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Abstract. Constrained multibody systems typically feature multiple closed kinematic loops that con-
strain the relative motions and forces within the system. Typically, such systems possess far more ar-
ticulated degrees-of-freedom (within the chains) than overall end-effector degrees-of-freedom. Thus,
actuation of a subset of the articulations creates mixture of active and passive joints within the chain.
The presence of such passive joints interferes with the effective modular formulation of the dynamic
equations-of-motion in terms of a minimal set of actuator coordinates as well the subsequent recursive
solution for both forward and inverse dynamics applications.

Thus, in this paper, we examine the development of modular and recursive formulations of
equations-of-motion in terms of a minimal set of actuated-joint-coordinates for an exactly-actuated
parallel manipulators. The 3 RRR planar parallel manipulator, selected to serve as a case-study,
is an illustrative example of a multi-loop, multi-degree-of-freedom system with mixtures of ac-
tive/passive joints. The concept of decoupled natural orthogonal complement (DeNOC) is combined
with the spatial parallelism inherent in parallel mechanisms to develop a dynamics formulation that
is both recursive and modular. An algorithmic approach to the development of both forward and
inverse dynamics is highlighted. The presented simulation studies highlight the overall good nu-
merical behavior of the developed formulation, both in terms of accuracy and lack of formulation
stiffness.

Keywords: recursive kinematics, modular dynamics, decoupled natural orthogonal complement,
parallel manipulators

1. Introduction

The recent few decades have witnessed an increased use of dynamic computational
models for the design, analysis, parametric refinement and model-based control of
a variety of multibody systems such as vehicles, heavy machinery, spacecraft and
robots. The principal underlying factor for this revolution has been the improved
understanding of the methodologies for dynamic modeling of these increasingly-
complex multibody systems. A good overview of the wide variety of problems-of-
interest, the proposed formulations as well as some of the computational methods



420 W.A. KHAN ET AL.

to address some of these problems may be seen in a number of seminal textbooks
[7, 16, 20, 43, 44].

In the context of robotic multibody systems, the systematic formulation and ef-
ficient solution of both the inverse- and the forward- dynamics problems are of
great interest. The goal of the inverse dynamics problem is to formulate the sys-
tem’s equations-of-motion (EOM) and compute the time-histories of the controlling
actuated joint torques/forces, given the time-histories of all the system’s actuated-
joint variables. The solution process is primarily an algebraic one and typically
does not require the use of numerical integration methods since the position coor-
dinates, velocities and accelerations of the system are known. On the other hand,
the forward dynamics problem seeks to formulate the system’s EOM and com-
pute the time histories of all the joint coordinates, given the time-histories of the
actuated joint torques/forces. The solution is obtained in a two-stage process: an
initial algebraic solution of the EOM to determine the accelerations which are then
numerically integrated in a second stage to obtain the velocity and position time
histories.

For either problem-of-interest, the critical first step remains formulation of the
EOM and for which the principal formulation approaches fall into one of two broad
categories: Euler-Lagrange methods and Newton-Euler methods. Euler-Lagrange
approaches are commonly used in robotics to obtain the EOM of robotic manipu-
lators within a configuration space defined in terms of relative joint variables. For
serial chain manipulators, such relative joint variables afford a minimal-coordinate
description and additionally often permit a direct mapping to actuator coordinates.
Newton-Euler formulations on the other hand, typically are defined in terms of
Cartesian configuration coordinates. Recursive formulations are created by first
developing EOM for each body, which are then assembled to obtain the EOM for
the entire system. Both formulation approaches have been shown to be extremely
effective in generating efficient (and essentially equivalent) EOM for serial-chain
and tree-structured multibody systems.

However, the adaptation of such formulations to efficiently generate and solve
the EOM of constrained multibody systems has proven challenging. Such systems
can range from fixed topology systems (various types of parallel manipulators,
closed-loop linkages) to variable-topology systems (legged walking machines [45],
multi-fingered hands [23, 41] and cooperative payload manipulation systems [25]).
The characteristic (and dominant) feature of all such constrained multibody systems
is the formation of closed kinematic loops. The engendered loop-closure constraints
then serve to constrain the relative motions and forces within the system creating
a spectrum of underactuated, exactly-actuated or redundantly-actuated dynamic
systems [26].

