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Abstract An important issue in the field of flexible multibody dynamics is the reduction

of the flexible body’s degrees of freedom. For this purpose, often modal reduction through

projection onto a subspace spanned by some dominant eigenvectors is used. However, as in

this method the dynamical boundary conditions are not taken into account, a large number of

eigenmodes is required to obtain a good approximation and also the selection of the dominant

modes can be quite difficult. Therefore, the authors propose an approach based on accounting

for the flexible body as an input-output system in the frequency domain. The reduced order

model is generated by imposing a set of interpolation conditions concerning the values and

derivatives of the system’s transfer function in a predefined frequency range. This procedure

is known as moment-matching and can be realised through projection onto so-called Krylov-

subspaces. As this technique allows the incorporation of the frequency content and the

spatial distribution of the loads, in the chosen frequency range more accurate reduced order

models can be obtained compared to other model reduction techniques available in structural

mechanics. The calculation of the Krylov-subspaces can be implemented very efficiently,

using the Arnoldi or Lanczos procedure in connection with sparse matrix techniques. The

capability of the proposed technique is demonstrated by means of a numerical example.

Keywords Flexible multibody systems . Model reduction . Krylov-subspaces .

Moment-matching

1. Introduction

The method of flexible multibody systems (FMBS) is an important tool for the simulation and

analysis of complex mechanisms including flexible components. To describe the behaviour of

a flexible body within the mechanism, often the well-established floating frame of reference

formulation is used. In this methodology, the flexible body’s motion is subdivided into the
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nonlinear reference motion and the linearised elastic deformation. The flexible part of the

displacement field is approximated using a Ritz-approach by the product of known shape

functions and time-dependent elastic coordinates. Using the finite element method (FEM) to

describe the flexible body leads to a large number of elastic coordinates and dynamic analysis

of the flexible multibody system becomes computationally very demanding. Therefore, the

number of the flexible body’s degrees of freedom has to be diminished considerably. Accord-

ing to [32], the use of suitable reduction methods can be justified as the large number of elastic

coordinates is often not caused by the complexity of the flexible body’s dynamic response,

but rather by its complex topology or rapid changes in the system properties. In this regard,

a classical method is the use of modal reduction. However, the special character of the load

acting on the flexible body is not considered in the basic method and as a consequence, con-

vergence is often very slow, see [29]. To improve convergence, different approaches can be

found in the literature, for example the supplementation of the basis of eigenvectors with as-

sumed modes [9] or the selection of the eigenmodes according to some influence coefficients

accounting for the nature of the load acting on the flexible body, see [15, 47].

Here, a different approach is presented by formulating the elastic body as an input-output

system and using Krylov-subspace based projection methods to reduce the system. Applying

this method, the reduced system interpolates the frequency response of the full model and

a given number of its derivatives at a specified number of points. As a consequence, in

a predefined frequency range more accurate reduced order models can be obtained than,

e.g., by an application of modal reduction. The calculation of the Krylov-subspace can be

implemented very efficiently using iterative methods like the Arnoldi or Lanczos procedure,

and also a combination with modal reduction is possible in order to improve its approximation

capabilities in a predefined frequency range. Starting from the constructed reduction base,

the so-called standard input data file (SID file) [41] representing the flexible substructure

can be generated and subsequently imported by FMBS programs like SIMPACK [26] or

NEWEUL [25].

2. The floating-frame of reference formulation

In this section, the basic idea behind the floating-frame of reference formulation is presented

in brief. More detailed explanations on this topic can be found in the literature, e.g. [41, 44].

2.1. Reference kinematics

One possibility to describe the configuration of an elastic body is the simultaneous use of two

sets of coordinates [44]. First, the reference coordinates, describing the global motion of the

body’s reference system K i with respect to the inertial frame of reference K I and second, the

elastic coordinates, describing the body’s deformation with respect to the reference frame.

According to Figure 1, the position r k(t) = r (Rik, t) of an arbitrary frame K k on the body

with the material coordinate Rik can be written as

r k(t) = r i (t) + d ik(t) (1)

using the global position of the body’s reference system r i (t) and the local position vector

d ik(t). Similarly, for the transformation matrix of frame K k with respect to frame K I , the

relation

AI k(t) = AI i (t) · Aik(t) (2)
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Fig. 1 Kinematic description of a flexible body

holds and a coordinate transformation from frame K i to frame K I can be written as

I r k(t) = AI i (t) · ir k(t). (3)

In the case of rigid bodies, the position vector i d ik(t) and the transformation matrix Aik(t)
remain constant. Below, if no subscript is given, all vectors are assumed to be represented by

coordinates with respect to the basis defined by frame K i .

For elastic bodies, the vector d ik(t) can be split up in two parts

d ik(t) = Rik + uk(t) (4)

with Rik representing the constant position of K k in the undeformed state and uk(t) = u(Rik)

denoting the elastic displacement of this frame.

