests that a way of solving the problem is to look for appropriate pre-
conditioners which, by suitably modifying the dependence of the residual vector and of the
Jacobian matrix on h, will ensure the asymptotic independence on the time step size of the
Newton corrections. In general, the scaled system can be written

J̄ q̄ = −b̄, (9)

where

J̄ := DLJDR, q̄ := D−1
R q, b̄ := DLb, (10)

represent the preconditioned Jacobian matrix, preconditioned solution vector and precondi-
tioned residual vector, respectively. DL is the left preconditioner, which scales the equations,
while DR is the right preconditioner, which scales the unknowns.

These ideas are made more precise in the context of the Newmark family of methods in
the following section.

3 Newmark’s method for multibody systems

3.1 Problem definition

The dynamics of an N degree of freedom multibody system with M holonomic constraints
is governed by the equations

Mv′ = f (u,v, t) + G(u, t)λ, (11a)

u′ = v, (11b)

0 = �(u, t), (11c)

where the notation (·)′ = d(·)/dt indicates a derivative with respect to time t , u represents
the N -dimensional vector of generalized displacements, v the N -dimensional vector of gen-
eralized velocities, and λ the M-dimensional vector of Lagrange multipliers that enforce the
constraint conditions. Furthermore, f is the N -dimensional vector of internal and external
forces, � is the M-dimensional vector of constraints, and G := �,Tu is the transpose of the
constraint Jacobian. Finally, M represents the N × N generalized inertia matrix, which can
be assumed constant without loss of generality. Equations 11 amount to an index-3 differen-
tial algebraic system in the state (differential) variables (u,v) and the multiplier (algebraic)
variables λ.

The application of the Newmark’s family of schemes to problem defined by Eqs. 11 on
a time step defined between time tn and time tn+1 = tn + h leads to the following discrete
equations:

Man+1 = f n+1 + Gn+1λn+1, (12a)

vn+1 = vn + h
(

(1 − γ )an + γ an+1
)

, (12b)

un+1 = un + hvn + h2

2

(

(1 − 2β)an + 2βan+1
)

, (12c)

0 = �n+1. (12d)
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In the preceding equations,

f n+1 := f (un+1,vn+1, tn+1), (13a)

Gn+1 := G(un+1, tn+1), (13b)

�n+1 := �(un+1, tn+1), (13c)

while β and γ represent scalar parameters which define the accuracy and (linear) stability
properties of the scheme (see [5, 6] for a detailed discussion). Equation 12a represents the
discrete dynamic equilibrium equation, Eqs. 12b and 12c define the updates for the (u,v)

variables, and finally Eq. 12d exactly enforces the constraint at the end of the time step.

3.2 Three-field (u,v,λ) form

We consider Newmark’s method written in three-field form, the three unknown fields being
(u,v,λ). Eliminating an+1 in Eqs. 12 we obtain

1

γ h
M(vn+1 − vn) = f n+1 + Gn+1λn+1 −

(

1 − 1

γ

)

Man, (14a)

un+1 − un = h

(
β

γ
vn+1 +

(

1 − β

γ

)

vn

)

− h2

2

(

1 − 2β

γ

)

an, (14b)

0 = �n+1. (14c)

Linearizing Eqs. 14 leads to problem 1, where the vector of unknown increments q and the
residual vector b can be partitioned by blocks as

q :=
⎡

⎣

�un+1

�vn+1

�λn+1

⎤

⎦ , b :=
⎡

⎣

bD

bK

bC

⎤

⎦ , (15)

the subscript D indicating the row block of the dynamic equilibrium equations 14a, the
subscript K the row block of the kinematic equations 14b, and the subscript C the row block
of the constraint equations 14c. The expressions for the residual row blocks are found to be

bD := 1

γ h
M(vn+1 − vn) − (f n+1 + Gn+1λn+1) +

(

1 − 1

γ

)

