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Abstract The complexity of a standard compact-in-form Lagrangian dynamical expression
is proportional to the fourth power of the number of degrees of freedom (DOF) of a robotic
system. This fact challenges both simulation and control of robots with hyper degrees of
freedom. In this paper, a systematic approach for deriving the dynamical expression of
so-called general constrained robots is proposed. This proposed approach has two main
features. First, it uses the subsystem dynamics such as the dynamics of joints and rigid links
to construct the dynamical expression of the entire robotic system in a closed form. The
complexity of the resulted dynamic expression is linearly proportional to the number of
DOF of a robotic system. Second, it extends the standard dynamical form and properties of
the conventional single-arm constrained robots to a class of more general robotic systems
including the coordinated multiple-arm robotic systems. Three spaces, namely the general
joint space, the general task space, and the extended subsystems space, are connected through
corresponding velocity/force mapping matrices.

Keywords Robot dynamics . Robot simulation and control . Subsystem dynamics based
formulation . Robots with closed chains . Virtual decomposition control . General
constrained robots

1. Introduction

Model-based dynamic control has been extensively developed for both single-arm constrained
manipulators and multiple cooperating manipulators. With respect to the single-arm con-
strained manipulators, hybrid control [1], compliance control [2, 3], nonlinear feedback
linearization [4], parallel position/force control [5], and adaptive control [6–10] are all based
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on the famous dynamic model

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ − J T F (1)

expressed in the joint space or

M(q)ẍ + C(q, ẋ)ẋ + G(q) = u − F (2)

expressed in the Cartesian space [11], where

M(q) = J−T M(q)J−1

C(q, ẋ) = J−T C(q, q̇)J−1 − J−T M(q)J−1 J̇ J−1

G(q) = J−T G(q)

u = J−T τ

when the Jacobian matrix J is invertible. On the other hand, coordinated multiple manipu-
lators are treated as closed kinematic chains. The dynamic model of a group of coordinated
manipulators simply consists of the dynamic models of the individual manipulators plus the
dynamic model of the held object [12–29], Kreutz and Lokshin [12] pointed out that the
loss of motion DOF in a coordinated multiple manipulator system just equals the dimension
of the internal force. This argument implies a similarity between the internal forces and the
constraint forces such that they can be renamed as “general constraint forces” in the sense
that they do not affect the motion of the systems.

Most approaches aforementioned are fundamentally based on the Lagrangian formulation
to obtain the dynamical expressions in closed form. It is well known that the complexity of
a standard compact-in-form Lagrangian dynamical expression is proportional to the fourth
power of the number of degrees of freedom (DOF) of a robotic system. This fact challenges
both simulation and control of robots with hyper degrees of freedom. With respect to this
difficulty, a novel systematic approach for dynamical modeling by using solely the dynamics
of the subsystems (joints and rigid bodies) is proposed in this paper. The separated dynam-
ics of the rigid bodies and joints which comprise a robotic system are much simpler than
the standard Lagrangian dynamical expression of the aggregated (coupled) robotic system.
Furthermore, the proposed approach is able to express the dynamics of a class of general
over-actuated robotic systems including the coordinated multiple-arm robotic systems in a
closed form similar to (2). The proposed approach is associated with three spaces connected
by corresponding velocity/force mapping matrices. The three spaces, referring to the general
joint space A, the general task space O, and the extended subsystems space S, can be for-
mulated in a systematic way. As will be seen below, the velocity/force mapping (kinematics
based) matrices connecting the three spaces impose the original coupling (constraints) on
the systems and play a crucial role in forming the dynamic expressions. While the proposed
modeling approach results in a dynamic expression that possesses a closed form similar to
the conventional Lagrangian formulation, the computational complicity is just proportional
to the number of degrees of freedom (DOF) of a complex robotic system.

This paper is organized as follows: Section 2 proposes the modeling approach for the
general constrained robots in which three spaces and two mapping matrices are defined;
Section 3 summarizes the modeling procedure followed by two examples; and Section 4
presents an adaptive control design based on the developed dynamic model.
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2. General constrained robots

This section presents the procedure for deriving the dynamic expression of a general con-
strained robot.