Equivalently, the time dependent transformation matrix Aik(t) is separated in a constant

part Γik and a part Θk(t) depending on the angular elastic deformation

Aik(t) = Γik · Θk(t). (5)

The elements of the matrix Θk(t) can, e.g., be determined using three angles, collected in

the vector ϑk(t) = ϑ(Rik, t).
Below, only small deformations are considered. This allows a linearisation of the kinematic

equations with respect to the elastic deformation and the transformation matrix Θk(t) can be

written as

Θk(t) = E + ϑ̃k(t). (6)

Introducing a Ritz-Ansatz, the small deformation variables u(R, t) andϑ(R, t) are approx-

imated by known shape functions Φ(R) and Ψ(R) and time dependent weighting coefficients,

collected in a vector q(t)

u(R, t) = Φ(R) · q(t), ϑ(R, t) = Ψ(R) · q(t). (7)

If a finite element model is used to describe the flexible body, Φ(R) and Ψ(R) comprise

the shape functions of the finite elements and q(t) are the nodal coordinates [41].
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2.2. Equations of motion of an elastic body

Using the kinematic equations of Section 2.1, three sets of variables are defined. The position

is represented by

z I = [r i , βi , q], (8)

with r i as the position of the body’s reference system, βi as a set of variables describing the

rotation of the reference system and the coordinates q representing the body’s deformation.

To describe the velocity, the set

z I I = [v i , ωi , q̇] (9)

is used. Here, v i denotes the translational velocity and ωi the rotational velocity of the

reference system. For the flexible part, the time derivative of the deformation coordinates q̇
is taken into account. To represent the acceleration,

z I I I = [ai , αi , q̈] (10)

is defined, with the translational acceleration of the reference system ai , its angular acceler-

ation αi and the second derivative of the deformation coordinates q̈ . Expressing Jourdain’s

principle of virtual power [41] through the velocity variations δz I I results in

δz I I · (
M · z I I I − hac − he

) = 0. (11)

Since the variations δz I I are independent, Equation (11) is only valid if

M · z I I I = hac + he (12)

holds. In Equation (12), M is the generalized mass matrix, hac collects generalized inertia

forces, gravitational forces and forces acting on the body’s surface due to force elements or

kinematic constraints. The vector he comprises internal forces due to deformations. Parti-

tioning of the matrices in Equation (12) according to their translational, rotational and elastic

shares yields

M =

⎡⎢⎣ m I mc̃T (q) CT
t (q)

mc̃(q) J(q) CT
r (q)

C t (q) Cr (q) Me

⎤⎥⎦, hac =

⎡⎢⎣hac
t (q, q̇)

hac
r (q, q̇)

hac
e (q, q̇)

⎤⎥⎦ and

he =

⎡⎢⎣ 0

0

−K e · q − De · q̇

⎤⎥⎦. (13)

2.3. Definition of the body reference frame

Location r k and orientation Ak of an arbitrary frame are determined by six generalized

coordinates. Using the floating frame of reference approach, twelve variables are used in order

to describe the location and orientation of the frame. This redundancy has to be eliminated,
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using at least six reference conditions. These conditions are not unique and can be chosen

according to kinematic or dynamic criteria. The minimum requirement the shape functions

Φ(R) and Ψ(R) have to meet is their ability to fulfil the geometric boundary conditions

implied by choosing a certain reference system. Such shape functions are called admissible

functions [29].

In [42], several methods to meet these conditions are proposed. One possibility is to use

a so-called chord-frame that is defined by the three points P1, P2 and P3 with the material

coordinates Ri1, Ri2 and Ri3. The origin of the reference system K i is at P1, two of its basis

vectors are required to belong to a plane defined by the three points and the third basis vector

is chosen to be perpendicular to this plane. For the deformation variables, constraints

u(Ri1, t) = 0, u2(Ri2, t) = 0, u3(Ri2, t) = 0, u3(Ri3, t) = 0 (14)

equivalent to shape functions satisfying the conditions

Φ(Ri1) = 0, Φ2∗(Ri2) = 0, Φ3∗(Ri2) = 0 and Φ3∗(Ri3) = 0 (15)

apply. Similarly, the tangent-frame is defined by identifying the reference system K i with

the frame of the body having the material coordinate R = 0.

Besides the kinematical relations used so far, also dynamical constraints to define the

reference system can be used. For example the Buckens-frame satisfying the condition

∫
V

u(R, t) · u(R, t) dm
!= minimum (16)

can be defined. Although the applied load effects the physical deformation, the choice of the

reference frame determines the displacements with respect to this frame. As Equation (16)

reveals, the choice of the Buckens-frame leads to the smallest elastic deformation possible.

For arbitrary shape functions, condition Equation (16) must be enforced by imposing an

algebraic constraint while solving the system’s equations of motion.

However, it can be shown, that by using eigenfunctions of unsupported structures, so

called free-free modes, and deleting the six rigid body modes, constraint Equation (16) is

automatically met.

