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Abstract. A methodology for the design optimization of multibody systems is presented. The method-
ology has the following features: (1) multibody dynamics is employed to model and simulate complex
systems; (2) multidisciplinary optimization (MDO) methods are used to combine multibody systems
and additional systems in a synergistic manner; (3) using genetic algorithms (GAs) and other effec-
tive search algorithms, the mechanical and other design variables are optimized simultaneously. The
methodology is shown to handle the conflicting requirements of rail vehicle design, i.e., lateral stabil-
ity, curving performance, and ride quality, in an effective manner. By coordinating these conflicting
requirements at the system level, three multibody models corresponding to each of these requirements
for a rail vehicle are optimized simultaneously.
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1. Introduction

In general, the design optimization of a mechanical system is multidisciplinary [1]
and the task is to find effective trade-off solutions for complicated and conflicting
design criteria [2]. For example, in rail vehicle suspension design, the task is to
search for a compromised design while considering lateral stability, curving per-
formance, and ride quality. To find the compromised design, an effective method
is to use a lateral stability model, curving performance model, and ride quality
model, each of which can be treated as an analysis discipline that concentrates on
a specific aspect of interest, and synthesize the design results based on the three
different objective-oriented models [3, 4]. In the case concerned, there are strong
interactions among the three models. These interactions make the lateral stability,
curving performance, and ride quality a synergistic whole; taking advantage of that
synergy is the mark of a good design.

Multidisciplinary Optimization (MDO) is presently of increasing interest in
engineering. MDO received recognition in the aeronautical sciences, first for struc-
tural optimization and later for aerodynamic design [5]. Currently, we can find the
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application of MDO to automobile design for safety and NVH (noise, vibration,
and harshness) reduction [1, 6, 7]. MDO is also used for ground vehicle suspension
design [8].

This paper presents a methodology for the design optimization of multibody sys-
tems. The methodology has the following features: (1) multibody dynamics is used
for modeling and simulating multibody systems; (2) multidisciplinary optimiza-
tion (MDO) methods are introduced to combine multibody systems and additional
systems; (3) with the scalarization technique, a vector optimization problem is
converted into a scalar one; (4) with genetic algorithm (GAs) and other effective
search algorithms, the mechanical and other (e.g., control) design variables can
be optimized simultaneously. Relevant multidisciplinary optimization formulation
methods, multicriteria optimization concepts, and genetic algorithms are also pre-
sented.

This methodology is applied to the design of rail vehicles. The proposed multi-
disciplinary optimization method combines a 17 degrees of freedom (DOF) lateral
stability model, a 36 DOF vertical ride quality model, and a 21 DOF nonlinear
dynamic curving performance model. For the lateral stability problem, the dy-
namic equations for the lateral stability model of the rail vehicle are generated and
linearized by A’GEM [9]; the corresponding eigenvalue problem is solved. To eval-
uate curving performance, A’GEM is used to generate and numerically integrate
the nonlinear dynamic equations for the curving performance model of the same
rail vehicle. For the problem of vertical ride quality, the frequency response of the
ride quality model (with car body flexibility) to stochastic inputs is determined by
A’GEM. By coordinating the conflicting requirements from lateral stability, curving
performance, and vertical ride quality at the system level, the suspension, geomet-
ric, and inertial parameters for a rail vehicle are optimized simultaneously by the
MDO methodology.

2. A Methodology for Optimizing Multibody Systems

The proposed framework for the design optimization of multibody systems is
shown in Figure 1. To generate objective-oriented multibody system models,
M1, M2, . . . , Mn , multibody dynamics is utilized. For example, in the design op-
timization of rail vehicles, these objective-oriented multibody system models may
be lateral stability models, curving performance models, ride quality models, etc.
Based on the features of mechanical systems to be optimized, a variety of successful
computer programs for multibody systems, e.g., ADAMS, A’GEM, SIMPACK, and
VAMPIRE, could be applied for this purpose. For a specified optimization problem,
relevant analysis tools, A1, A2, . . . , Am , such as stability analysis, modal analysis,
power spectral density (PSD) analysis, control algorithms, etc., can be introduced. In
addition, systems or analysis disciplines, e.g., control systems, can be included. By
means of multidisciplinary optimization formulations, these strongly coupled mod-
els, analysis tools, and/or additional systems are integrated as a synergistic whole.
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Figure 1. Proposed framework for the design optimization of multibody systems.

With the integration of these multiple systems or disciplines to be optimized,
at the system level, one is faced with a vector optimization problem with a set of
design criteria, F(Xd), where Xd is the vector of design variables, and corresponding
constraints, g(Xd) = 0 and h(Xd) ≤ 0. The commonly used strategy for dynamic
system design is to reduce the vector optimization problem to a scalar one that
may be solved by existing optimization algorithms. This strategy has proven to be
effective [10]. In the proposed methodology, a scalarization technique is adopted
to convert the vector optimization problem into a scalar one with a resulting utility
function, ρ1 F1(Xd) + ρ2 F2(Xd) + · · · + ρn Fn(Xd) (where ρi , i = 1, 2, . . . , n, are
weighting factors). The formulation of the utility function and the selection of the
weighting factors are discussed in this paper.

Genetic algorithms have the distinguished properties of performing global opti-
mizations, requiring no gradient information, using probability rules to guide their
searches, and being suitable for solving complex real-world problems. Therefore,
a GA is used as the optimizer to resolve the trade-off relations among the various
design criteria at system level.

The framework of the methodology consists of the main components, i.e., appli-
cation of MDO and multicriteria optimization methods, introduction of multibody
dynamics, and use of GAs.