Without loss of generality, it is assumed that a general constrained robot is a base-fixed
robot1 having n1 single-DOF prismatic or revolute joints and n3 three-DOF spherical joints.
Among the n1 single-DOF joints, n1a joints are actuated and n1u joints are unactuated. Among
the n3 three-DOF spherical joints, n3a joints are actuated and n3u joints are unactuated. It
makes

n1 = n1a + n1u (3)

n3 = n3a + n3u . (4)

Furthermore, it is assumed that the entire robotic system has m motion DOF.2 This implies
that there exist

nc
def= [n1a + n1u + 3 (n3a + n3u)] − m > 0 (5)

overall independent constraints inside the system including the operational constraints3 and
the inherent mechanical constraints.4

Two types of coordinate systems are used throughout the paper. The first type is a co-
ordinate system consisting of 3 mutually orthogonal unit axes as basis and the second type
is a single-axis coordinate system. The 3-unit-axis orthogonal coordinate system (or called
coordinate frame or simply frame) is used to describe the linear/angular velocities and the
force/moments of the rigid links, as well as the angular velocities and the moments of the
three-DOF spherical joints. The single-axis coordinate system is used to describe the lin-
ear/rotational velocities and the force/torques of the single-DOF joints.

Let T = [Ta, Tu], with Ta ∈ �nc×(n1a+3n3a ) and Tu ∈ �nc×(n1u+3n3u ), be a full row-rank
matrix characterizing the nc constraints as

Taq̇a + Tuq̇u = 0 (6)

where q̇a ∈ �n1a+3n3a denotes the velocity coordinates of all actuated joints and q̇u ∈ �n1u+3n3u

denotes the velocity coordinates of all unactuated joints. Let n p denote the rank of matrix

1 A space robot in which the base is floating can be converted to a base-fixed robot by imposing a virtual
zero-mass six-DOF manipulator between the base of the space robot and the absolute base [31].
2 The number of motion DOF refers to the overall motion degrees of freedom of the entire robotic system,
including the motion DOF at the end-effector plus the joint redundant motion DOF targeting at optimization
and obstacle avoidance. For instance, with respect to a 8-joint redundant robot manipulator in contact with an
environment with 3 motion DOF at the end-effector, it follows that m = 8 − (6 − 3) = 5.
3 This refers to the constraints due to the purpose of operations, such as the constraints imposed on the
end-effectors.
4 This refers to the coupling (constraints) imposed by the mechanical structures of the robots on the joints,
such as the mechanical constraints in the parallelogramic four-bar mechanisms or in the Stewart platform
parallel robots.
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Tu
5 with

n p ≤ min{nc, n1u + 3n3u}. (7)

Reorder q̇a to form [q̇T
a1, q̇T

a2]T and reorder q̇u to form [q̇T
u1, q̇T

u2]T such that (6) can be re-
written as

Tu1q̇u1 + Ta1q̇a1 + Ta2q̇a2 + Tu2q̇u2 = 0 (8)

subject to

(1) Tu1 ∈ �nc×n p and Ta1 ∈ �nc×(nc−n p) are of full column-rank, and
(2) [Tu1, Ta1] ∈ �nc×nc is invertible.

The reordering process intends to find the dependent velocity coordinates in the joints imposed
by the nc overall constraints. First, it finds n p independent columns in Tu to form a new matrix
Tu1. Then, it finds nc − n p complementary independent columns in Ta to form a new matrix
Ta1. Subject to nc overall constraints, the matrixTu1 defines n p dependent velocity coordinates
in the unactuated joints. The remaining nc − n p dependent velocity coordinates are defined
by Ta1 for the actuated joints. Note that the nc − n p constraints imposed on the actuated
joints result in the same number of dimensions for the general constraint force.6

It follows from (8) that

[
q̇u1

q̇a1

]
= −[Tu1 Ta1 ]−1[Ta2 Tu2 ]

[
q̇a2

q̇u2

]
= −

[T11 T12

T21 T22

][
q̇a2

q̇u2

]
. (9)

Equation (9) indicates that the joint velocity coordinates q̇a2 ∈ �[(n1a+3n3a )−(nc−n p)] of the
actuated joints and q̇u2 ∈ �[(n1u+3n3u )−n p] of the unactuated joints form the independent joint
velocity coordinates of the system. As mentioned above, n p dimensional constraints are
imposed on the unactuated (passive) joints as

q̇u1 + T11q̇a2 + T12q̇u2 = 0 (10)

and the remaining nc − n p dimensional constraints are imposed on the actuated joints as

q̇a1 + T21q̇a2 + T22q̇u2 = 0. (11)