3. Model reduction for flexible multibody dynamics

In this section, a general framework for the reduction of the dynamical equations (12) with

the partitioning (13) is described. The basic idea of this methodology known as reduction by

projection is to generate a reduced order model by approximating the solution in a suitable

low-dimensional subspace and imposing constraints related with another low-dimensional

subspace. Also classical methods like modal reduction can be interpreted in the scope of this

framework. Below only some fundamental relations will be explained, a detailed study on

projection methods can be found in [2, 8, 18].
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3.1. Model reduction using projection methods

The method will be illustrated by means of a linear time-invariant MIMO-system connecting

input u(t) and output y(t)

E · ẋ(t) − A · x(t) = B · u(t),
(17)

y(t) = C · x(t)

with the descriptor matrix E ∈ Rn×n , the system matrix A ∈ Rn×n , the input matrix B ∈ Rn×p

and the output matrix C ∈ Rr×n . In a first step, the solution x is approximated in a subspaceV
of dimension m < n. As this subspace can be represented by a rectangular matrix V ∈ Rn×m

with colsp{V} = V , the approximation can be written as

x(t) ≈ V · x̄(t). (18)

Inserting Equation (18) into Equation (17) leads to an overdetermined system of differ-

ential equations

E · V · ˙̄x(t) − A · V · x̄(t) = B · u(t) + r (t)
(19)

y(t) = C · V · x̄(t).

As the real solution x(t) of Equation (17) can not be expected to be an element of sub-

space V in general, a residual r (t) �= 0 is taken into account in Equation (19). In order to

obtain a unique solution, m constraints have to be imposed on the residual of Equation (19).

These conditions are associated with a second subspace W spanned by the columns of a

rectangular matrix W ∈ Rn×m , that means colsp{W} = W . Typically, constraints in the form

of orthogonality conditions, so-called Petrov-Galerkin conditions, are applied by premul-

tiplying Equation (19) with WT . By this premultiplication we can take advantage of the

orthogonality WT · r = 0 and make sure to get a feasible solution. The result is a reduced

system of dimension m × m

WT · E · V · ˙̄x(t) − WT · A · V · x̄(t) = WT · B · u(t),
(20)

y(t) = C · V · x̄(t).

A projection method is called orthogonal, if the two subspaces V and W are identical,

otherwise it is referred to as an oblique projection.

The same approach, adopted to the flexible part of Equation (12) by setting

q(t) ≈ V · q̄(t) (21)
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and imposing the orthogonality condition related to W, leads to the following reduced set of

equations ⎡⎢⎣ m I mc̃T (q̄) CT
t (q̄) · V

mc̃(q̄) J(q̄) CT
r (q̄) · V

WT · C t (q̄) WT · Cr (q̄) WT · Me · V

⎤⎥⎦ ·

⎡⎢⎣ai

αi

¨̄q

⎤⎥⎦

=

⎡⎢⎣ hac
t (q̄, ˙̄q)

hac
r (q̄, ˙̄q)

WT · hac
e (q̄, ˙̄q)

⎤⎥⎦ +

⎡⎢⎣ 0

0

−WT · K e · V · q̄ − WT · De · V · ˙̄q

⎤⎥⎦. (22)

3.2. Methods for model reduction

So far, the projection matrices V and W introduced in Section 3.1 are not specified. This task

is associated with the choice of a specific model reduction method. The need for accurate and

efficient model reduction methodologies arises in various fields of application and there exist a

large amount of techniques, often closely related to one of these applications. Amongst others,

model reduction methods are used for micro-electro-mechanical systems (MEMS) [36], the

simulation of electronic circuits [10], the simplification of dynamic controllers [8], weather

prediction [46] and, of course, structural mechanics [32].

In the following, some of the developed approaches are inspected and assessed espe-

cially with regard to flexible multibody dynamics. In the literature, see [1, 3, 8], mainly two

categories of reduction techniques are distinguished.

The first group comprises techniques based on the optimisation of the reduced-order

model with respect to a given criteria. In [1] they are referred to as SVD-based methods as

they have their roots in the singular value decomposition (SVD). Two important approaches

within this context are the balanced truncation [31] and the Hankel norm approximation [17].

When applied to stable models, both approaches guarantee to preserve stability and further

on, a global error bound is available by computation of the so-called Hankel singular values.

Despite of these favourable properties, the application of the SVD-based methods within the

context of flexible multibody dynamics is arguable. These approaches require at least the

solution of two linear matrix equations, the Lyapunov equations, as well as the computation

of an SVD. Consequently, the computational effort grows with the cubic power in the number

of degrees of freedom, making the application to large-scale systems at least difficult. Another

drawback is, that originally they were developed for first order systems and are not directly

applicable to second order systems like this was done for the reduced equation of motion

of the flexible body Equation (22). Meanwhile, there exist some approaches to adapt the

balanced truncation method to second order systems, see [30, 40, 46]. However, these methods

lack some of the aforementioned properties of SVD-methods. In this respect, the methods

presented in [30, 46] do not provide a global error bound and do not guarantee stability of

the reduced system. An alternative way to benefit from the properties offered by the SVD-

methods is given in [15, 23]. Here, it is shown that for proportionally damped mechanical

structures, the modal model is already almost balanced and approximate Hankel singular

values can be obtained with little computational effort. This procedure can be applied to

second order systems, too.