3. Multidisciplinary Optimization Formulation Methods

A successful mechanical system design requires harmonization of a number of
criteria and constraints. Such a design problem can be modeled as a constrained
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optimization in the design variable space. However, for such optimization, due to
its dimensionality, complexity, and expense for analysis, a decomposition approach
is recommended so as to enable concurrent execution of smaller and more manage-
able tasks [1]. To preserve the couplings that naturally occur among the subsystems
of the whole problem, such optimization by various types of decomposition must
include a degree of coordination at the system and subsystem levels. MDO of-
fers effective methods for performing the above optimization so as to resolve the
trade-off relations among the various design criteria at the system and subsystem
levels.

Several MDO formulation methods exist, including All-in-One (A-i-O) [1],
Individual Discipline Feasible (IDF) [11], Collaborative Optimization [12], Bi-
Level Integrated System Synthesis [13], and Concurrent Subspace Optimization
[14], to name a few. Among most of these MDO methods, the shared character is
that the system concerned is decomposed into subsystems so that the corresponding
optimization subtasks are performed independently in their own modules; then
at a system level, the coordination of the different design considerations gives
rise to a two-level optimization. One of the most important advantages of this
decomposition is the concurrent execution of the subtasks, which is well suited for
parallel computations.

For the methodology concerned, the All-in-One (A-i-O) and Individual Disci-
pline Feasible (IDF) methods are adopted.

3.1. ALL-IN-ONE FORMULATION METHOD

The All-in-One method (also known as the Multidisciplinary Feasibility (MDF)
method [11]) is commonly used for the solution of MDO problems. When this
method is used, the optimization problem can be formulated in the following general
format:






minimize F(Xd, U(Xd))

with respect to Xd

subject to

{
g(Xd, U(Xd)) ≤ 0

Cl ≤ Xd ≤ Cu

(1)

where

{
U(Xd) = A(Xd, Y)

Y = G(Xd, U(Xd))
(2)

and Cu and Cl are the upper and lower bounds on the design variable vector Xd,
U(Xd) is the system output variable vector, A(Xd, Y) is the analysis mapping from
the input vectors Xd and Y of an analysis discipline to the outputs U, G(Xd, U(Xd))
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Figure 2. All-in-One (A-i-O) method.

is the mapping to the inputs required for an analysis discipline from the output
of another analysis discipline, and F(Xd, U(Xd)) and g(Xd, U(Xd)) are the objec-
tive function vector and constraints, respectively. Note that g(Xd, U(Xd)) may also
contain equality constraints.

Figure 2 shows the data flow in an A-i-O optimization of a problem involving
two analysis disciplines. The system consists of an optimizer that controls specified
objective F and constraints g, discipline 1 with analysis solver A1 and discipline 2
with analysis solver A2. For a certain iteration in the outer optimization loop, the
fixed design variable vector Xd is provided by the optimizer to the coupled analysis
disciplines. Then in the interior loop between disciplines 1 and 2, a complete dis-
cipline 1 analysis and discipline 2 analysis is performed with that fixed vector Xd

to obtain system output variable vectors U1(Xd) and U2(Xd). Note that this interior
loop analysis may also be iterative. The output variable vectors U1(Xd) and U2(Xd)
are returned to the optimizer for evaluating the objective F(Xd, U1(Xd), U2(Xd))
and constraints g(Xd, U1(Xd), U2(Xd)).

In Figure 2, the interdisciplinary mapping Gi j means that given the output vari-
able vector U j from discipline j , a suitable variable vector Yi j can be calculated for
use by discipline i . We say that we have single discipline feasibility for discipline
i when the solver Ai has been executed successfully and solved for output variable
vector Ui , given the input variable vector Yi j . Here, “feasibility” for a single disci-
pline means that the equations the discipline code is intended to solve are satisfied.
For this two analysis discipline case, the optimization problem can be rewritten as






minimize F(Xd, U1(Xd), U2(Xd))

with respect to Xd

subject to

{
g(Xd, U1(Xd), U2(Xd)) ≤ 0

Cl ≤ Xd ≤ Cu

(3)
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where





U1(Xd) = A1(Xd, Y12)

U2(Xd) = A2(Xd, Y21)

Y12 = G12(Xd, U2(Xd))

Y21 = G21(Xd, U1(Xd))

(4)

Notice that if a gradient-guided optimization algorithm is used to solve the above
problem, then a complete multidisciplinary analysis (MDA) is necessary not just
at every iteration of the optimization loop, but at every point where the derivatives
are to be evaluated. Thus, it is very expensive to attain multidisciplinary feasibility
(i.e., simultaneous feasibility in all disciplines) in realistic applications.

3.2. INDIVIDUAL DISCIPLINE FEASIBLE FORMULATION METHOD

One way to avoid a complete MDA every time an objective function, constraint,
or sensitivity evaluation is needed, is to use the IDF method. The essence of IDF
is that this approach maintains individual discipline feasibility, while allowing the
optimizer to drive the individual disciplines to multidisciplinary feasibility and opti-
mality by controlling the interdisciplinary coupling variables. In the case of the IDF
approach, some specific analysis variables representing communication, or cou-
pling, between analysis disciplines via interdisciplinary mappings are “promoted”
to become optimization variables. These optimization variables are indistinguish-
able from design variables from the point of view of a single analysis discipline
solver. The general IDF formulation can be written as follows:






minimize F(Xd, U(X))

with respect to X = (Xd, XY)

subject to






g(Xd, U(X)) ≤ 0

Caux
�= XY − G(Xd, U(X)) = 0

Dl ≤ X ≤ Du

(5)

where

U(X) = A(X) (6)

and Du and Dl are the upper and lower bounds on the design variable vector X
which consists of the original design variable vector Xd and “promoted” design
variable vector XY. Since the vector Y is “promoted” as design variable vector, here
XY is introduced to replace the input variable vector Y for an analysis discipline.
F(Xd, U(X)) and g(Xd, U(X)) are objective and constraints, respectively. U(X) is
the system output variable vector and A(X) is the analysis mapping from the inputs
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Figure 3. Individual discipline feasible (IDF) method.