Traditionally, the kinematic loop-closure constraints have been modeled by in-
troducing algebraic constraints (typically nonlinear) into the dynamics formulation.
The resulting systems of Differential Algebraic Equations (DAEs) offer numerous
challenges for both forward dynamics and inverse dynamics. It is noteworthy that
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the solution is very closely tied to the form of the EOM which, in turn, depend
critically upon the method of formulation. As Ascher et.al. [6], note the form of
the EOM can result in a formulation stiffness whose effects manifest themselves in
conjunction with but distinctly differing from the effects of the numerical stiffness
of the selected numerical integration scheme.

In this paper, we will examine the development of both forward and inverse
dynamics formulations for a subclass of constrained mechanical systems using an
examplary parallel manipulator. Such parallel manipulator systems possess a natural
spatial parallelism and multiple closed kinematic loops arising due to multiple
legs/branches coming in contact with the common central mobile platform. Parallel
manipulators also feature multiple sets of active and passive joints within these loops
requiring careful modelling – thus the selection of a parallel manipulator example
is intended to be illustrative.

Further, we place emphasis on the modular and recursive development of both
forward and inverse dynamics formulations (in terms of the minimal set of actuated-
coordinates) for such parallel manipulator systems. The emphasis on modular devel-
opment is to promote reuse of existing components – an overall system is assumed
to be composed of several serial or tree structured individual subsystems plus sets of
holonomic constraints. In particular, we examine exploiting the spatial parallelism
[30] that is inherent in closed kinematic chains to pursue a modular composition
of the overall system dynamics. Further, we note that while modular formulation
may not be a critical issue for fixed-topology parallel manipulator systems, many
variable-topology constrained mechanical systems would benefit from a modular
formulation.

Recursive algorithms are desirable from the viewpoint of simplicity and unifor-
mity of computation despite the ever-increasing complexity of multibody systems.
More specifically, in the context of robotic systems, the recursive implementation
of dynamics algorithms has been the key to efforts in real-time dynamics compu-
tations and subsequent implementation of dynamic-model-based control (ranging
from computed torque to model reference adaptive control methods). Thus, it is
anticipated that the ability to recursively implement dynamics algorithms in parallel
manipulator systems would play a similar critical role.

It is important to note that, prior to the dynamics computation stage, a forward
or inverse kinematics stage is often required. Hence, the development of efficient
recursive dynamics algorithms also necessitates the careful investigation of recur-
sive kinematics algorithms, which remains a challenging research problem. Thus,
a recursive algorithm for the forward dynamics of closed-chain systems first ap-
peared in [40] building on the recursive nature of the Decoupled Natural Orthogonal
Complement (DeNOC) matrices. However, a limited set of examples of primarily
one- and two-degree-of-freedom, single-loop planar manipulators were reported
there. In the current paper, we explore the extension and application of the DeNOC
approach to the case of multi-loop, multi-dof parallel manipulators with mixtures
of active and passive joints.
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We will bear these aspects in mind while we briefly review and discuss major
methods of formulation of the EOM (for both serial and parallel manipulators) in
Section 2. Section 3 presents the relevant background pertaining to the DeNOC
approach which forms the basis of the recursive and modular dynamic formulation
for parallel-architecture manipulators. Section 4 discusses the nuances of the im-
plementation in the context of a case-study of a 3 RRR planar parallel manipulator
which features both the multiple closed-loops and the mixtures of actuated and
unactuated joints within the chain. The results are discussed in the context of a
numerical example in Sections 5 and 6 concludes this paper.