The second category of model reduction techniques includes methods which preserve

exactly a predefined selection of parameters of the full-order model. These parameters can
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be the dominant eigenfrequencies of the original system as in modal reduction or the values

of the transfer function and a selected number of its derivatives as in the moment-matching

methods. These moment-matching conditions can be imposed explicitly through so-called

Padé approximation or implicitly by projection on certain Krylov-subspaces [3, 18]. In our

context, only the projection methods are applicable and, furthermore, they are known to be

the numerically more stable approach [3]. Using these methods, very accurate models within

a selected frequency range can be obtained and, different from the SVD-based methods, also

large-scale systems can be handled by exploiting the sparsity of the involved matrices. Similar

to SVD-based methods, the Krylov-based methods originally were developed for state-space

systems such as Equation (17) but meanwhile there exist powerful adaptations that can be

applied directly to second-order systems, like the methods presented in [4, 46]. Nevertheless,

there are also some drawbacks one has to face when working with Krylov-subspace methods.

Because of the local nature of the reduction procedure, it is very difficult to develop global

error bounds [1], as it is done in [19] for one special implementation, the Lanczos procedure.

In practise, often heuristic error estimates are used as proposed in [6, 18, 38]. Further on,

stability of the reduced model is not guaranteed in general even if the full order model is

stable. However, for systems of special structure and the restriction to orthogonal projection,

stable reduced order models can be obtained, see [11].

Additionally, in [1] a third group of reduction techniques is introduced, that aims to

combine the favourable properties of SVD- and Krylov-based methods to so-called SVD-

Krylov methods. So far, only approaches based on the state space formulation Equation (17)

exist and consequently these methods are not considered here.

As most model reduction methods are derived for state-space systems, one can wonder if

it is advisable to use this formulation also for the description of the flexible body. Suitable

methods for the linearisation are available in the literature, see [45]. Here, this is not done

for several reasons. From a practical point of view, it is much easier to integrate the flexible

body’s dynamics in a general multibody formalism if it is formulated in a second order form.

In addition, as stated in [4, 46], structural properties like symmetry or positive definiteness

as well as the physical meaning of the original system are lost.

4. Model reduction using moment-matching

In Section 3.2 it was exposed, that moment-matching methods constitute a promising ap-

proach also in the context of flexible multibody dynamics. Actually, variants of these methods

have been applied successfully to structural mechanics problems, see [20, 22, 27, 33, 34, 48].

Additionally, in this work recent advances based amongst others on the work presented

in [4, 18, 46] are considered and adapted to structural mechanics and flexible multibody

dynamics, respectively.

4.1. Moment-matching and Krylov-subspaces

The moment-matching model reduction technique, as it is established here, is based on

regarding the transfer function of a linear system. If zero initial conditions are assumed,

application of the Laplace transformation

X(s) =
∫ ∞

0

x(t)e−st dt (23)
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to Equation (17) leads to an algebraic system of equations

s E · X(s) − A · X(s) = B · U (s),

(24)

Y(s) = C · X(s)

from which the transfer function

H(s) = Y(s)

U (s)
= C · (s E − A)−1 · B (25)

is directly deduced. Making use of the Neumann expansion [18]

(I − ηG)−1 =
∞∑
j=0

(ηG) j , (26)

the transfer function in Equation (25) can be expanded into a power series about a point σ

that is not a pole of this transfer function. At first, Equation (25) is written, see [13], as

H(s) = C · (σ E − A − (σ − s)E)−1 · B

= C · (I − (σ E − A)−1 · E(σ − s))−1 · (σ E − A)−1 · B. (27)

Now, application of the Neumann expansion (26) leads to

H(s) =
∞∑
j=0

C · ((σ E − A)−1 · E) j · (σ E − A)−1 · B(σ − s) j

=
∞∑
j=0

Tσ
j (σ − s) j (28)

with the j-th moment

Tσ
j = C · ((σ E − A)−1 · E) j · (σ E − A)−1 · B = 1

j!

∂ j H(s)

∂s j

∣∣∣∣
s=σ

(29)

of a transfer function around an expansion point σ . It is the approximation idea of the Krylov-

based or moment-matching methods to generate a reduced order model H̄(s) such that the

conditions

Tσk
j(k) = T̄σk

j(k), k = 1, . . . , K ; j(k) = 0, . . . , Jk (30)

hold. If the transfer function is expanded about infinity, the problem is also known as partial

realisation and the moments are denoted as Markov parameter. Otherwise, the method belongs

to the group of Padé approximations, see [1]. A numerically reliable approach to generate

reduced order models satisfying condition (30) is the use of Krylov-subspace methods that

allow moment-matching without the numerically unstable necessity to calculate the moments

explicitly. In general, a (block-) r -th Krylov-subspace is defined by

Kr (M, R) = span{R, M · R, . . . , Mr−1 · R} (31)
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with matrix M and starting matrix R, see [10]. The particular moment-matching property

is defined by the specific choice of M and R. A very general choice is the rational Krylov

method in [18] given by

K⋃
k=1

KJb(k)((σk E − A)−1 · E, (σk E − A)−1 · B) ⊆V = colsp{V}, (32)

K⋃
k=1

KJc(k)((σk E − A)−T · ET , (σk E − A)−T · CT ) ⊆W = colsp{W}. (33)

Using Equations (32) and (33), the moments in Equation (30) satisfy the condition

Tσk
j(k) = T̄σk

j(k) (34)

for k = 1, . . . , K and j(k) = 0, . . . , Jb(k) − 1 + Jc(k) − 1. The proof of this relation is

given in [13] or, in a slightly generalized manner, also in [18]. To demonstrate the basic idea

in the argumentation used thereby, the matching of the zeroth moment about σk similar to

the representation in [39] is shown.