Man, (16a)

bK := un+1 − un − h

(
β

γ
vn+1 +

(

1 − β

γ

)

vn

)

+ h2

2

(

1 − 2β

γ

)

an, (16b)

bC := �n+1. (16c)

The Jacobian matrix J reads

J =

⎡

⎢
⎢
⎢
⎢
⎣

X
1

γ h
U −G

IN −βh

γ
IN 0

GT 0 0

⎤

⎥
⎥
⎥
⎥
⎦

, (17)
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where we wrote G for Gn+1 for the sake of a lighter notation, while IN is the N ×N identity
matrix, and finally

X := −(f ,u)n+1 − (

(Gλ),u

)

n+1
, (18a)

Y := −(f ,v)n+1, (18b)

U := M + γ hY . (18c)

The inverse Jacobian matrix is readily computed as

J −1 =

⎡

⎢
⎢
⎢
⎢
⎣

βh2W WU T −1GR−1

γ hW
γ

βh
(IN − WU) − γ

βh
T −1GR−1

−R−1GTT −1 1

βh2
R−1GTT −1U

1

βh2
R−1

⎤

⎥
⎥
⎥
⎥
⎦

, (19)

having defined

T := M + γ hY + βh2X, (20a)

R := GTT −1G, (20b)

S := GR−1GT, (20c)

W := T −1
(

IN − ST −1
)

. (20d)

3.3 Asymptotic analysis for the three-field (u,v,λ) form

An estimate of the sensitivity to numerical perturbations of the three-field form of Newmark
method can be based on the analysis of Sect. 2. In particular, we have

lim
h→0

J =
⎡

⎢
⎣

O
(

h0
)

O
(

h−1
)

O
(

h0
)

O
(

h0
)

O
(

h1
)

0

O
(

h0
)

0 0

⎤

⎥
⎦ , (21)

and

lim
h→0

T = O
(

h0
)

, (22a)

lim
h→0

R = O
(

h0
)

, (22b)

lim
h→0

S = O
(

h0
)

, (22c)

lim
h→0

W = O
(

h0
)

, (22d)

so that

lim
h→0

J −1 =
⎡

⎢
⎣

O
(

h2
)

O
(

h0
)

O
(

h0
)

O
(

h1
)

O
(

h−1
)

O
(

h−1
)

O
(

h0
)

O
(

h−2
)

O
(

h−2
)

⎤

⎥
⎦ . (23)
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This implies that the condition number C := ‖J‖∞‖J−1‖∞ of the Jacobian matrix has the
following asymptotic behavior

lim
h→0

C = O
(

h−3
)

. (24)

Furthermore, inspecting b, we obtain

lim
h→0

bD = O
(

h−1
)

, (25a)

lim
h→0

bK = O
(

h0
)

, (25b)

lim
h→0

bC = O
(

h0
)

. (25c)

Therefore, using Eq. 8b and considering the block structure of the arrays, we conclude

∣
∣
∣lim
h→0

�un+1

∣
∣
∣ ≤ O

(

h0
)

, (26a)

∣
∣
∣lim
h→0

�vn+1

∣
∣
∣ ≤ O

(

h−1
)

, (26b)

∣
∣
∣lim
h→0

�λn+1

∣
∣
∣ ≤ O

(

h−2
)

. (26c)

This result explains the commonly observed ill-conditioned behavior of the velocity com-
ponents and of the Lagrange multipliers for small values of the step h.