2. Constrained Multibody Dynamics

2.1. NON-RECURSIVE EULER-LAGRANGE FORMULATIONS

In the Euler-Lagrange approach, the dynamics of constrained mechanical system
with closed loops are traditionally obtained by cutting the closed loops typically
at passive joints. The EOM for the resulting tree-structured articulated-system are
then developed in terms of a set of extended generalized coordinates [14]. All
solutions are then also required to satisfy the additional algebraic constraint equa-
tions required to close the cut-open loops which are enforced by way of Lagrange
multipliers. The resulting formulation, in descriptor form, yields an often sim-
pler albeit larger system of index-3 differential algebraic equations (DAEs) as
follows:1

I(q)q̈ = f(q, q̇, u) − A(q)Tλ (1)

c(q) = 0 (2)

where q and q̇ are, correspondingly, the n-dimensional vector of generalized coor-
dinates and of velocities, I(q) is the n ×n dimensional inertia matrix, c(q) is the m-
dimensional vector of holonomic scleronomic constraints; λ is the m-dimensional
vector of Lagrange multipliers, A(q) is the m × n constraint Jacobian matrix,
f(q, q̇, u) is the n-dimensional vector of external forces and velocity-dependent
inertia terms, while u is the vector of actuator forces or torques. The solution of
such systems of index-3 DAEs by direct discretization is not possible using explicit
finite difference discretization methods [7]. Instead, typically, the above system
of index-3 DAEs is converted to a system of ODEs and expressed in state-space
form, which may be integrated using standard numerical codes. Some of the typical
methods used to achieve this are discussed below.

1 The differential index is defined as the number of times the DAE has to be differentiated to obtain
a standard set of ODEs
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2.1.1. Direct Elimination

The surplus variables are eliminated directly, using the position-level algebraic
constraints to explicitly reduce the index-3 DAE to an ODE in a minimal set
of generalized coordinates (conversion into Lagrange’s Equations of the second
kind). This is also referred to as the closed form solution of the constraint equations
– the resulting minimal-order ODE can then be integrated without worrying about
stability issues. However, such a reduction cannot be done in general, and even
when it can, the differential equations obtained are typically cumbersome [22].

2.1.2. Lagrange Multiplier Computation

All the algebraic position and velocity level constraints are differentiated and rep-
resented at the acceleration level, to obtain an augmented index-1 DAE (in terms
of both unknown accelerations and unknown multipliers) [7, 32] as:

[
I(q) AT

A 0

] [
q̈

λ

]
=

[
f

−Ȧ(q)q̇

]
(3)

which may be solved for q̈ and λ. By selecting the state of the system to be
x = [qT q̇T ]T the above set of equations may be converted to the standard state-
space form and integrated using standard codes. The advantage is, the conceptual
simplicity and simultaneous determination of the accelerations and Lagrange mul-
tipliers by solving linear system of equations. However, such a model requires more
initial conditions than a model that uses an independent set of minimal-actuation-
coordinates and tends to suffer from numerical stability issues.

2.1.3. Lagrange Multiplier Approximation/Penalty Formulation

In this approach the loop-closure constraints are relaxed and replaced using virtual
springs and dampers [50]. Using such virtual springs can be considered as a form
of penalty formulation [16], which incorporates the constraint equations as a dy-
namical system penalized by a large factor. The Lagrange multipliers are estimated
using a compliance-based force-law (based on the extent of constraint violation and
an assumed spring stiffness) and eliminated from the list of the n + m unknowns
leaving behind a system of 2n first order ODEs. While the sole initial drawback may
appear to be restricted to the numerical ill-conditioning due to the selection of large
penalty factors, it is important to note that penalty approaches only approximate
the true constraint forces and can create unanticipated problems.