5 The number n p specifies the number of unactuated dimensions imposed by the overall constraints. In case of
n p < n1u + 3n3u , the difference n1u + 3n3u − n p will form part of the (unactuated) motion DOF. In typical
examples of the parallelogramic four-bar mechanisms or the Stewart platform parallel robots in free motion,
it yields n p = nc = n1u + 3n3u .
6 The general constraint force in this paper refers to all the constraint forces that can be directly regulated by
the force/torque actuators without affecting the motion of the systems. The general constraint forces include
the conventional constraint forces for single-arm robots and the internal forces for coordinated multiple-arm
robots.
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Premultiplying (11) by a (nc − n p) × (nc − n p) full-rank matrix, denoted as Tc, yields

Tc
[

I(nc−n p) T21 T22
] ⎡⎢⎣ q̇a1

q̇a2

q̇u2

⎤⎥⎦ def= J f

[
q̇a

q̇u2

]
= 0 (12)

where the matrix Tc maps the nc − n p dimensional constraints defined by (11) to the
place where the nc − n p dimensional general constraint force is defined7. Note that J f ∈
�(nc−n p)×(n1a+3n3a+n1u+3n3u−n p) is of full row-rank.

Define the system dimensions as

n def= (n1a + 3n3a + n1u + 3n3u) − n p = m + (nc − n p). (13)

The system dimensions include m motion degrees of freedom and nc − n p dimensions for
the general constraint forces.

Remark 2.1. The nc constraints of a robotic system represent the pure mechanical constraints
inside the robotic system (such as the constraints among the linkages) and the constraints
between the robot and the environment. Among the nc overall constraints, n p constraints are
satisfied by releasing the corresponding motion coordinates associated with the unactuated
joints (as performed by (10)). The remaining nc − n p constraints will be reflected to the
ultimate dynamic equation.

2.1. General joint space A

The general joint space A consists of n1a + 3n3a actuated dimensions and n1u + 3n3u − n p

unactuated dimensions and, therefore, possesses n dimensions.
Let

q̇ =
[

q̇a

q̇u2

]
∈ �n (14)

be the velocity coordinates and let

τ =
[

τa

0

]
∈ �n (15)

be the corresponding torque coordinates, in the general joint space A.

2.2. General task space O

The general task space O consists of a m-dimensional motion space and a (nc − n p)-
dimensional constraint force space. Thus, it possesses n dimensions, and is analogous to
the Cartesian space. The space O is used to express the velocity and force control specifica-
tions and, therefore, is application oriented and control objective driven.

7 The matrix Tc can be identity if the constraint Equation (11) is directly defined in terms of operations.
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In view of (12) and (14), the constraint force space is governed by J f q̇ = 0. Accordingly,
the constraint force transferred to the general joint space can be expressed as J T

f η f , where
η f ∈ �nc−n p denotes the general constraint force coordinates that do not transfer power8.
Besides the general constraint forces, the dynamic contact force coordinates in the motion
space [30] can be denoted as ηm ∈ �m which represents the forces that are state-dependent
such as the frictional forces and the contact forces with compliant environments. As a result,
the overall general constraint force coordinates and the dynamic contact force coordinates
converted to the general joint space can be written as

τ ∗ = [
J T

f DT
m

] [
η f

ηm

]
(16)

where Dm ∈ �m×n is a matrix.
In the motion space, let Vm ∈ �m be the independent velocity coordinates subject to

Vm = Jmq̇ (17)

where Jm ∈ �m×n is of full row-rank.
Since the rows of J f span the space for the general constraint forces and the rows of

Jm span the configuration space for the motion DOF, the orthogonality of J f and Jm , i.e.
J T

f Jm = 0, can be ensured [30]. Furthermore, consider the fact that both Jm and J f are of
full row-rank, the composed matrix [

Jm

J f

]
∈ �n×n

is of full-rank and, therefore, is invertible such that

[
Jm

J f

]−1

= [ � � ] (18)

where � ∈ �n×m and � ∈ �n×(n−m) are two matrices of full column-rank.
In view of (12) (14), and (17), it follows that

V def=
[
Vm

0

]
=

[
Jm

J f

]
q̇. (19)

Consequently, it yields

q̇ = �Vm . (20)

8 η f is equivalent to the Lagrangian multiplier.
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2.3. Extended subsystems space S

The extended subsystems spaceS in which the dynamics of rigid links and joints are expressed
casts the kernel of the proposed approach for dynamic modeling. This is due to the fact that
the separated dynamics of the rigid bodies and joints which comprise a robotic system are
much simpler than the standard Lagrangian dynamical expression of the aggregated (coupled)
robotic system, particularly for robots with high DOF [31].