Xd and XY. G represents interdisciplinary mappings and the condition Caux
�=

XY − G(Xd, U(X)) = 0 converts the interdisciplinary mappings into auxiliary

optimization constraints. Notice that the symbol “
�=” means “defined as.”

It should be noted that an evaluation of U(X) = A(X) involves executing all the
single discipline analysis codes simultaneously with available multidisciplinary
design variable vector X. Therefore, these very expensive computations can be
done independently and concurrently and communication costs are likely to be
negligible. It is evident that the IDF method is well-suited for applications with the
use of parallel computer system.

Figure 3 shows an application of the IDF method to a system consisting of an
optimizer that controls objective F and constraints g, C12 and C21, discipline 1 with
analysis solver A1, and discipline 2 with analysis solver A2. For a certain iteration,
the fixed design variable vectors Xd, XY12 , and XY21 are provided by the optimizer
to the analysis disciplines 1 and 2. With the offered design variable vectors, each
analysis is performed to obtain system output vectors U1(X) and U2(X) and interdis-
ciplinary mapping vectors G21(Xd, U1(X)) and G12(Xd, U2(X)), respectively. The
objective F(Xd, U1(X), U2(X)) and constraints C12, C21, and g(Xd, U1(X), U2(X))
can be evaluated, given the system output vectors U1(X) and U2(X) and interdis-
ciplinary mapping vectors G21(Xd, U1(X)) and G12(Xd, U2(X)). For this case, the
optimization problem is formulated as:






minimize F(Xd, U1(X), U2(X))

with respect to X = (
Xd, XY12, XY21

)

subject to






g(Xd, U1(X), U2(X)) ≤ 0

C12
�= XY12 − G12(Xd, U2(X)) = 0

C21
�= XY21 − G21(Xd, U1(X)) = 0

Cl ≤ Xd ≤ Cu

(7)
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where
{

U1(X) = A1
(
Xd, XY12

)

U2(X) = A2
(
Xd, XY21

) (8)

and Cu and Cl are the upper and lower bounds on the design variable vector Xd.

3.3. COMPARISON BETWEEN A-i-O AND IDF METHODS

For the above A-i-O and IDF methods, with moderate or no modification, they all
have the advantage of using existing single discipline analysis codes. Compared
with the A-i-O method, the IDF method avoids the expensive procedure for achiev-
ing multidisciplinary feasibility at each optimization iteration. Moreover, when
using the IDF method, one may easily replace one analysis code with another, or
add new disciplines, and one can easily implement parallel and distributed compu-
tation. On the other hand, the IDF method requires the explicit imposition into the
optimization of the nonlinear constraints resulting from the interdisciplinary maps.
If gradient-guided optimization algorithms are used, the calculation of additional
sensitivities corresponding to the coupling variables between disciplines may be
very expensive. Provided the coupling variables and constraints are small, the over-
all IDF optimization will be significantly more efficient than A-i-O optimization
[11].

4. Multicriteria Optimization Concepts

A vector or multicriteria optimization problem can be described as:





minimize F(Xd)

with respect to Xd

subject to

{
g(Xd) = 0

h(Xd) ≤ 0

(9)

where Xd, F, g, and h are design variable vector, objective function vector, equality
constraint vector, and inequality constraint vector, respectively. Since different de-
sign criteria are usually conflicting, a design variable vector with which all criteria
reach their minimal values simultaneously is not feasible.

Although a unique optimal solution can not be defined generally, nonoptimal
designs can be eliminated. For example, for every design variable vector Xd that
satisfies the constraints shown in (9), if F(Xd) > F(X̄d) and X̄d is a feasible design
variable vector, the design variable vector Xd is not optimal. Design variable vectors
X̃d that satisfy the constraints described in (9) are called Edgeworth-Pareto-optimal
(EP-optimal), if there is no feasible design variable vector Xd where Fi (Xd) ≤
Fi (X̃d), ∀i ∨F(Xd) �= F(X̃d) [15]. Usually, EP-optimal solutions are not unique and
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design points with different images (e.g., curves or surfaces) are not comparable; all
of them have to be considered as optimal. These EP-optimal sets provide trade-off
relations between different design criteria, and the engineer must select a design
from amongst these solutions using additional information and insight into the
design problem.

A whole picture of EP-optimal solutions of multicriteria optimization prob-
lems requires many objective function evaluations. For the optimization of dy-
namic behavior of multibody systems, objective function evaluations involve a
time-consuming numerical integration of differential equations of motion. In high-
dimensional problems (i.e., with many objective functions), the EP–optimal solu-
tion cannot be visualized any more. Therefore, not all multicriteria optimization
strategies are appropriate for multibody system design.