3.4 Two-field (u,λ) form

Consider now a two-field implementation of Newmark method, and in particular the (u,λ)

case. Given the updates in Eqs. 12b and 12c, we eliminate an+1 and vn+1 to obtain

1

βh2
Mun+1 − f n+1 − Gn+1λn+1 − jn = 0, (27a)

�n+1 = 0, (27b)

where

jn := M

(
1

βh2
un + 1

βh
vn −

(

1 − 1

2β

)

an

)

. (28)

The linearization of Eqs. 27 leads to problem 1, with a vector of unknown increments q and
a residual vector b given by

q :=
[

�un+1

�λn+1

]

, b :=
[

bD

bC

]

. (29)

The residual row blocks corresponding to the dynamic equilibrium (subscript D) and con-
straint equations (subscript C) are, respectively,

bD := 1

βh2
Mun+1 − f n+1 − Gn+1λn+1 − jn, (30a)

bC := �n+1. (30b)
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The Jacobian matrix J reads

J =
⎡

⎣

1

βh2
T −G

GT 0

⎤

⎦ , (31)

and the inverse Jacobian matrix can be computed as

J −1 =
⎡

⎣

βh2W T −1GR−1

−R−1GTT −1 1

βh2
R−1

⎤

⎦ . (32)

3.5 Asymptotic analysis for the two-field (u,λ) form

Similarly to the three-field case, we get

lim
h→0

J =
[

O
(

h−2
)

O
(

h0
)

O
(

h0
)

0

]

, (33)

and

lim
h→0

J−1 =
[

O
(

h2
)

O
(

h0
)

O
(

h0
)

O
(

h−2
)

]

. (34)

Therefore, the condition number of the Jacobian matrix has the following asymptotic behav-
ior

lim
h→0

C = O
(

h−4
)

. (35)

Furthermore, inspecting b, we obtain

lim
h→0

bD = O
(

h−2
)

, (36a)

lim
h→0

bC = O
(

h0
)

, (36b)

and therefore, from Eq. 8b, we find
∣
∣
∣lim
h→0

�un+1

∣
∣
∣ ≤ O

(

h0
)

, (37a)

∣
∣
∣lim
h→0

�λn+1

∣
∣
∣ ≤ O

(

h−2
)

. (37b)

3.6 Summary of results of the asymptotic analysis

Table 1 summarizes the results for the various possible forms of the Newmark family of
methods. Clearly, the asymptotic behavior of the various fields is always the same, irrespec-
tive of the choice of primary variables. In fact, the (u,v,λ), (u,λ), (v,λ) and (a,λ) forms
are obtained from the (u,v,a,λ) form (Eqs. 12) by static elimination. This operation, being
performed analytically and hence exactly, cannot change the dependence on h of the result.

On the other hand, the implementation affects the condition number C, as shown in the
last row of the same table. Notice however that the effects of perturbations on the solution
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Table 1 Summary of results for the four, three and two-field forms (the symbol ∗ denotes a secondary
unknown recovered from a primary one)

(u,v,a,λ) (u,v,λ) (u,λ) (v,λ) (a,λ)

�u O(h0) O(h0) O(h0) O(h0)∗ O(h0)∗
�v O(h−1) O(h−1) O(h−1)∗ O(h−1) O(h−1)∗
�a O(h−2) O(h−2)∗ O(h−2)∗ O(h−2)∗ O(h−2)

�λ O(h−2) O(h−2) O(h−2) O(h−2) O(h−2)

C O(h−4) O(h−3) O(h−4) O(h−3) O(h−2)

are not measured by the condition number C, but by the asymptotic analysis of Sect. 2.
We considered here also the condition number for the sake of completeness, because this
quantity affects performance when using an iterative solver for the solution of Eq. 1. In fact,
in this case, the linear solution convergence rate depends on the conditioning of the Jacobian
matrix as represented by C. However, the use of iterative solvers is quite rare in the context
of multibody dynamics problems, and direct solvers are typically preferred.