Three types of subsystems, namely the rigid links (rigid bodies), the single-DOF prismatic
or revolute joints, and the three-DOF spherical joints, are studied. Let � be a set containing
all frames each is fixed to a corresponding rigid link, �1 be a set containing the sequential
numbers of all single-DOF joints, and �3 be a set containing the sequential numbers of all
three-DOF spherical joints.

The dynamics of a rigid body expressed in the body-fixed frame α ∈ � is [31]

Mα

d
dt

(αX ) + Cα
αX + Gα =α F, (21)

where the explicit expressions of Mα ∈ �6×6, Cα ∈ �6×6, and Gα ∈ �6 are given by [31]
(p. 418), Mα is constant and symmetric and Cα is skew-symmetric; αX ∈ �6 denotes the
generalized linear/angular velocity of frame α and expressed in frame α, and αF ∈ �6 denotes
the net force/moment of the rigid body expressed in frame α.

The dynamics of the j th single-DOF joint is

τ 1 j
	= I ∗

1 j q̈1 j + ξ1 j (t) = τ1 j − proj(F)1 j , j ∈ �1 (22)

where I ∗
1 j ∈ � is the equivalent mass or rotational inertia, q1 j ∈ � is the joint displacement,

ξ1 j (t) ∈ � is the frictional force/torque, τ1 j ∈ � is the joint control force/torque,9 τ 1 j ∈ �
represents the net force/torque devoted to the joint dynamics, while−proj(F) j ∈ � is the
projected force/moment from the links onto the joint axis.

The dynamics of the i th three-DOF spherical joint is

τ 3i
	= ξ3i (t) = τ3i − proj(F)3i , i ∈ �3 (23)

where ξ3i (t) ∈ �3 denotes the frictional moment, τ3i ∈ �3 is the joint control torque10, τ 3i ∈
�3 represents the net moment devoted to the spherical joint dynamics, while −proj(F)3i ∈ �3

is the projected moment from the links onto the three joint axes. Note that in the spherical
joint dynamics, the inertial term is omitted, since the mass properties of the spherical joints
are fully incorporated into the corresponding links. Therefore, only the three-dimensional
friction moments are handled in (23).

Remark 2.2. Note that the Equations (21), (22), and (23) cannot be treated as independent
equations, since all the velocity coordinates in space S are subject to the inherent mechanical
constraints inside the robotic system.

9 τ1 j = 0 holds for a unactuated joint.
10 τ3i = 0 holds for a unactuated spherical joint.
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The velocity and net force/moment coordinates in S are

X 	=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

q̇1 j

...

q̇3i

...
αX
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; F 	=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

τ 1 j

...

τ 3i

...
αF
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that q̇1 j in X and τ 1 j in F appear in a corresponding row. So do q̇3i and τ 3i , and αX
and αF . In view of (21), (22), and (23), it follows from the definitions of X and F that

F = M Ẋ + C X + G (24)

where

M = diag{. . . , I ∗
1 j , . . . , 0, . . . , Mα, . . .}

C = diag{. . . , 0, . . . , 0, . . . , Cα, . . .}
G = [. . . , ξ1 j (t), . . . , ξ T

3i (t), . . . , GT
α , . . .]T .

Based on the definition of q̇ ∈ �n in A, the extended velocity X in S can be expressed as

X = TSq̇. (25)

The physical meaning of (25) is that the velocities of all subsystems (rigid links, single-DOF
joints, and three-DOF joints) are completely dependent on the velocities in A11. In general,
TS has more rows than columns.

With η f = 0 (by virtually breaking up the constraints J f q̇ = 0 defined in (12)) and
ηm = 0, the power received by all rigid links equals the power generated by all joints, i.e.∑

α∈�

αX T αF =
∑
j∈�1

{q̇1 j [proj(F)1 j ]} +
∑
i∈�3

{
q̇T

3i [proj(F)3i ]
}
. (26)

Substituting proj(F)1 j = τ1 j − τ 1 j from (22) and proj(F)3i = τ3i − τ 3i from (23) into
(26) yields

X TF = q̇T τ (27)

in which
∑

j∈�1
(q̇1 jτ1 j ) + ∑

i∈�3
(q̇T

3iτ3i ) = q̇T τ is used.