2.1.4. Dynamic Projection on to Tangent Space

These seek to take the constraint-reaction-containing dynamic equations into the
orthogonal and tangent subspaces of the vector space of the system’s generalized
velocities. Let S(q) be an n × (n −m) full-rank matrix whose column space is in the
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null space of A(q) i.e. A(q)S(q) = 0. The orthogonal subspace is spanned by the
so-called constraint vectors (forming the rows of the matrix A(q)) while the tangent
subspace complements this orthogonal subspace in the overall generalized velocity
vector space. All feasible dependent velocities q̇ of a constrained multibody system
necessarily belong to this tangent space, appropriately called the space of feasible
motions. This space is spanned by the columns of S(q) and is parameterized by an
n − m dimensional vector of independent velocities, ν(t), yielding the expression
for the feasible dependent velocities as q̇ = S(q)ν(t). A family of choices exist for
the selection between dependent and independent velocities, where each choice can
give rise to a different S(q). A popular choice, called Coordinate Partitioning [44],
in which the generalized velocity is partitioned into m-dimensional dependent q̇d

and (n − m)-dimensional independent q̇i velocities, i.e.,

q̇ =
[

q̇d

q̇i

]
(4)

By selecting ν(t) = q̇i and solving the linear constraints of A(q) a relation between
q̇d and q̇i is then obtained as Aq̇ ≡ Ad q̇d + Ai q̇i = 0. While Ad is nonsingular,
one can solve for q̇d = −A−1

d Ai q̇i ≡ Kq̇i where K is an m × (n − m) matrix. This
leads to a special form of S(q) (denoted by T)

q̇ =
[

K

1

]
q̇i = Tq̇i (5)

The n × (n − m) matrix T lies in the null space of A, i.e., AT = O, where O
represent the m × (n − m) zero matrix; matrix T is commonly called the loop-
closure orthogonal complement. Efficient methods for the numerical computation
of T exist and are reviewed by [16]. Pre-multiplying both sides of Equation (1) by
TT we obtain a constraint-free second order ODE as

TT I(q)q̈ = TT f(q, q̇, u) (6)

The above system of equations is still under-determined, but may be success-
fully used in its current form for inverse dynamics applications (as it often is).
Equation (6) a system of n − m second order ODEs in n generalized coordinates,
and may then be augmented by m constraint conditions at the acceleration level,
Aq̈ + Ȧq̇ = 0, to form a system of n second-order ODEs in as many unknowns.
Alternatively, an approach known as the Embedding Technique [44] is commonly
used, where Equation (5) is differentiated with respect to time and embedded in
Equation (6) to create

TT I(q)Tq̈i + TT I(q)Ṫq̇i = TT f(q, q̇, u) (7)
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which is the minimal-order ODE sought and can be integrated with suitable ODE
solvers. A detailed description of the velocity partitioning formulation as well as the
geometrical interpretation of constrained system dynamics can be found in Blajer
[11].

2.2. RECURSIVE NEWTON-EULER FORMULATIONS

Traditional Lagrange-based formulations of EOM yield algorithms that are of order
O(N 4) [14], in the number of floating point operations; where N is the number of
rigid bodies in the manipulator. In contrast, we note that most of the fast recursive
dynamics algorithms proposed in the last two decades have been based on the
Newton-Euler formulation. Stepanenko and Vukobratovic [47] are credited with the
development of the first recursive NE method for inverse dynamic computations
for human limbs that resulted in an O(N ) algorithm. Orin et al. [33] improved
the efficiency of the recursive inverse dynamics method by referring forces and
moments to local link coordinates and employed it for real-time control of a leg
of a walking machine. Luh et al. [27] developed the first implementation of an
efficient Recursive Newton-Euler Algorithm (RNEA) for both forward and inverse
dynamics by referring most quantities to link coordinates. Further gains have been
made in the efficiency over the years, see for example [10] and [18].