A scalarization strategy is often used to convert the vector optimization problem
to a scalar one. During the process of scalarization, the objective function vector
F(Xd) (see Figure 1) are formulated as a scalar utility function u(F(Xd)). During
the optimization, instead of the objective function vector, the scalar utility function
is minimized. In the design space, the utility function should have the property of
monotonicity, i.e., for two different scalars Fa and Fb, if Fa < Fb, then u(Fa) <

u(Fb).
To implement the scalarization, generally, the utility function can be formulated

either by the weighted criterion method or by the distance method. For the weighted
criterion method, the utility function can be expressed as






u(F) =
n∑

i=1

ρi Fi

ρi > 0
(10)

where ρi , i = 1, 2, . . . , n, are weighting factors. In the case of the distance method,
the utility function is written as






u(F) =
( n∑

i=1

|Fi − F̄i |�
)1/�

1 ≤ � < ∞
(11)

where F̄i , i = 1, 2, . . . , n, are ideal or utopian design goal vectors.
The weighted criterion method is widely applied, but the weighting coefficients

(ρi ) are difficult to choose and the optimization result depends on this choice in a
highly nonlinear fashion. To facilitate the implementation of the weighted criterion
method, it is recommended that each element of the objective function vector F
be normalized to have a value of one for the initial design variables [10]. This
recommendation is based on the requirement that all elements of the objective
function vector should be optimized simultaneously. Obviously, the selection of
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the initial design variables and the corresponding values for each element of the
objective function vector are vital for the normalization.

Given the utopian goals F̄i , the distance method is a preferable option to the
weighted criterion method, since the tedious job of choosing the weighting coeffi-
cients for the latter can be avoided. Usually, the goals have some physical meaning.
However, if the goals F̄i are not utopian solutions, EP-optimality can not be reached.

5. Genetic Algorithms

GAs offer significant advantages over traditional local search methods because of
the following characteristics [16]: (a) GAs work on a population of design variables
in parallel and not on a unique point, so that GAs have a higher reliability to find the
global optima; (b) GAs solve the problem of finding good chromosomes (designs)
by manipulating the material in the chromosome without any knowledge of the
problem they are solving. The only information they require is an evaluation of
each chromosome/design — they do not need the gradients of the objective function
and constraints; (c) they are simple yet powerful in their search for improvement
and they are not limited by restrictive requirements about the search space, such as
continuity or existence of derivatives; (d) GAs guide their searches using probability
rules; this enhances their global explorative properties.

A population of designs evolves from generation to generation through the
application of genetic operators, the most common being selection, crossover, and
mutation.

Selection is a process in which individual strings are copied based on their fitness
values. Highly fit strings (good designs) have a higher number of offspring in the
succeeding generation. Crossover is a method of combining successful individuals
by exchanging equivalent lengths of their chromosomes. The two strings from the re-
produced population are mated randomly, and a crossover site is selected at random.
Mutation is a technique that introduces new information into the new population at
the bit level. A set of bits are selected randomly within the entire population.

After performing selection, crossover and mutation, GAs generate a new popu-
lation with potentially more individuals of higher fitness value. With enough rep-
etitions of the cycle, the population will converge to the chromosome/design with
the highest fitness.

In our research, the GA was implemented using the MechaGen program [17].
The MechaGen program is based on Goldberg’s GA [16] and was written in C using
pseudo-random number generators linked from the NAG (Numerical Algorithms
Group) Fortran library. However, to avoid premature termination of the algorithm,
instead of using a weighted roulette wheel based on the fitness sum of the population
for the reproduction stage, one based on the ranking of the population according
to fitness is used [17]. In addition, to improve the efficiency of the GA, the binary
strings and fitness values for each unique design of the current generation are stored
in a linear search look-up table. If a design string in the next generation matches one
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in the table, then the fitness does not have to be re-calculated. This saves significant
computing time, especially for expensive fitness evaluations.

6. Design Optimization of Rail Vehicles

To demonstrate the feasibility and efficacy of the MDO methodology for resolving
conflicting design requirements of multibody systems, it is applied to the design
optimization of rail vehicles. In this application, a hybrid MDO formulation method
is proposed: the A-i-O method is used at the subsystem (discipline) level to formu-
late the subproblems corresponding to lateral stability, curving performance, and
ride quality, while the IDF method is utilized at the system level to integrate these
three disciplines.

6.1. VEHICLE SYSTEM MODELS

Our models for lateral stability, curving performance, and vertical ride quality all
correspond to the same design configuration; however, for the ride quality model, the
car body flexibility is also considered. The rail vehicle’s configuration is shown in
Figure 4, with the leading bogie, car body, and trailing bogie denoted as bodies 2, 4,
and 6, respectively. For the ride quality model, the car body is divided into 5 identical
rigid bodies denoted as 4(1), 4(2), . . . , and 4(5). The adjacent car body sections are
connected by a group of bending, torsion and shear springs. The leading bogie, with
the leading and trailing wheelsets denoted as 1 and 3, and trailing bogie, with the
leading and trailing wheelsets denoted as 5 and 7, are connected to the corresponding
car body section by secondary suspensions. Both the leading and trailing bogies,
in turn, are connected with their own leading and trailing wheelsets by primary
suspensions. Each suspension component consists of a parallel spring and damper,
with stiffness and damping coefficients in the three coordinate directions. The

Figure 4. Rail vehicle configuration for dynamic models.
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nominal design variables are taken from [18]. Note that the nominal wheel radius
of r0 and conicity λ, as well as the half-distance between contact points a, are fixed
in this work.

6.1.1. Lateral Stability Model

For the bogies and car body, the motions considered are lateral displacements yi ,
yawing ψi (about axis z), and rolling φi (about axis x), where i = 2, 4, 6. For the
wheelsets, the motions considered are lateral displacement yi and yawing ψi , where
i = 1, 3, 5, 7. The resulting vehicle model has 17 degrees of freedom (DOF).

Using A’GEM, the following state-space equation is generated automatically:

q̇ = Aq (12)

where q are the assembled generalized coordinates and A takes the form:

A =
[

0 I17×17

−M−1K −M−1C

]

(13)

where M, C, K, and I are the inertia, damping, stiffness, and identity matrices,
respectively. With the eigenvalues of matrix A, we can analyze the relationship
between the critical speed and the suspension parameters.