11 Equation (25) imposes kinematic constraints on (21), (22), and (23).
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In view of (27) and (25), it follows that

q̇T T T
S F = q̇T τ. (28)

In a particular case that only the kth element of q̇ is non-zero, i.e. mathematically, q̇k �= 0
and q̇ j = 0 for j = 1, 2, . . . , k − 1, k + 1, . . . , n, it follows from (28) that(

T T
S F

)
k = τk (29)

where (T T
S F)k and τk denote the kth elements of T T

S F and τ , respectively. Equation (29)
gives a force transformation from S toward A. Since the force transformation depends on
the configuration only, (29) will be valid for k ∈ {1, n}. Thus, it yields

T T
S F = τ. (30)

Note that equation (30) demonstrates how the net force/moments of a robotic system are
mapped into the general joint space. The actual joint torques, however, will include the
torques that are transfered from the general constraint forces η f (by reinstalling the constraints
J f q̇ = 0) and the dynamic contact forces ηm as formulated by (16). Therefore, the force
transformation equation should be re-written as

T T
S F = τ − τ ∗. (31)

2.4. The Dynamic Model

Based on (31), (24), (25), (16), and (19), the dynamic model of a general constrained robot
expressed in O is written as

M
[
V̇m

0

]
+ C

[
Vm

0

]
+ G =

[
Jm

J f

]−T

τ −
[

0

η f

]
(32)

where

M =
[
Jm

J f

]−T

T T
S M TS

[
Jm

J f

]−1

C =
[
Jm

J f

]−T

T T
S M d

dt

⎛⎝TS

[
Jm

J f

]−1
⎞⎠ +

[
Jm

J f

]−T

T T
S C TS

[
Jm

J f

]−1

G =
[
Jm

J f

]−T

T T
S G +

[
Jm

J f

]−T

DT
m ηm .

Remark 2.3. In Equation (32), Vm ∈ �m denotes the independent velocity coordinates in the
general task space. Among the m dimensions of Vm ∈ �m , there exist (n1u + 3n3u − n p)
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unactuated dimensions. Therefore,

m ≥ n1u + 3n3u − n p (33)

holds. Meanwhile, the dimensions for the general constraint force are nc − n p.

Remark 2.4. In simulations, the independent variables of integration are V̇m ∈ �m . The effec-
tive velocity coordinates of the entire system are denoted as [VT

m , 0T ]T ∈ �n , whereVm ∈ �m

is the integral of V̇m ∈ �m .

Remark 2.5. In view of the dynamic equation of the general constrained robots represented
by (32), two groups of components are needed. The first group consists of two kinematics

mapping matrices [ Jm
J f

] and TS ; and the second group consists of M, C, and G, which can be
formed in terms of the separated dynamics of the rigid links and joints [31]. Since the dynamic
formulation in S is standard, the task which needs to be done for a particular application is
to find the two kinematics mapping matrices.

Remark 2.6. Using subsystem dynamics to represent the complete dynamics of a robot can
also be found in [32]. In general, the approach in [32] applies to both rigid and flexible robot
arms, and the approach proposed in this paper particularly addresses the high dimensional
rigid-link robots with complex kinematic constraints.

Remark 2.7. Note that M is time invariant and C is skew-symmetric. Therefore, it follows
that

1

2
Ṁ − C

is skew-symmetric.12

Remark 2.8. Newton-Euler formulation has been well known for its recursive forms in either
forward dynamics [33, 34] or inverse dynamics [35, 31]. The dynamic formulation presented
in this paper can be considered as a closed form of Newton-Euler formulation that may have
exactly the same application forum as the Lagrangian formulation, but its simplicity. In other
words, the closed form of Newton-Euler formulation is applicable to both forward dynamics
based simulation and inverse dynamics based control [36, 37].