The earliest O(N ) algorithm for forward dynamics was developed by Vereshcha-
gin [48], who used a recursive formulation to evaluate the Gibbs-Appel form of the
EOM, applicable to unbranched chains. This is followed by the work of Armstrong
[5] who developed a more systematic O(N ) algorithm for mechanisms including
those with spherical joints. Later, Orin and Walker [34] used RNEA for inverse
dynamics as the basis for an efficient recursive forward dynamic algorithm com-
monly referred to as the Composite-Rigid-Body Algorithm (CRBA). The necessity
to solve a linear system of equations of dimension N results in an algorithm of
complexity O(N 3). However for small N , the first-order terms dominate the com-
putation, making the CRBA method perhaps the most efficient general purpose
algorithm for serial manipulators with N < 10 (which includes most practical
cases). Featherstone [13] developed the Articulated-Body Algorithm (ABA) which
was followed by a more elaborate and faster model [14]. The computational com-
plexity of ABA is O(N ) but is more efficient than CRBA only for N > 9. Fur-
ther gains have been made in efficiency over the years, see for example [12] and
[29].

However, extension of such NE methods to systems with closed kinematic loops
has met with limitations principally due to the algebraic nature of the constraints.
The most common method for dealing with kinematic loops is to cut the loop,
introduce Lagrange multipliers to substitute for the cut joints and develop a recursive
method within the individual open-chain systems. The resulting method works well
for inverse dynamics computations and is used extensively for real-time dynamic-
model based control applications. However, most of the resulting forward dynamics
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algorithms for closed-loop mechanisms result in EOM described in terms of a
non-minimal set of generalized coordinates [8, 9, 15, 42, 46]. These equations
would then need to be projected onto the independent set of coordinates, typically
by a numerical scheme, which destroys the recursive nature. This is the principal
limitation that the Decoupled Natural Orthogonal Complement approach (discussed
next) seeks to overcome.

2.3. THE DECOUPLED NATURAL ORTHOGONAL COMPLEMENT

The Natural Orthogonal Complement (NOC) has a rich history [2–4] of application
in reducing the unconstrained Newton-Euler EOM of various bodies of a serial-
chain articulated robotic system to a set of reduced-dimension Euler-Lagrange EOM
in terms of the minimal set of actuated joint-coordinates. We review some of the
critical underlying concepts of the NOC-based formulations and their applicability
to developing the reduced equations in the rest of this sub-section. A brief overview
of critical mathematical foundations is presented in Section 3 and the interested
reader is referred to [2] for further details.

The key to the development of the reduced equations by the NOC method
is the definition of the NOC matrix – a velocity transformation matrix that re-
lates the Cartesian angular/translational velocities of various bodies to the joint
rates defined as orthogonal to the kinematic constraint matrix. While, in general,
orthogonal complement matrices tend to be non-unique, Saha and Angeles [39]
showed a systematic and constructive method for computing a unique Natural
Orthogonal Complement for the twist constraint matrix, eliminating the need for
use of numerical SVD/eigenvalue methods. This feature is capitalized upon and
plays a critical role in the development of the reduced dynamic equations. By def-
inition, the columns of such an NOC matrix span the null space of the matrix
of velocity constraints. Hence, all motions for the articulated system defined as
linear combinations of the columns remain consistent (instantaneously) with the
applied constraints and hence do not generate any (non-working) internal forces.
Hence, projecting the unconstrained EOM onto the feasible motion space (spanned
by the columns of the NOC matrix) creates a reduced system of independent
EOM (in terms of the joint rates) while eliminating all the non-working constraint
wrenches.

Saha [36–38] introduced a representation of this NOC matrix as the product
of two matrices – a lower block triangular matrix and a block diagonal matrix
– termed the Decoupled Natural Orthogonal Complement matrices. The special
structure facilitates setup of a recursive forward/inverse kinematics computation
and serves as a critical first step towards implementing recursive forward/inverse
dynamics algorithms (that would otherwise not have been possible with the NOC
formulation). Thus, although recursive kinematics algorithms for serial chains have
had a long history [27, 33, 47], a recursive algorithm for the forward kinematics
of closed-chain systems first appeared in [40]. In that work, examples of one- and
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Figure 1. Two bodies connected by a kinematic pair.

two-degree-of-freedom, single-loop planar manipulators were included and various
physical interpretations were reported. In this paper, we explore the extension and
application of the DeNOC to the case of multi-loop, multi-dof parallel manipulators,
using a two-step approach and emphasizing the use of geometric parallelism in such
systems.