4 Optimal preconditioning

4.1 Preconditioning for the three-field (u,v,λ) form

Consider the following right preconditioner for the three-field (u,v,λ) form of Newmark’s
method

DR =

⎡

⎢
⎢
⎢
⎢
⎣

IN 0 0

0
γ

βh
IN 0

0 0
1

βh2
IM

⎤

⎥
⎥
⎥
⎥
⎦

. (38)

This scaling of the unknowns, together with DL = I (2N+M), i.e. no scaling of the equa-
tions, completely solves the problem of sensitivity to perturbations. In fact, considering the
preconditioned problem 9 and the expressions 16 and 19 for the residuals and the inverse
Jacobian, we find:

lim
h→0

J̄
−1 =

⎡

⎢
⎣

O
(

h0
)

O
(

h0
)

O
(

h0
)

O
(

h0
)

O
(

h0
)

O
(

h0
)

O
(

h0
)

O
(

h0
)

O
(

h0
)

⎤

⎥
⎦ , (39)

so that
∣
∣
∣lim
h→0

�ūn+1

∣
∣
∣ ≤ O

(

h0
)

, (40a)

∣
∣
∣lim
h→0

�v̄n+1

∣
∣
∣ ≤ O

(

h0
)

, (40b)

∣
∣
∣lim
h→0

�λ̄n+1

∣
∣
∣ ≤ O

(

h0
)

. (40c)
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This way perfect time-step-size independence of perturbations in all the differential and
algebraic variables is achieved, as in the case of well behaved ordinary differential equations.

Consider now the right scaling of Eq. 38 together with the following left scaling

DL =
⎡

⎣

βh2IN 0 0
0 IN 0
0 0 IM

⎤

⎦ . (41)

The combination of the two cures the condition number, and in fact in this case we have

lim
h→0

C = O
(

h0
)

. (42)

4.2 Preconditioning of the two-field (u,λ) form

Consider the following right preconditioner:

DR =
⎡

⎣

IN 0

0
1

βh2
IM

⎤

⎦ . (43)

This scaling, together with DL = I (N+M), yields to

lim
h→0

J̄
−1 =

[
O

(

h0
)

O
(

h0
)

O
(

h0
)

O
(

h0
)

]

, (44)

so that we have again perfect time-step-size independence of perturbations in the differential
and algebraic variables:

∣
∣
∣lim
h→0

�ūn+1

∣
∣
∣ ≤ O

(

h0
)

, (45a)

∣
∣
∣lim
h→0

�λ̄n+1

∣
∣
∣ ≤ O

(

h0
)

. (45b)

Considering now the right scaling from Eq. 43 together with the following left scaling

DL =
[

βh2IN 0
0 IM

]

, (46)

we have time-step-size independence for the condition number

lim
h→0

C = O
(

h0
)

. (47)

4.3 Some remarks on preconditioning

It appears that the recipe for curing the numerical difficulties arising from finite precision
arithmetics in DAEs can be split into two separate actions:

• a right preconditioning (i.e. a scaling of the unknowns) which cures the sensitivity to
perturbations of the solution, and

• a left preconditioning (i.e. a scaling of the equations) which, on top of the former, cures
the conditioning of the Jacobian matrix.
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Table 2 Block factors of the optimal left and right preconditioners for the various possible implementations
of Newmark’s method

(u,v,a,λ) (u,v,λ) (u,λ) (v,λ) (a,λ)

DL,D factor βh2 βh2 βh2 γ h2 βh2

DL,V factor 1 – – – –

DL,K factor 1 1 – – –

DL,C factor 1 1 1 1 1

DR,u factor 1 1 1 – 1

DR,v factor γ /βh γ/βh – 1/γ h –

DR,a factor 1/βh2 – – – 1/βh2

DR,λ factor 1/βh2 1/βh2 1/βh2 1/βh2 1/βh2

As discussed earlier, we stress that the former of these two actions is the one that really
matters in the general case, while the latter is relevant only when employing an iterative
solver for the solution of problem 1.

As a matter of fact, the right preconditioner works by scaling the unknowns in such a way
that, with respect to the time variable, they are all of the same ‘order’. Roughly speaking,
generalized accelerations and Lagrange multipliers are ‘integrated twice’ by multiplication
for h2, generalized velocities are ‘integrated once’ by multiplication for h1, while general-
ized coordinates are left unchanged. This appears to be a general rule, and is the same result
obtained for a BDF integrator in References [2, 3].