12 In view of (24), M is constant and symmetric due to the constant I ∗
1 j ∈ � and the constant and sym-

metric Mα ∈ �6×6, and C is skew-symmetric due to the skew-symmetric Cα ∈ �6×6[31]. It follows from

(32) that
1

2
Ṁ − C = 1

2

d
dt

⎛⎝[
Jm

J f

]−T

T T
S

⎞⎠MTS

[
Jm

J f

]−1

− 1

2

[
Jm

J f

]−T

T T
S M d

dt

⎛⎝TS

[
Jm

J f

]−1
⎞⎠ −

[
Jm

J f

]−T

T T
S C TS

[
Jm

J f

]−1

is skew-symmetric.
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3. Modeling procedure and examples

3.1. Modeling procedure

In this subsection, the modeling approach presented in the last section is summarized into
steps as follows:

Step 1: For a given base-fixed (or equivalent) robotic system, count the numbers of the
single-DOF prismatic or revolute joints and the three-DOF spherical joints. It yields
n1 and n3. Among the n1 single-DOF prismatic or revolute joints, count the numbers
of the actuated joints and the unactuated joints. It yields n1a and n1u . Among the
n3 three-DOF spherical joints, count the numbers of the actuated joints and the
unactuated joints. It yields n3a and n3u .

Step 2: Determine the number of degrees of freedom of the system in motion and obtain
m. Calculate nc (the dimensions of the overall constraints) in terms of (5).

Step 3: Specify the m-dimensional velocity configuration space and specify the nc overall
constraints. Assign appropriate coordinate frames for motion/force descriptions.
Furthermore, assign coordinate frames to each rigid link or joint [31].

Step 4: Specify q̇a ∈ �n1a+3n3a and q̇u ∈ �n1u+3n3u , and form Ta , Tu subject to (6) accord-
ingly. It yields the number n p – the rank of Tu .

Step 5: Partition Ta and Tu to form Ta1, Ta2, Tu1, and Tu2 such that [Tu1, Ta1] ∈ �nc×nc is
invertible.

Step 6: Calculate T21 and T22 in terms of (9).
Step 7: Specify the constraint force coordinates η f ∈ �nc−n p , determine the matrix Tc, and

then form J f in terms of (12).
Step 8: Determine n in terms of (13) and form q̇ and τ in terms of (14) and (15) in space

A.
Step 9: Specify the dynamic contact force coordinates ηm ; and form the transfer matrix Dm

accordingly.
Step 10: Specify the m-dimensional independent velocity coordinates Vm in space O and

form the full row-rank mapping matrix Jm . Calculate [
Jm

J f
]−1.

Step 11: Calculate the velocity mapping matrix Ts in terms of (25).
Step 12: Write the block diagonal matrices and vector M, C, and G in space S. Finally, form

the dynamic model (32).

Two examples are presented below to demonstrate the modeling steps in details.

3.2. Constrained single-arm manipulator

The first example is a six single-DOF joint manipulator grasping an object in contact with a
plane. The system has n1 = n1a = 6 actuated single-DOF joints, n1u = 0 unactuated single-
DOF joint, and n3 = 0 three-DOF spherical joint in Step 1.

Since the robot end-effector is in contact with a plane, it yields m = 3 (the linear motion
frem the links onto the two tangential directions of the plane and the rotational motion along
the normal vector of the plane). Thus, it follows nc = 6 + 0 − 3 = 3 from (5) in Step 2.

In Step 3, the linear motion along the two tangential directions of the contact plane
and the rotational motion along the normal vector of the contact plane specify the motion
configuration space. The linear motion along the normal vector of the contact plane and
the rotational motion along the two tangential directions of the contact plane specify the
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constraints. A frame O is fixed to the robot end-effector in a way that its x and y axes lie
on the contact plane and its z axis coincides with the normal vector of the contact plane.
Meanwhile, the six joints are numbered sequentially from the base towards the end-effector
with the j th joint connecting the j th link with the j − 1th link, j = 1, . . . , 6. There are six
auxiliary frames L j , j = 1, 2, . . . , 6, each is fixed to link j with its z axis coincident with
the j th joint.

In Step 4, q̇a = [q̇1, . . . , q̇6]T ∈ �6 and q̇u = 0 are specified. Matrix Ta is formed as

Ta = T f J

with

T f =

⎡⎢⎣0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

⎤⎥⎦
J = [

L1U T
O Z1

L2U T
O Z2 . . . L6U T

O Z6
]

where βUα ∈ �6×6 denotes a force/moment transformation matrix which transforms a
force/moment measured and expressed in frame α to that measured and expressed in frame
β; and Z j = [0 0 1 0 0 0]T for a prismatic joint and Z j = [0 0 0 0 0 1]T for a revolute joint,
j = 1, . . . , 6. Since there is no unactuated joint in the system. It yields Tu = 0 and, therefore,
n p = 0.