3. Mathematical Background

3.1. TWISTS, WRENCHES AND EQUATIONS OF MOTION

In this section, some pertinent definitions and concepts will be briefly reviewed.
See [2] and [36] for further details. Figure 1 shows two rigid links of a serial chain
connected by a revolute pair. The mass-center of i th link is at Ci while that of
link i − 1 is at Ci−1. The axis of the i th pair is represented by a unit vector ei . We
attach a frame Fi with origin Oi and axes Xi , Yi and Zi , to link i − 1, such that
Zi is parallel to ei . The global inertial reference frame F with axes X , Y and Z is
attached to the base of the manipulator. Unless otherwise specified, all quantities
will be represented in this global frame in the ensuing discussion. Further, we define,
the three-dimensional position vectors di from the Oi to the mass center of link i
and ri−1 from the mass center of link i − 1 to Oi . The six-dimensional twist2 and
wrench vectors of link i at its mass center Ci are now defined as

ti =
[
ωi

vi

]
; wi =

[
ni

fi

]
(8)

where ωi , vi , ni , and fi are the three-dimensional angular and linear velocities of
the center-of-mass and the moment and force vectors acting at the center-of-mass

2 See Appendix A for further details of this hybrid twist definition.
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of link i , expressed in an inertial frame of reference coincident with Ci . The Newton-
Euler equations for link i are

ni = Ii ω̇i + İiωi = Ii ω̇i + ω̂i Iiωi

fi = mi v̇i

where Ii is the 3 × 3 inertia tensor about Ci , mi is the mass of link i and ω̂i is the
cross product matrix of ωi . The above set, in vector form, may be written as

wi =
[

Ii O

O mi 1

]
︸ ︷︷ ︸

Mi

[
ω̇i

v̇i

]
+

[
ω̂i O

O O

]
︸ ︷︷ ︸

Wi

[
Ii O

O mi 1

] [
ωi

vi

]
(9)

or

wi = Mi ṫi + Wi Mi ti (10)

For a serial chain with n moving rigid links coupled by n revolutes, we define

t =




t1

...

tn


 ; w =




w1

...

wn


 (11)

The resulting set of Newton-Euler equations for the entire unconstrained system
then takes the form

w = Mṫ + WMt (12)

where M and W are block-diagonal matrices, namely,

M =




M1 O O

O
. . . O

O O Mn


 ; W =




W1 O O

O
. . . O

O O Wn


 (13)

3.2. KINEMATIC RELATIONS BETWEEN TWO BODIES COUPLED

WITH A KINEMATIC PAIR

The twist t̃i of link i at the i th joint location Oi , can be written recursively in terms
of the twist of link i − 1 at mass center Ci−1 and including the contribution of the
i th joint twist as

t̃i = B̃i−1ti−1 + p̃i θ̇i (14)
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where

B̃i−1 =
[

1 O

−r̂i−1 1

]
(15)

p̃i =
[

ei

0

]
, for a revolute joint (16)

p̃i =
[

0

ei

]
, for a prismatic joint (17)

where r̂i−1 is the cross product matrix (CPM)3 of ri−1. Further, the twist t̃i of link i
at the i th joint location Oi can be transformed to the subsequent mass center Ci as

ti = Bi t̃i ; Bi =
[

1 O

−d̂i 1

]
(18)

where d̂i is the cross product matrix of di . Substituting the value of t̃i from
Equation (14) in the above equation we obtain

ti = Bi B̃i−1ti−1 + Bi p̃i θ̇i (19)

Further, we introduce the notation

ti = Bi,i−1ti−1 + pi θ̇i (20)

where

Bi,i−1 =
[

1 O

−âi 1

]
(21)

pi =
[

ei

−d̂i ei

]
, for a revolute joint (22)

pi =
[

0

ei

]
, for a prismatic joint (23)

with âi = r̂i + d̂i . Matrix Bi,i−1 is called the twist propagation matrix and can be
seen to be the equivalent of the State Transition Matrix of Rodriguez [35], while
pi is called the twist generator. The twist ti is thus the sum of twist ti−1 and the
twist generated at the i th joint, both evaluated at the corresponding mass centers.