6.1.2. Vertical Ride Quality Model

For ride quality analysis, a 36-DOF model of the rail vehicle is used. The wheelsets
are assigned vertical displacements (zi ) and roll motions (φi ), while the bogies and
car body sections are assigned lateral displacements (yi ), vertical displacements (zi ),
roll motions (φi ), and pitch motions (θi ). Note that the flexible car body has been rep-
resented by a five-element discretization of beam undergoing bending, axial torsion,
and lateral and vertical shear. By setting the frequency of the first bending mode to
8.0 Hz, the bending spring stiffnesses were computed to be 3.9586E + 08 Nm/rad.

The frequency responses of the model, i.e., passenger point accelerations and
secondary suspension working spaces, to stochastic rail profile inputs are deter-
mined by A’GEM. Once the power spectral density (PSD) is computed for these
dynamic responses, the ISO/(2631 − 1985) ride quality criterion can be evaluated
by integrating the PSD over 1/3 octave bands to obtain the root of mean square
(RMS) acceleration in the frequency bands.

6.1.3. Curving Performance Model

Figure 5 shows the 21-DOF dynamic curving model used by A’GEM to simulate
the vehicle as it travels from tangent track, through a spiral of constantly decreasing
radius, to a constant radius curve [19].
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Figure 5. Schematic diagram, showing the degrees of freedom of the curving model.

This model takes linear wheel-rail geometry with two points of contact into ac-
count. The effect of wheel load changes on creep coefficients, creep force saturation
due to combined actions of longitudinal, lateral and spin creepages, and nonlinear
creep-force relationships are considered. Nonlinear suspension elements, i.e., lat-
eral bump stops at each secondary suspension, are included to restrict the relative
lateral motion between the car body and the bogie frame. Specified vehicle and
track parameters are offered in [20].

6.2. FORMULATION OF THE OPTIMIZATION PROBLEM

For simplicity, if the analysis disciplines corresponding to vertical ride quality and
curving performance are temporarily excluded, the multidisciplinary optimization
problem formulation can be illustrated in Figure 6. Three strongly coupled analy-
sis disciplines, i.e., Multibody Dynamics with A’GEM software, Dynamic Mode
Tracking with DMT algorithm, and Critical Speed Identification with sequential
quadratic programming (SQP) algorithm, will cooperate to find the critical speed
Vc above which rail vehicles will lose stability [18]. Compared with the computer
time used by A’GEM for generating the system matrix A (see equation (13)) or
the time used by DMT for modal analysis, the time consumed by SQP for criti-
cal speed identification is much longer. In addition, if the IDF method is used for
finding the critical speed, the large number of “promoted” design variables will
result in expensive communication costs. With the above considerations, the A-i-O
method is used for optimizing the lateral stability of the corresponding vehicle
model.

As shown in Figure 6, during the kth iterative search for the critical speed, with
a design variable vector Xd, SQP sends the potential critical speed V k

sqp to DMT
and A’GEM. With the design variable vector Xd, A’GEM first generates the system
mass, stiffness, and damping matrices, i.e., M, K0, and C0 and these matrices are
stored for later use. Once the potential critical speed V k

sqp is offered, the speed
dependent nonconservative forces or the creep forces between the wheels and rails
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Figure 6. All-in-One (A-i-O) formulation for optimizing the lateral stability.

are added to the stiffness and damping matrices to form the resulting stiffness matrix
Kk and damping matrix Ck accordingly. A’GEM assembles matrices M, Kk , and
Ck to form the system matrix Ak (defined in (13)) and offer the system matrix
to DMT. With the given speed V k

sqp from SQP and the system matrix Ak from
A’GEM, DMT will perform mode tracking from speed V k−1

sqp to speed V k
sqp and

return to SQP the required real parts of corresponding eigenvalues Re(µi )(V k
sqp),

for all i = 1, 2, . . . , 34. This process will continue until the corresponding critical
speed Vc is determined within some error tolerance. At the end of the process, the
resulting Vc from SQP, Ac from A’GEM, and Re(µi )(Vc) from DMT are returned
to the system optimizer, the GA, for further use.

Similarly, if the analysis disciplines corresponding to lateral stability and ver-
tical ride quality are temporarily excluded, the optimization of curving perfor-
mance alone can also be regarded as an application of the A-i-O method. In this
case, the optimizer, i.e., the genetic algorithm, and three analysis disciplines, i.e.,
wheel/rail geometry model, wheel/rail creep force model, and multibody dynamics
with R’GEM program (from A’GEM) for automatic generation of the equations
of motion make the system a synergistic whole. In this MDO method, once the
required design variables are provided to the above coupled analysis disciplines, a
complete multidisciplinary analysis (MDA) is carried out via an iterative process
to obtain the system (MDA) output variables that are later utilized for evaluating
the objective function value and the required constraints.

To simultaneously optimize the lateral stability, curving performance, and ver-
tical ride quality of the rail vehicle model, the IDF method is used to incorporate
the above lateral stability optimization, curving performance optimization, as well
as vertical ride quality optimization. In the IDF formulation, the problems of lateral
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Figure 7. Hybrid MDO method combining IDF and A-i-O for optimizing the lateral stability,
curving performance, and vertical ride quality simultaneously.

stability, curving performance, and vertical ride quality are treated as three analysis
disciplines. As shown in Figure 7, three ellipses represent the three disciplines, i.e.,
Ride Quality, Curving Performance, and Lateral Stability. For the discipline of the
lateral stability, the three sub-disciplines or subsystems (multibody dynamics, dy-
namic mode tracking, and critical speed identification) and their coupling relations
are also illustrated. With the systems shown in Figure 7, the individual discipline
feasible (IDF) method is used to synthesize the three disciplines at the system level
and the A-i-O method is applied at the subsystem level, as previously explained. At
the system level, a GA is used as the optimizer. Due to the fact that the formulation
method used here is a combination of the IDF and the A-i-O methods, we call it a
hybrid MDO method. With the hybrid MDO method and the selected optimization
algorithms, the optimal design variables are searched in the design space so that
the rail vehicle’s lateral stability, vertical ride quality, and curving performance can
be optimized simultaneously.