Steps 5 and 6 are skipped, since no unactuated joint is presented.
In Step 7, the 3-dimensional constraint forces are specified as the force along the z and

the two moments along the x and y axes of frame O . It follows that

η f =

⎡⎢⎣ fz

mx

my

⎤⎥⎦
where fz ∈ � denotes the force along the z axis of frame O and mx ∈ � and my ∈ � denote
the moments along the x and y axes of frame O . Consequently, J f is formed as

J f = Ta .

In Step 8, q̇ = q̇a ∈ �6 and τ = τa = [τ1, . . . , τ6]T ∈ �6 represent the actual joint veloc-
ities and control torques.

In Step 9, the dynamic contact forces are identified as the frictional forces and torque in
the motion space. It yields

Dm = Tm J

with

Tm =

⎡⎢⎣1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

⎤⎥⎦ .
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In Step 10, it follows that

Vm =

⎡⎢⎣ vx

vy

ωz

⎤⎥⎦
where vx ∈ � and vy ∈ � denote the linear velocities of the end-effector along the x and y
axes of frame O and ωz ∈ � denotes the angular velocity of the end-effector along the z axis
of frame O . Accordingly, it yields

Jm = Tm J.

In Step 11, the velocity mapping matrix Ts is

TS =

⎡⎢⎣ I6

T ∗
S

J

⎤⎥⎦

T ∗
S =

⎡⎢⎢⎢⎢⎢⎣
Z1

L1U T
L2

Z1 Z2

...
. . .

. . .
L1U T

L6
Z1

L2U T
L6

Z2 . . . Z6

⎤⎥⎥⎥⎥⎥⎦ .

In Step 12, M, C, and G in space S are obtained as

M = diag
{

I ∗
1 , . . . , I ∗

6 , ML1 , . . . , ML6 , MO
}

C = diag
{
0, . . . , 0, CL1 , . . . , CL6 , CO

}
G = [

ξ1(t), . . . , ξ6(t), GT
L1

, . . . , CT
L6

, GT
O

]T
.

3.3. Coordinated multiple manipulators

Consider a system composed of h manipulators grasping a rigid object moving in free space
without kinematic singularity. Each manipulator has six actuated single-DOF joints. It follows
that n1 = n1a = 6h, n1u = 0, and n3 = 0 in Step 1. Meanwhile, it yields m = 6 and nc =
6(h − 1) in Step 2.

In Step 3, the 6-dimensional motion belongs to the held object and the 6(h − 1)-
dimensional constraints are imposed on the end-effectors of the h manipulators. Frame O
is fixed to the held object. Frame Li j , which has the same definition as frame L j in the last
subsection, is assigned to the j th link of the i th manipulator, i = 1, 2, . . . , h, j = 1, 2, . . . , 6.

In Step 4, q̇a = [q̇T
1 , q̇T

2 , · · · , q̇T
h ]T ∈ �6h with q̇i = [q̇i1, q̇i2, · · · , q̇i6]T ∈ �6, i =

1, 2, · · · , h, and q̇u = 0 are

Ta = T f J
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with

T f =

⎡⎢⎢⎢⎢⎢⎢⎣
I6 −I6 0 . . . 0

0 I6
. . .

. . .
...

...
. . .

. . . −I6 0

0 . . . 0 I6 −I6

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ �6(h−1)×6h

J = diag{J1, J2, . . . , Jh} ∈ �6h×6h

where Ji , i = 1, 2, . . . , h, is exactly the same as J defined in the last subsection. Meanwhile,
it follows that Tu = 0 and n p = 0.

Steps 5 and 6 are skipped, since no unactuated joint is presented.
In Step 7, the constraint forces are located among the end-effectors of the h manipulators.

Therefore, it follows that

η f =

⎡⎢⎢⎢⎢⎣
η12

η23

...

η(h−1)h

⎤⎥⎥⎥⎥⎦ ∈ �6(h−1)

where η(i−1)i ∈ �6, i = 2, . . . , 6, denotes the internal force between the i − 1 manipulator
and the i th manipulator, expressed in frame O . Consequently, it yields

J f = Ta .