3 The cross product matrix (CPM) û of any three-dimensional vector u is defined, for any vector v
of the same dimension, as û = CPM(u) = [∂(u × v)/∂v].
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Equation (20) is recursive in nature and is, in fact, the forward recursion part of
the recursive Newton-Euler algorithm proposed by [27] for the efficient inverse-
dynamics computation of serial chains.

4. Modeling of a 3 RRR Planar Parallel Manipulator – A Case Study

Figure 2 shows a manipulator that belongs to the class of planar parallel manipu-
lators with three degrees of freedom [31]. For the sake of simplicity (but without
any loss of generality) we restrict ourselves to one that has: i) only revolute joints,
i i) identical legs and i i i) a moving platform in the shape of an equilateral triangle.
The three degree-of-freedom (DOF) planar manipulator consists of three identical
dyads, numbered I , II and III coupling the platform P with the base such that
their fixed pivots lie on the vertices of an equilateral triangle. The proximal and the
distal links of each dyad are numbered 1 and 2 respectively. Joint 1 of each dyad
is actuated. The centroidal moment of inertia of each link about the axis normal to
the xy-plane is the scalar Ii , for i = 1, 2. The platform is assumed to have a mass
m P (lumped at the mass-center located at the centroid of the moving equilateral
triangle P) and a centroidal moment of inertia IP . We divide the rigid platform P
into three parts, corresponding to the three serial chains, I , II and III, such that the
end effector of each open chain lies at point P , the mass-center of the platform P .
Cutting the platform in this manner is advantageous because:

– Torques may be applied to the joints that otherwise should be cut to open the
chains;

Figure 2. 3-DOF planar parallel manipulator.



MODULAR AND RECURSIVE KINEMATICS AND DYNAMICS 431

– Joint friction may be accommodated directly for such joints;
– Cutting the links (platform) produces a more streamlined recursive modelling

algorithm for parallel manipulators;

While we will discuss some of these issues in detail, the interested reader is also
referred to a similar discussion of benefits presented in [51]. In what follows, we
will first consider the development of a recursive forward kinematics formulation
that will serve as the underlying basis for a recursive dynamic formulation.

4.1. RECURSIVE FORWARD KINEMATICS

The forward kinematics problem for a parallel manipulator consists of determining
the position, twists and twist-rates of the platform and all the other links given
only the actuated-joint angles, velocities and accelerations. Implicit in the final
solution, is the intermediate determination of the unactuated (passive) joint angles,
velocities and accelerations which are related to the actuated-joint angles through
the loop-closure constraints. For more details, see [24].

4.1.1. Position Analysis

The displacement analysis is a critical first step that lies beyond the scope of this
paper; we adopt the approach proposed by [28] to this end.

4.1.2. Velocity Analysis

Since the manipulator is planar, we use two-dimensional position vectors, three-
dimensional twist vectors t = [ω, v]T , and three-dimensional wrench vectors w =
[n, f]T , where ω is the scalar angular velocity, v is the two-dimensional velocity
vector, n is the scalar moment and f is the two-dimensional force vector. For each
chain, we define position vectors di from the i th joint axis to the mass center of
link i , ri from mass center of link i to the (i + 1) joint axis and ai = di + ri

as shown in Figure 2. The twist of the end effector of each chain is given by
[40] as

tP = BP3t3 (24)

where

BP3 =
[

1 0T

Er3 1

]
; E =

[
0 −1

1 0

]
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For each serial chain, the twist of the i th link, ti can then be computed recursively
from the twist of the (i − 1)th link and the i th twist generator as

ti = Bi,i−1ti−1 + pi θ̇i
(25)