As shown in Figure 7, for the three analysis disciplines of the lateral stability,
curving performance, and vertical ride quality, the corresponding analysis solvers
are denoted as Vc, Cp, and AR respectively. A comparison of Figure 7 with Figure
3 reveals that in the case of Figure 7, the “promoted” variables (vector XY ) repre-
senting communication, or coupling, between analysis disciplines vanish. Thus, the
communication costs at the system level are cheap. Furthermore, there are no ex-
plicit interdisciplinary mappings (vector G) among the three disciplines. However,
the three disciplines are coupled by means of the original design variable vector Xd

and their implicit interdisciplinary mappings are coordinated and manipulated by
the optimizer at the system or discipline level.
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Note that in our application of the IDF method, the basic principal of the
MDO formulation is followed: a complex optimization problem is decomposed
into smaller and more manageable tasks that should be concurrently executed
[1, 5, 6, 11]. In our case, the complicated rail vehicle design problem is decom-
posed into the lateral stability, curving performance, and vertical ride quality sub-
problems. With respect to the optimizer, i.e., the genetic algorithm, these three
sub-problems are formulated in a parallel pattern so that they can be analyzed
simultaneously. Due to the nature of the design optimization problem, the “pro-
moted” variable vector XY and explicit interdisciplinary mapping vector G vanish.
The vanishing of the vectors XY and G does not change the structure of the IDF
formulation. Our application can be treated as a special IDF case where XY and G
become vacant vectors. Moreover, as mentioned previously, provided the coupling
variables and constraints become small or vacant, the overall optimization based
on the IDF method will be significantly more efficient than those based on other
MDO formulation methods [11]. Thus, from the view-point of computational effi-
ciency, with vacant vectors XY and G, the IDF method is preferable to other MDO
formulation methods.

6.3. OPTIMIZATION PROBLEM AND IMPLEMENTATION

6.3.1. Objective Function, Constraints, and Design Variables

For the combined rail vehicle model including the lateral stability model, dynamic
curving model, and vertical ride quality model, the design variable vector Xd con-
sists of suspension stiffness and damping coefficients (S̄), inertial property parame-
ters (Ī), and geometric parameters (Ḡ). The total number of design variables reaches
29. The vehicle system parameters are offered in [18].

For the lateral stability problem, if the real parts of all eigenvalues
(Re(µi )(S̄, Ī, Ḡ, V ), i = 1, . . . , 34) of matrix A are negative or zero, the time
response of the system is stable. If one or more eigenvalues has zero real part and
all others have negative real parts, the vehicle is traveling at the so-called critical
speed. Thus, the lateral stability objective function and constraints may be expressed
as

{
maximize Vc(S̄, Ī, Ḡ, V )

subject to Re(µi )(S̄, Ī, Ḡ, V ) ≤ 0, i = 1, 2, . . . , 34
(14)

where Vc and V are the critical speed and vehicle forward speed, respectively.
For the ride quality discipline, the function (AR) to be minimized is a combination

of root of mean square (RMS) acceleration values at different points of the car body
and secondary suspension working spaces:

AR =
[ ∫ ωu

ωl

Sz̈4(i)(ω) dω

]1/2

+ υ max

[

0,

([ ∫ ωu

ωl

Shk (ω) dω

]1/2

− hk

)]

(15)
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where i = 1, 2, . . . , 5, υ is a weighting fact, hk(k = 1 . . . 4) are limits on the
secondary suspension working spaces, ωl and ωu define the frequency interval of
interest, and Sz̈4(i)(ω) and Shk (ω) are the PSDs of the car body vertical acceleration
and the working space of the kth secondary suspension, respectively. Note that AR

is a function of design variables S̄, Ī, and Ḡ.
For the curve performance discipline, the function (Cp) to be minimized

is a combination of angles of attack Aan , and lateral to vertical (L/V ) force
ratios Lv:

Cp = ξ max

(∣
∣
∣
∣

Aani(S̄, Ī, Ḡ)

Ãani

∣
∣
∣
∣

)

+ η max

(∣
∣
∣
∣
Lvk(S̄, Ī, Ḡ)

L̃vk

∣
∣
∣
∣

)

(16)

where i = 1, 2, 3, 4, k = 1, 2, . . . , 8, Ãani and L̃vk are the angle of attack and L/V
ratio when Aani(S̄, Ī, Ḡ) and Lvk(S̄, Ī, Ḡ) take nominal values, respectively, and ξ

and η are weighting factors.
For optimizing the three criteria, a utility function to be minimized was

introduced:

ν1

{

ξ max

(∣
∣
∣
∣

Aani

Ãani

∣
∣
∣
∣

)

+ η max

(∣
∣
∣
∣
Lvk

L̃vk

∣
∣
∣
∣

)}

+ ν2

(
AR

ÃR

)

+ ν3

(
Ṽc

Vc

)

(17)

where ν1, ν2, ν3 are the weighting factors, i = 1, 2, 3, 4, k = 1, 2, . . . , 8, and ÃR

and Ṽc are the nominal values of AR and Vc respectively.