In Step 8, n = 6h is obtained from (13). Furthermore, it yields

q̇ = q̇a ∈ �6

and
τ = τa = [

τ T
1 , τ T

2 , . . . , τ T
h

]T ∈ �6h

with τi = [τi1, τi2, . . . , τi6] ∈ �6.
Since all the end-effectors are rigidly holding a rigid object, there is no dynamic contact

force. It gives ηm = 0 in Step 9.
In Step 10, the independent velocity coordinates Vm in space O are specified as Vm =O X ,

where OX ∈ �6 denotes the linear/angular velocities of frame O and expressed in frame
O [31]. Accordingly, Jm is obtained as

Jm = HJ

where
H = [γ1 I6, γ2 I6, . . . , γh I6]

with γi ≥ 0 subject to
∑h

i=1 γi = 1.
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In Step 11, the velocity mapping matrix Ts defined by (25) is obtained as

TS =

⎡⎢⎣ I6h

T ∗
S

HJ

⎤⎥⎦
T ∗

S = diag
{
T ∗

S1, T ∗
S2, . . . , T ∗

Sh

}
where T ∗

Si , i = 1, 2, . . . , h, has exactly the same format as T ∗
S defined in the last subsection.

Finally in Step 12, M, C, and G in space S are obtained as

M = diag
{

I ∗
11, . . . , I ∗

16, I ∗
21, . . . , I ∗

26, . . . , I ∗
h1, . . . , I ∗

h6,

ML11 , . . . , ML16 , ML21 , . . . , ML26 , . . . , MLh1 , . . . , MLh6 , MO
}

C = diag{0, . . . , 0, CL11 , . . . , CL16 , CL21 , . . . , CL26 , . . . , CLh1 , . . . , CLh6 , CO}
G = [ξ11(t), . . . , ξ16(t), ξ21(t), . . . , ξ26(t), . . . , ξh1(t), . . . , ξh6(t),

GT
L11

, . . . , CT
L16

, GT
L21

, . . . , CT
L26

, . . . , GT
Lh1

, . . . , CT
Lh6

, GT
O

]T
.

4. Control

With the dynamic model of a general constrained robot described by (32), the virtual decom-
position control algorithm originally presented in [31] for controlling fully actuated robot
manipulators can be written in a compact form as

τ = T T
S Yr P̂r + YmP̂m + J T

f η f r + KA

[
Jm

J f

]−1 [
Vmr − Vm

0

]
(34)

where Vmr ∈ �m denotes the required vector of Vm and η f r ∈ �n−m denotes the required
vector of η f ; KA ∈ �n×n denotes a positive-definite feedback gain matrix in space A; P̂r

denotes the estimate ofPr which contains all the constant parameters of rigid links and joints;
Yr is the regressor matrix defined by

YrPr = M Ẋ r + C X r + G

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Y1 j P1 j

...

Y3i P3i

...

Yα Pα

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

I ∗
1 j q̈1 jr + ξ1 j (t)

...

ξ3i (t)
...

Mα
d
dt (αXr ) + Cα

αXr + Gα

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(35)
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with

X r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

q̇1 jr

...

q̇3ir

...
αXr

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= TS

[
Jm

J f

]−1 [
Vmr

0

]
. (36)

Accordingly, P̂m denotes the estimate of Pm which contains all the constant parameters of
the dynamic contact forces and Ym is the regressor matrix defined by

YmPm = DT
m ηm . (37)

By defining

Y = [
T T

S Yr Ym
]

P =
[
Pr

Pm

]

the parameter adaptation law can be written as

˙̂Pk = ρkκksk (38)

sk = YT
k

[
Jm

J f

]−1 [
Vmr − Vm

0

]

κk =

⎧⎪⎨⎪⎩
0 P̂k ≤ P−

k and sk ≤ 0

0 P̂k ≥ P+
k and sk ≥ 0

1 otherwise

where Pk denotes the kth parameter (kth element) of P; ρk > 0 denotes the update gain for
the kth parameter; Yk denotes the kth column of Y; and P−

k and P+
k denote the lower and

upper bounds of the kth parameter Pk .

5. Conclusion

In this paper, a novel modeling approach addressing a class of general constrained robots
has been proposed. Under this modeling approach, both single-arm constrained robots and
coordinated multiple robots can be united and expressed in a form very much similar to
the conventional Lagrangian model. The information required by this modeling approach
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includes two velocity mapping matrices and the separated dynamics of individual rigid links
and joints. Since the dynamics of the subsystems are simple and standard, the unique infor-
mation required for a particular application is going to be the two velocity mapping matrices
only. Thus, the dynamics issue of a complex robotic system is virtually converted into the
kinematics issue plus the use of the standard subsystem dynamics. Two examples have been
presented to demonstrate the applications of this approach to single-arm constrained robots
and coordinated multiple robots. An application to the virtual decomposition based adaptive
control has also been presented.
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