According to Equations (29) and (20), the zeroth moment of the reduced system can be

written as

T̄σk

0 = C · V · (σk WT · E · V − WT · A · V)−1 · WT · B. (35)

Keeping the definition of the input Krylov-subspace (32) in mind, the columns of the matrix

(σk E − A)−1 · B can be written as a linear combination of the columns V , that is

∃H0 ∈ Cm×n : (σk E − A)−1 · B = V · H0. (36)

Combing Eqs. (35) and (36) leads to the desired result

T̄σ

0 = C · V · (σk WT · E · V − WT · A · V)−1 · WT · (σk E − A) · V · H0

= C · V · (σk WT · E · V − WT · A · V)−1

·(σk WT · E · V − WT · A · V) · H0

= C · V · H0

= C · (σk E − A)−1 · B

= Tσk
0 . (37)

Methods in which the input Krylov-subspace V and output Krylov-subspace W are used to

build the reduced model are denoted as two-sided Krylov-subspace methods. In a one-sided

Krylov-subspace method, only one of the subspaces (32) or (33) is used and the other subspace

is chosen in such a way, that WT · A · V is nonsingular. Yet, only half of the moments can

be matched.

In practise, it is not advisable to use the definitions of the Krylov-subspaces (32) and (33)

directly to build the bases V and W. As stated in [10], the vectors of the Krylov-sequence

(31) will quickly converge to dominant eigenspaces of the matrix M and, in finite-precision

arithmetic, even for a small number of iterations k they contain only information about these
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eigenspaces. A remedy is to construct orthogonal bases forV andW using the Lanczos process

or the Arnoldi algorithm. In this work, the Arnoldi algorithm is used as it is numerically more

stable and easier to implement. A comparison of the two methods is given in [18, 39].

4.2. Adaptation to second order systems

The Krylov-subspace method introduced in Section 4.1 was established using the generalised

state-space description Equation (17). However, as in Section 3.1 a projection method was

applied directly to the model of a flexible body described in second order form, structure-

preserving adaptations of this technique have to be used. For this purpose, three approaches

are available. One method is, to transform the second order system into state-space form

and to apply a suitable model reduction technique for such systems. If the model reduction

technique preserves certain conditions defined in [28, 30], the reduced order model can be

rewritten as second order system using an appropriate state-space coordinate transformation.

With this approach, a reduced order model of size 2n in state-space description can match up to

4n − 1 interpolation conditions in the SISO case. However, this method also has remarkable

drawbacks that make it hardly applicable in the application area considered here. In this

respect, properties of the original system such as stability and symmetry are not maintained

and application to MIMO-systems is also limited. Furthermore, the matrices W and V are

not directly accessible but this is necessary to build some of the elements in Equation (22).

Another technique is based on the assumption that the damping matrix can be neglected

when building the reduced order model. Thereby, the methods developed for state-space

systems can be used with little modifications.

The third possibility to apply moment-matching methods to second order systems, is to

introduce second order Krylov-subspaces first used in [43] and recently revisited in [4]. The

last two methods are considered in the following.

4.2.1. Adaptation to proportionally damped systems

This approach focuses on problems where it can be assumed that the damping is proportional,

see [5], i.e.

φi · De · φ j = 2 ωi ξi δi j (38)

with the i-th eigenvector φi , the corresponding frequency of vibration ωi of the undamped

system, the modal damping parameter ξi and δi j as the Kronecker delta. Such a damping

matrix is obtained using the Caughey series

De = Me ·
r−2∑
k=0

ak
[
M−1

e · K e
]k

(39)

that for r = 2 reduces to Rayleigh damping

De = αMe + βK e. (40)

As stated in [5, 14], this assumption is adequate for many mechanical systems with known ex-

ceptions like structures with widely varying material properties or with concentrated dampers

at the support parts. Also, structures resulting from a component modes synthesis exhibit
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non proportional damping even when the sub-systems used are proportionally damped [34].

In [16], the consistency of this approach with the assumption that the structure is lightly

damped is proven and, consequently, the neglect of damping can be justified when the re-

duction basis is built. This is also in the spirit of other well-known reduction methods like

Guyan reduction or modal reduction.

Neglecting the damping matrix De, the transfer function of the linear elastic part in

Equation (22) can be written as

H(s) = C · (λMe − (−K e))−1 · B (41)

with λ = s2. Taking advantage of the technical similarity with Equation (25), the rational

Krylov method introduced in Section 4.1 can be applied directly when substituting E by

Me and A by (−K e) in Equations (32) and (33). As a result, the derivatives of the original

model’s transfer function H(λ(s)) and the transfer function of the reduced model H̄(λ(s))

with respect to λ match up to a certain order J , i.e.