For the left preconditioning, it appears that the recipe is again one of simple multiplica-
tion by positive powers of the time step size. In particular, the discretized dynamic equilib-
rium equation must be ‘integrated twice’ by multiplication for h2, in order to reach the same
‘order’ with respect to the time variable of the kinematic and constraint equations.

Table 2 summarizes the block factors of the optimal left and right preconditioners for
the various possible implementations of Newmark’s method. The subscripts D, V, K and C
for the left preconditioners refers to the dynamic, velocity, kinematic and constraint equa-
tions blocks, respectively. The subscripts u, v, a, λ for the right preconditioners refer to the
displacement, velocity, acceleration and Lagrange multipliers blocks, respectively.

5 Numerical examples

In order to illustrate the predictions of the above analysis, two well known problems were
solved: namely, the simple pendulum, and Andrews’ squeezing mechanism. Both problems
were solved using the trapezoidal rule (i.e. Newmark’s method with β = 1/4, γ = 1/2) with
the two-field (u,λ) approach.

At each time step, the nonlinear discretized equations are iteratively solved by using the
Newton method. At the j -th iteration, one computes the current corrections from the linear
system

J jqj = −bj . (48)

The norm of the corrections qj decreases at each iteration up to a certain saturation value.
In fact, recall that, due to accumulation of roundoff errors, we have

lim
h→0

q(h, ε) �= 0. (49)
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If further iterations are carried out, the norm of the corrections oscillates around its satura-
tion value, and asymptotic convergence is lost. To take into account this effect arising from
finite precision arithmetics, we arrested the iterations when the Newton corrections stop
decreasing, i.e. when the condition

∥
∥qj+1

∥
∥ ≥ ∥

∥qj
∥
∥ (50)

is detected. The last decreasing Newton correction norm indicates the tightest achievable
convergence of the Newton iteration process, which cannot be further improved no matter
how many additional iterations are carried out.

For all problems, we considered the following formulations:

• no preconditioning: the discretized governing equations are left as they are originally cast
by applying the trapezoidal rule to Eqs. 51;

• left preconditioning: the discretized governing equations are subjected to the scaling of
the residuals given by Eq. 46;

• right preconditioning: the discretized equations are subjected to the scaling of the un-
knowns given by Eq. 43;

• optimal (i.e. full right/left) preconditioning: the discretized equations are subjected to both
the right preconditioning and the left preconditioning.

5.1 The simple pendulum

The problem is governed by the following equations:

v′
x = λux, (51a)

v′
y = λuy − 1, (51b)

u′
x = vx, (51c)

u′
y = vy, (51d)

0 = 1

2

(

u2
x + u2

y − 1
)

, (51e)

where ux and uy are the Cartesian coordinates of the point mass, vx and vy the corresponding
velocity components, and λ the intensity of the reaction force. Bar length, point mass and
acceleration of gravity are all equal to 1. The point mass is initially at rest with ux = 1,
uy = 0, and falls under the action of gravity. The problem was solved in the time interval
[0,7], and we used time-step sizes h = {1 × 10−1,1 × 10−2,1 × 10−3,1 × 10−4}.

Figure 1 shows the behavior of the coordinate correction norm as a function of h. It
appears that the non-preconditioned and the preconditioned solutions are all insensitive to
the time step size, as predicted. The case of the Lagrange multipliers, however, is very
different: Fig. 2 shows that non-preconditioned multiplier corrections (as well as the left-
preconditioned ones) display an O(h−2) behavior, while the right-preconditioned and the
optimally preconditioned corrections are insensitive to the time step size. Figure 3 shows
the condition number of the Jacobian matrix: in this case, the non-preconditioned values are
O(h−4), the left-only and right-only preconditioned values are O(h−2), while the optimally
preconditioned values achieve time step size insensitivity. These results are consistent with
Table 1.