6.3.2. Implementation of the Optimization Problem

As shown in Figure 8, the hybrid MDO method combining IDF and A-i-O discussed
previously is implemented using: MechaGen program (a GA), E04UCF routine (an
SQP) from the NAG library, Dynamic Mode Tracking (DMT) technique, A’GEM
‘Stability’ module (STABLE program for lateral stability analysis), A’GEM ‘Ride’
module (RLRIDE program for vertical ride quality analysis), and A’GEM ‘Curve’
module (RACES routine for curving performance analysis).

As shown in Figure 8, each set of design parameters of a population generated
by the GA is forwarded to the corresponding A’GEM module for calculating the
required performance indices for curve performance, vertical ride quality, and lat-
eral stability. With the given set of design variables, the corresponding programs
of A’GEM generate the required equations of motion or system matrices automati-
cally. For the cases of curve performance and vertical ride quality, after numerical
integration in the time domain and necessary transformation in the frequency do-
main, respectively, the performance indices can be obtained directly. For lateral
stability, however, with the system matrix generated in the form of equation (13),
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Figure 8. Schematic representation of the implementation of the optimization algorithm.

the SQP and DMT are used to determine the critical speed. Then the correspond-
ing fitness value is obtained by converting the vector optimization problem into a
scalar optimization problem using the concept of scalarization by introducing an
utility function in the format of (17). Note that the scalarization is performed at
the system level so that the performance indices of the three disciplines (i.e., the
lateral stability, curving performance, and vertical ride quality) are coordinated and
manipulated at the system or discipline level by the genetic algorithm. It should be
noted that the total number of fitness values is the same as that of the individual
design parameter sets in the population. At this point, if the convergence criteria
are satisfied, the calculation terminates; otherwise these fitness values are returned
to the GA. Based on the returned fitness values corresponding to the given sets of
design variables, the GA produces the next generation of design variable sets using
reproduction, crossover and mutation. This procedure repeats until the optimized
design variable set is found.
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6.4. RESULTS AND DISCUSSION

6.4.1. Conflicting Requirements on Design Variables

Since the design criteria for the optimization of the lateral stability, curving per-
formance, and vertical ride quality are different, they impose different or even
conflicting requirements on the specific design variable or variables. Table I offers
selected numerical results based on the optimization of lateral stability (Vc) and
the optimization of curving performance (Cp). For both optimization problems, 10
design variables (i.e., the relevant stiffness and damping coefficients for the sec-
ondary and primary suspensions) are permitted to vary by ±20% from their nominal
values.

Table I shows the optimized design variables from both optimization problems
and the corresponding nominal and bound values for the design variables. Since
primary suspension parameters have much more significant effect on curving per-
formance and lateral stability of rail vehicles than secondary suspension parameters
[21], the following discussion places emphasis on the primary suspension parame-
ters. As shown in Table I, for the curving performance optimization problem, among
the optimized primary suspension parameters, the longitudinal, lateral, and vertical
damping coefficients, c1x , c1y , and c1z , take lower values than the corresponding
nominal values, and the longitudinal and lateral spring stiffness coefficients, k1x

and k1y , take the corresponding lower bound values. However, for the lateral sta-
bility optimization problem, among the optimized primary suspension parameters,

Table I. Optimized suspension variables (permitted to vary by ±20% from their nominal
values)

k1x (N/m) k1y (N/m) k1z (N/m) c1x (N/m/s) c1y (N/m/s)

Nominal Values 3.1500 × 107 3.9600 × 106 2.1000 × 106 666.00 5220.00

Upper Bounds 3.7800 × 107 4.7520 × 106 2.5200 × 106 799.20 6264.00

Lower Bounds 2.5200 × 107 3.1680 × 106 1.6800 × 106 532.80 4176.00

Cp Optimized 2.5200 × 107 3.1680 × 106 2.2964 × 106 654.80 4212.80

Vc Optimized 3.7800 × 107 3.1802 × 106 2.5148 × 106 736.20 4218.90

c1z (N/m/s) k2y (N/m) k2z (N/m) c2y (N/m/s) c2z (N/m/s)

Nominal Values 9910.00 1.9700 × 105 6.8700 × 105 4.270 × 104 4.270 × 104

Upper Bounds 11892.0 2.3640 × 105 8.2440 × 105 5.124 × 104 5.124 × 104

Lower Bounds 7928.0 1.5760 × 105 5.4960 × 105 3.416 × 104 3.416 × 104

Cp Optimized 8300.0 2.3410 × 105 5.5713 × 105 4.148 × 104 3.586 × 104

Vc Optimized 10164.0 2.3440 × 105 7.7381 × 105 5.115 × 104 3.620 × 104

Primary Suspension Parameters: k1x : Longitudinal Stiffness; k1y : Lateral Stiffness; k1z : Ver-
tical Stiffness; c1x : Longitudinal Damping; c1y : Lateral Damping; c1z : Vertical Damping.
Secondary Suspension Parameters: k2y : Lateral Stiffness; k2z : Vertical Stiffness; c2y : Lateral
Damping; c2z : Vertical Damping.
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except for the lateral spring stiffness and damping coefficients, k1y and c1y , the
other parameters either take higher values than the corresponding nominal values
or take the corresponding upper bound values. Thus, the lateral stability and curv-
ing performance have conflicting requirements on the primary suspension design
variables. These optimization results are consistent with previous observations by
Wickens [21] that suspensions that are soft in the lateral and longitudinal direc-
tion tend to hunt more readily on tangent track and become unstable even at low
speeds. However, such suspensions allow the wheelsets to follow curved track with
decreased wheel wear and flange forces. The exception, i.e., the lateral spring stiff-
ness and damping coefficients (k1y and c1y), to the observation by Wickens may be
interpreted by the fact that at values above certain values, the lateral stability be-
comes relatively insensitive to these parameters. This exception was once reported
by Hedrick et al. [22].