∂ i

∂λi
H̄(λ(s))

∣∣∣∣
λ=λ(σ )

= ∂ i

∂λi
H(λ(s))

∣∣∣∣
λ=λ(σ )

, i = 1, . . . , J. (42)

Now, by applying mathematical induction it can be shown that relation (42) implies also

matching of the derivatives with respect to s

∂ i

∂si
H̄(s)

∣∣∣∣
s=σ

= ∂ i

∂si
H(s)

∣∣∣∣
s=σ

, i = 0, . . . , J. (43)

According to Equation (29), this is equivalent to the moment-matching property for the

second order transfer function (41).

Using the chain rule, for i = 1 the relation

∂

∂s
H(λ(s)) = ∂

∂λ
H(λ(s))

dλ

ds
= M1 a1

1 (44)

holds and as the coefficient a1
1 does not depend on the reduction procedure, relation (42)

comprises relation (43).

Now it is assumed, that for a given i the statement

∂ i

∂si
H(λ(s)) =

i∑
k=1

Mk ai
k(λ) (45)

with Mk = ∂k H(λ(s))/∂λk , is true. Technically, also the relations ai
0 ≡ 0 and ai

i+1 ≡ 0 hold.
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Proceeding to step i + 1 yields

∂ i+1

∂si
H(λ(s)) = ∂

∂λ

(
i∑

k=1

Mk ai
k(λ)

)
dλ

ds

=
i∑

k=1

Mk+1 ai
k(λ)

dλ

ds
+ Mk

(
d

dλ
ai

k(λ)

)
dλ

ds

=
i+1∑
k=1

Mk

(
ai

k−1(λ)
dλ

ds
+ ∂

∂λ
ai

k(λ)
dλ

ds

)

=
i+1∑
k=1

Mk ai+1
k (λ). (46)

In other words, the i-th derivative of the transfer function with respect to s, compare

Equation (43), can be written as a weighted sum of the derivatives with respect to λ, see

Equation (42), and the associated coefficients ai
k only depend on the mapping f : s �→ λ(s).

Finally, it is also worth to mention that, if an orthogonal projection is performed and

the corresponding projection matrix V is generated considering only one expansion point

σ = 0, compare Equation (32), then the proposed method is closely related to the techniques

presented in [20, 33, 48]. Nevertheless, the reasoning used in this work is quite different.

4.2.2. Second order Krylov-subspaces

For some mechanical systems the assumption made in Section 4.2.1 are not valid and the

effect of damping has to be taken into account in order to build an appropriate reduced

order model. For these purposes, many authors, e.g. in [22, 24, 34], introduce a state-space

formulation similar to Equation (17). However, in [43], the structure of a Krylov-sequence

for such a state-space system originating from a second order system is analysed and an

iterative scheme to generate reduction bases directly applicable to second order systems is

proposed. In [4] this scheme is denoted as a second order Krylov-subspace. Here, already a

block version

Gr (M, N; R) = span{R0, R1, R1, . . . , Rr−1} (47)

with the matrices

R0 = R,

R1 = M · R0,

Rl = M · Rl−1 + N · Rl−2 for l ≥ 2 (48)
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is considered. Further on, in [4] the method is extended for moment-matching about selected

expansion points σk �= 0. To build the input Krylov-subspace, the matrices in Equation (47)

have to be chosen as

M = (
σ 2

k Me + σk De + K e
)−1 · (2σk Me + De),

N = −(
σ 2

k Me + σk De + K e
)−1 · Me, (49)

R = (
σ 2

k Me + σk De + K e
)−1 · B.

Accordingly, also an output Krylov-subspace can be defined. A prove of the moment-

matching property as well as an efficient algorithm to generate the second order Krylov-

subspace is given in [4]. In this work a straight-forward extension to the rational Krylov

method [18] is considered.

The shift points σk used in Equation (49) are complex numbers in general. Thus, while

the original problem is real, to build the second order Krylov-subspace (47) according to

the definitions in Equation (49), complex matrices occur and also the resulting projection

matrices V and W turn out to be complex. The change to complex linear algebra not only

increases the computational effort in generating the matrices, but also the FMBS programs

mentioned in Section 2 would be forced to handle complex numbers. For real systems, a

remedy directly adaptable to the second order case is given in [37]. The basic idea is, that

with σk implicitly an expansion about its conjugate σ̄k is executed by using the relation

Re{H(σk) · x} = 1

2
[(H(σk) + H(σ̄k)) · x],

(50)

I m{H(σk) · x} = 1

2i
[(H(σk) − H(σ̄k)) · x]

that holds for every real vector x with matrix H(σk) = (σ 2
k Me + σk De + K e)−1 · (2σk Me +

De) or H(σk) = (σ 2
k Me + σk De + K e)−1, respectively. Thus, two complex vectors in the

basis of the subspace defined by Equations (47), (48) and (49) can be substituted by two real

vectors without changing the spanned subspace.

4.2.3. Stability of the reduced order model

As annotated above, the Krylov-subspace method in its general form does not guarantee

the preservation of the original model’s stability properties in the reduced order model. For

some applications this might not be of interest, but if the model is used for time integration,

this property is essential. However, if the system matrices Me, K e and, if already available,

De are assumed to be symmetric and in addition the important special case of C = BT is

considered, the input and output Krylov-subspaces correspond to each other and the oblique

projection turns into an orthogonal projection.