In order to complete the picture, in Figs. 4 and 5 we give the results of the same analysis
carried out with the two-field (v,λ) and (a,λ) approaches. Figure 4 shows the behavior of



On the optimal scaling of index three DAEs in multibody dynamics 15

Fig. 1 Simple pendulum problem. Last decreasing Newton correction norms of the displacements vs. the
time step size with the (u,λ) approach

Fig. 2 Simple pendulum problem. Last decreasing Newton correction norms of the Lagrange multiplier
vs. the time step size with the (u,λ) approach
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Fig. 3 Simple pendulum problem. Condition number for the Jacobian matrix at convergence vs. the time
step size with the (u,λ) approach

Fig. 4 Simple pendulum problem. Last decreasing Newton correction norms of the velocities vs. the time
step size with the (v,λ) approach
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Fig. 5 Simple pendulum problem. Last decreasing Newton correction norms of the accelerations vs. the time
step size with the (a,λ) approach

the velocity correction norm and Fig. 5 that of the acceleration correction norm as func-
tions of h. In the former figure, we see that non-preconditioned velocity corrections (as well
as the left-preconditioned ones) are O(h−1), while the right-preconditioned and optimally
preconditioned corrections are insensitive to the time step size. In the latter figure, the non-
preconditioned velocity corrections (as well as the left-preconditioned ones) are O(h−2),
while the right-preconditioned and optimally preconditioned corrections are again insensi-
tive to the time step size. Again, all results are consistent with Table 1.

5.2 Andrews’ squeezing mechanism

Next, we consider the well known Andrews’ squeezing mechanism, a planar holonomic
multibody system depicted in Fig. 6 consisting of seven rigid bodies connected via revolute
joints, loaded by a spring at point D and actuated by a constant torque driver at point O.
The model is described in detail in Reference [8]. The problem is here formulated in terms
of the 2-D Cartesian coordinates of the points E through H of the figure, along with the
Lagrange multipliers which enforce the constant distance constraints between the points.
We used the time-step sizes h = {1 × 10−3,1 × 10−4,1 × 10−5,1 × 10−6,1 × 10−7}, for a
duration of the simulation of 0.02 seconds.

Figures 7, 8 and 9 show, respectively, the coordinate correction norm, the Lagrange mul-
tipliers correction norm, and the condition number as functions of the time step. Here again
the results exactly agree with the ones predicted by the analysis and with those of the previ-
ous example.
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Fig. 6 Andrews’ squeezing
mechanism

Fig. 7 Andrews’ mechanism. Last decreasing Newton correction norms of the coordinates vs. the time step
size with the (u,λ) approach
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Fig. 8 Andrews’ mechanism. Last decreasing Newton correction norms of the Lagrange multiplier vs. the
time step size with the (u,λ) approach

Fig. 9 Andrews’ mechanism. Condition number for the Jacobian matrix at convergence vs. the time step size
with the (u,λ) approach
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6 Concluding remarks

In this work we have presented a novel analysis of the sensitivity to perturbations arising
from finite precision arithmetics in the solution of index-3 differential-algebraic problems.
The effects of finite precision arithmetics are modeled by using a small number, and an
asymptotic analysis is carried out. Estimates for the perturbations in the unknowns are ob-
tained by determining the dependence on the time step size of the residual vector and of the
Jacobian matrix of the linearized problem.

Based on this result, preconditioners are readily identified which cure the pollution prob-
lem at its root. We analyzed the Newmark family of integrators as a representative example
of second-order integrators for finite-element multibody system analysis. The precondition-
ers were described in detail in this work for two forms of the equations. All other possible
forms lead however to the same identical results, namely that it is always possible to elimi-
nate the problem by simple scaling.

Numerical examples were used to confirm the analysis and illustrate the beneficial effects
of the preconditioning strategy. The proposed methodology has the potential merit, with
respect to other possible approaches, of being trivial to implement in an existing code. In
fact, it does not require any re-writing of the governing equations and/or the introduction of
additional unknowns as commonly done with index-reduction approaches.
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