Besides the above conflicting requirements on suspension parameters, the lateral
stability and curving performance also have conflicting requirements on geometric,
inertial, or even active design variables. We will see in the following subsection
that the hybrid MDO optimization approach offers an effective way to resolve these
conflicting requirements.

6.4.2. Results of the Hybrid MDO Problem

The combined vehicle model is optimized with respect to three criteria, lateral
stability, curving performance, and vertical ride quality as shown in the objective
function (17). The constants ξ and η are both set to 1.0. To facilitate the imple-
mentation of the optimization problem, max(| Aani

Ãani
|)+max(| Lvk

L̃vk
|) (i = 1, 2, 3, 4, and

k = 1, 2, . . . , 8), AR

ÃR
, and Ṽc

Vc
are defined as curving performance index, lateral sta-

bility performance index, and vertical ride quality index, respectively. To obtain a
whole picture of the EP-optimal set, three sets of weighting factors ({ν1, ν2, ν3})
are selected and the corresponding optimizations are carried out. The three selected
sets of weighting factors take the values of {1, 1, 1}, {1, 1, 2}, and {1, 1, 4}. A total
of 29 parameters including geometric parameters, inertial property parameters, and
suspension stiffness and damping coefficients are chosen as design variables. These
design variables are permitted to vary by ±20% from their nominal values.

In the study, all computations were carried out on a Silicon Graphics Indigo
2XZ workstation. In the numerical experiments of the hybrid MDO method that
combines IDF and A-i-O, it was found by trial and error that consistent results were
obtained for the GA using a crossover probability of 100%, a mutation probability
of 1.0%, and a population size (the number of design variable sets) of 160. The
maximum number of generations is set to 260. For each set of weighting factors
({ν1, ν2, ν3}) provided above, the elapsed time for one operation of the hybrid MDO
method shown in Figure 8 is approximately 182.6 h.

Figures 9–11 illustrate selected results from the hybrid MDO method. Note that
the results offered in each of Figures 9–11 are derived from three operations of
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Figure 9. Relationship between lateral stability and vertical ride quality.

Figure 10. Relationship between curving performance and vertical ride quality.

the hybrid MDO method corresponding to the three sets of values of the weighting
factor vector {ν1, ν2, ν3} offered above. The individual designs from the GA are
represented by circles, which tend to cluster as the GA converges to the optimal de-
sign. Plotted in Figure 9 is the vertical ride quality performance index versus lateral
stability performance index. The clustered data corresponding to the EP-optimal set



132 Y. HE AND J. McPHEE

Figure 11. Relationship between lateral stability and curving performance.

is almost horizontal, which shows that the optimized vertical ride quality is mainly
independent of lateral stability. This is also true, as shown in Figure 10, for the
relationship between vertical ride quality and curving performance. The observa-
tion about the relationship between vertical ride quality and lateral stability and that
between vertical ride quality and curving performance demonstrates the conclusion
[23] that a relatively weak coupling exists between the vertical and lateral motions
of a rail vehicle.

However, Figure 11 shows a distinct trade-off in the relationship between lateral
stability and curving performance. The EP-optimal set in the densely-clustered
region shows that lateral stability can only be improved at the expense of curving
performance, and vice-versa. No one criterion is favored over another; instead, the
designer obtains explicit information about the trade-offs between lateral stability
and curving performance. By running several more optimizations with different
sets of weighting factors, one can get an even clearer picture of the EP-optimal set.
Although this is a computationally expensive process, the results are of obvious
importance to rail vehicle designers.

7. Conclusions

A methodology for the design optimization of multibody systems was developed
in the research. The essence of this methodology is that: (1) The effective dy-
namic system modeling technique (multibody dynamics) is utilized for the gen-
eration of complex realistic objective-oriented multibody system models; (2) By
means of multidisciplinary optimization methods, these coupled objective-oriented
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multibody system models and/or additional (e.g., control) systems are integrated
as a synergistic whole; (3) With the scalarization technique, a vector optimization
problem is converted into a scalar optimization problem; (4) With a genetic algo-
rithm used at system level and the appropriately selected search algorithms used at
subsystem level, the coupled systems are optimized simultaneously.

Numerical experiments demonstrated the feasibility and efficacy of the proposed
design optimization methodology for resolving conflicting design requirements.
This methodology is suitable for complex design optimization problems where: (a)
There is interaction between different multibody systems or analysis disciplines;
(b) There are multiple design criteria; (c) There are multiple local optima; (d) There
are multiple design variables; (e) No matter whether the scalar objective function is
continuous or discontinuous, there is no need for sensitivity analysis for the system
solver or the GA.

The limitation of the application of the methodology is that the associated com-
putational burden is heavy. However, parallel processing, for which the methodol-
ogy is ideally suited, could be used for reducing the computer time required for the
optimization.

The methodology is applied to the design of a rail vehicle. This methodology is
implemented in the form of a hybrid multidisciplinary optimization method. The
hybrid MDO method, which is a combination of the individual discipline feasible
(IDF) method used at the discipline level and the All-in-One (A-i-O) method
used at sub-discipline level, is used to optimize the complex rail vehicle model
with respect to lateral stability, curving performance, and vertical ride quality.
The hybrid MDO method combines the lateral stability model with 17 DOF, the
nonlinear dynamic curving performance model with 21 DOF, the vertical ride
quality model with car body flexibility and with 36 DOF, and relevant analysis
tools into a synergistic whole.

The trade-off relationship between lateral stability and curving performance
are clearly revealed by means of EP-optimal solutions. Moreover, the resulting
EP-optimal sets visualize a well-known fact that a relatively weak coupling exists
between the vertical and lateral motions of a rail vehicle.
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