Accordingly, the reduced system matrices show the same properties with respect to sym-

metry and positive (semi)definiteness, see [49], as the original matrices and the stability

properties are preserved in the reduced order model. If the condition of symmetry of in- and

output does not hold and thereby an oblique projection method is used, the stability of the

reduced model has to be examined and restored when necessary. Appropriate methods are

described in [18]. In the following, the symmetry of in- and output is assumed.
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4.2.4. Adaptation to multibody dynamics

In flexible multibody dynamics, some additional requirements have to be met by a model

reduction formalism. First, as stated in Section 2.3, the reduction base V is not allowed

to contain any rigid body modes. If a statically determined constraint set as the tangent-

or chord-frame is used, this is automatically fulfilled. If a Buckens-frame is chosen, the

original substructure as well as the reduction base generated with the Krylov-subspace method

described above contain rigid body modes, although only a linear combination of the elastic

modes is allowed. This problem can be avoided if the orthogonality of the eigenmodes φi

with respect to the mass matrix Me

φi · Me · φ j = μiδi j (51)

is taken into account. Hence, if the columns of the basis V are constructed mass orthogonal,

i.e. V T · Me · V = I, and during construction additional orthogonalisations with respect to

the rigid body modes are made, the requirements for a Buckens-frame are met, too.

Sometimes it may be reasonable to start with a basis of eigenmodes, e.g. all eigenmodes

with corresponding eigenvalues in the frequency range of interest, collected as columns

in a matrix ΦF and to use the Krylov-subspace method to enhance this basis in order to

improve the accuracy in the predefined spectrum. In this case, it is likewise appropriate to

execute additional (mass)orthogonalisations with respect to the initial basis ΦF to avoid

linear dependence of the new basis vectors. This procedure is also in the spirit of the residual

component modes used in component mode synthesis, see [7].

In practise, often the damping matrix De is not available and the model reduction pro-

cedure is based only on the mass matrix Me and the stiffness matrix K e. Subsequently, a

damping matrix based on available modal damping parameters ξi can be constructed easily,

if a transformed basis matrix V̂ spanning the same subspace as V is used, but additionally

exhibiting the property, that the reduced model is diagonal

I · ¨̄q + diag
{
ω2

i

} · q̄ = B̄ (52)

with B̄ = V̂
T · B. In Equation (52), the diagonal entries ω2

i of the reduced stiffness matrix

are real eigenvalues, corresponding to the preselected modes in ΦF , or pseudo eigenvalues,

originating from the Krylov-subspace method. According to [12], the transformed basis

matrix V̂ can be calculated from V in two steps:

1. Solve the small eigenproblem (
ω2

i I − K̄ e
) · X = 0 (53)

with K̄ e = V T · K e · V .

2. Transform the reduction basis

V̂ = V · X. (54)

When necessary, the pseudo eigenvalues ω2
i can be used as a criterion to further reduce

the model.
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Fig. 2 FEM model of the stabilisation linkage from [47]

5. Numerical example: Stabilisation linkage

The methods described above will be evaluated using the stabilisation linkage analysed

in [47]. The corresponding FEM model, generated using the commercial FEM software

ANSYS, consists of 19 beam elements with a total of 114 elastic and 6 rigid degrees of

freedom. At the nodes 1, 7 and 14, the stabilisation linkage is loaded with the associated

inputs b1 to b6, see Figure 2. At node 20 an additional force is assumed, acting in z-direction

of the global coordinate system. The damping matrix De is not directly available from the

ANSYS model and is reconstructed from mass matrix Me and stiffness matrix K e with the

assumption of Rayleigh damping given by Equation (40). Based upon the FEM model and

the selected inputs, a SISO- and a MIMO-system, respectively, are derived by introducing

different reference frames. Reduced order models based on these systems are built using

the Krylov-subspace techniques presented in Sections 4.2.1 and 4.2.2. These models are

compared to models obtained from application of two well-established reduction techniques,

the modal reduction and an extension thereof, the frequency response mode (frm) technique

proposed in [9]. To asses the accuracy of the reduced order models, the distribution of the

relative reduction error

ε( f ) = ‖H(i 2π f ) − H̄(i 2π f )‖F

‖H(i 2π f )‖F
(55)

in the desired frequency interval [ fmin, fmax] is used. To deal with the MIMO-system a

matrix-norm such as the Frobenius-norm

‖A‖F =
√√√√ n∑

i,k=1

|Aik |2 (56)

has to be introduced. Based on the error (55), also an integral quality factor is defined by

Q =
∫ fmax

fmin

ε( f ) d f. (57)
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Table 1 The examined reduced order models in the SISO-case

Nr. Method Modes σk (order) Error Q

1 Krylov (Section 4.2.1) – i 10 · 2π (1) 2.69 · 10−9

i 150 · 2π (5)

i 240 · 2π (3)

i 300 · 2π (1)

2 Second order Krylov (Section 4.2.2) – i 10 · 2π (0) 4.67 · 10−9

i 150 · 2π (2)

i 240 · 2π (1)

i 300 · 2π (0)

3 Modal + frm 1–13 0(0) 1.44 · 10−2

4 Modal 1–14 – 11.95

5.1. The SISO-case

First, the stabilisation linkage is assumed to be kinematically constraint at the suspension

nodes 1, 7 and 14 according to the directions given in Figure 2. This corresponds to a reference

frame chosen as the chord-frame defined in Section 2.3. Thus, only the force acting on node

20 in z-direction is considered as in- and output, respectively.

The boundaries of the frequency interval are set to fmin = 0 Hz and fmax = 300 Hz.

The size of the reduced order models is 14, which is about the sum of the number of the

eigenfrequencies in the range between 0 Hz and 2 fmax = 600 Hz and the number of inputs.

The design parameters of the considered models are given in Table 1.

Figure 3 shows the distribution of the relative error ε( f ) for the several reduced order

models. Obviously, the least accurate model is obtained by the use of modal reduction. If in

the reduction basis of this model, the eigenmode associated with the highest eigenfrequency is

substituted with the 0-th Krylov vector, the relative error diminishes considerably, particularly

in the lower frequency range. This technique corresponds to the aforementioned frequency

50 100 150 200 250 300
10

10
10

10
5

10
0

f [Hz]

ε 
[

]

modal
second order Krylov
modal+frm
Krylov

Fig. 3 Relative error of the reduced order models in the SISO-case

Springer



208 Multibody Syst Dyn (2006) 16:191–211

Table 2 The examined reduced order models in the MIMO-case

Nr. Method Modes σk (order) Error Q

1 Krylov – i 80 · 2π (1) 4.01 · 10−4

(Section 4.2.1) i 260 · 2π (0)

2 Modal+Second order Krylov 7–13 i 150 · 2π (0) 1.20 · 10−3

(Section 4.2.2) i 150 · 2π (2)

3 Modal+frm 7–20 i 10 · 2π (0) 1.08 · 10−3

4 Modal 7–27 – 1.57

response mode approach. Even more accurate models in the examined frequency range can be

obtained, when the reduction procedure is based exclusively on one of the Krylov-subspace

methods proposed above. For both approaches, the relative error ε is for a comparable effort

much lower in the whole regarded frequency range, compared to the methods based on modal

reduction.

5.2. The MIMO-case

Now, the reference frame is chosen to be the Buckens-frame defined in Section 2.3. Hence,

the unconstrained structure has to be used in the model reduction process. The MIMO-system

considered holds seven inputs and outputs each, given by the inputs b1 to b6 and the force F
acting in z-direction. With the same justification as above, reduced order models of dimension

21 are considered and also the frequency range considered is the same as in the SISO case.

The description of the used reduction techniques is given in Table 2. According to Figure 4,

the modal reduction shows the worst behaviour in the regarded spectrum. However, the

difference to the other methods has diminished compared to the SISO-case. Furthermore, the

other methods roughly show a similar magnitude of accuracy. In the logarithmic scaling of

Figure 4, the combination of the second order Krylov-subspace and a few eigenmodes seems

50 100 150 200 250 300
10

10
10

10
5

10
0

f [Hz]

ε 
[

]

modal
modal+Krylov
modal+frm
Krylov

Fig. 4 Relative error of the reduced order models in the MIMO-case
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Fig. 5 Dynamic simulation (a) deflection uy at node 20 (b) cutaway view

to be the most accurate method. Yet, if the integral measure Q is taken into account, the pure

Krylov-subspace methods gives the best results. So far, the frequency domain was used to

compare the different reduced order models. Yet, as the time domain is of great importance

in flexible multibody dynamics, also a dynamic simulation is considered. Therefore, a time-

dependent force

F =
⎡⎣ 0

0

−1000 sin(2π t)

⎤⎦ N

at node 20 is assumed. The resulting DAE-system is treated numerically with the well-

established solver RADAU5 [21] using an index-2 approach and the simulation time is one

second. As a reference, a modal model consisting of all 114 flexible modes is used. In Figure 5,

the deflection of node 20 in y-direction uy of the reference model is compared with the results

obtained using two of the reduced order models described in Table 2. As the dimension of the

reduction base is rather high for the given problem, both models show quite good agreement

with the reference solution. However, taking a look at the enlarged cutaway view, the results

of the reduced order model obtained by the Krylov subspace method show a slightly better

agreement with the reference solution.

6. Conclusion

In this work, moment-matching was used to build reduced order models for application in

flexible multibody dynamics. Therefore, two Krylov-subspace based methods were proposed

that give very accurate reduced order models in a predefined range of the spectrum. The reason

for the superior accuracy compared to modal reduction is the consideration of the spatial

distribution of the loads as well as the flexibility concerning the choice of the interpolation

conditions. By defining these conditions in an appropriate way, an arbitrary frequency range

can be emphasised easily. In the authors’ opinion, this is more convenient than the use of

modal reduction where in addition to the dominant eigenmodes in the chosen range of the

spectrum, also a set of correction modes, that account for the influence of the eigenmodes not

included in the reduction base, has to be determined to ensure good convergence. Referring

to this, it is also worth to mention, that in combination with modal reduction, the moment-
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matching method contains the frequency response modes approach developed in [9] and

can be used to build a set of correction modes for an initial modal reduction basis. Further

enhancements could comprise the development of error estimators, the application of oblique

projection and the usage of sparse matrix techniques to handle large-scale systems.
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