Bi,i−1 =
[

1 0T

E(ri−1 + di ) 1

]
pi =

[
1

Edi

]

where the 3 × 3 matrix Bi,i−1 is the twist-propagation matrix; ti−1 is the twist of
link (i − 1) with respect to its mass center; pi is the twist generator; and θ̇i is the
relative angular joint velocity of the i th joint, while 0 is the two-dimensional zero
vector and 1 is the 2×2 identity matrix. An expression for t3 can be obtained based
on the above equations and may be substituted into Equation (24), to yield

tP = BP3(B32t2 + p3θ̇3) (26)

Noting that the third joint is a passive joint, its contribution to the end effector
twist may be eliminated by premultiplying the entire expression by Φ3, the twist
annihilator of p̃3 = BP3p3 (defined as shown in Appendix B) as

Φ3tP = Φ3BP2t2 (27)

Similarly, by substituting the twist of link-2, t2, into Equation (27), we obtain

Φ3tP = Φ3BP2(B21t1 + p2θ̇2) (28)

The contribution of this second unactuated joint can similarly be eliminated from
the final twist by premultiplying Equation (28) by Φ̄2, the twist annihilator of
p̃2 = Φ3BP2p2, to obtain

Φ2tP = Φ̄2Φ3tP = Φ̄2Φ3BP2B21t1 (29)

where the 3×3 matrix

Φ2 = Φ̄2Φ3 = Φ3 − p̃2p̃T
2 /δ2

Noting the similarity between Equations (27) and (29), the kinematics relationships
may be written in recursive form (despite the presence of passive joints) as

Φi tP = Φi BP,i−1ti−1 (30)

where Φi is evaluated recursively as

p̃i = Φi+1BP,i pi δi = p̃T
i p̃i

Φi = [
1 − p̃i p̃T

i

/
δi

]
Φi+1 = Φ̄iΦi+1 = Φi+1 − p̃i p̃T

i

/
δi
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where the properties BP,i Bi+1,i = BPi and ΦT
i Φi = Φi have been used. Finally,

since joint 1 is actuated, substituting t1 = p1θ̇1 into Equation (29), we can express
the twist of the platform P in terms of θ̇1 as

Φ2tP = Φ2BP1p1θ̇1 (31)

This equation illustrates a well known feature for parallel chains, i.e., in contrast
to serial manipulators, parallel manipulators have two Jacobian matrices. Note that
Φ2 is a projection matrix and is thus singular. Hence, writing Equation (31) for
each open chain we obtain

KtP = ΦBPθ̇A where

K = [
ΦI

2 + ΦI I
2 + ΦI I I

2

]
: 3 × 3

Φ = [
ΦI

2 ΦI I
2 ΦI I I

2

]
: 3 × 9

B = diag
(
BI

P1, BI I
P1, BI I I

P1

)
: 9 × 9

P = diag
(
pI

1, pI I
1 , pI I I

1

)
: 9 × 3

θ̇A = [
θ̇ I

1 θ̇ I I
1 θ̇ I I I

1

]T

where all dimensions have been stated for clarity. Finally when K is nonsingular,4

we may solve for the end effector twist in terms of the actuated joint rates as

tP = K−1ΦBPθ̇A (32)

The unactuated joint rates may now be computed by back-substituting tP to yield

θ̇2 = p̃T
2

δ2
(K−1ΦBPθ̇A − BP1p1θ̇1) (33)

θ̇3 = p̃T
3

δ3
ΨT

2 (K−1ΦBPθ̇A − BP1p1θ̇1) (34)

where the 3×3 matrix Ψ2 is defined as Ψ2 = (1 − BP2p2p̃T
2 /δ2)T and 1 is the 3×3

identity matrix. We note that Equations (33) and (34) are general and applicable to
each open chain and that the bracketed term on the right hand side of each equation
is the same. Thus the final relationship between the joint rates and actuated joint
rates is expressed in vector form as

θ̇ =




P̄I O O

O P̄I I O

O O P̄I I I







LI

LI I

LI I I


 BPθ̇A (35)

4 See [19] for a more detailed discussion on singularities of parallel manipulators.
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where the 3 × 9 matrix P̄i is defined as P̄i = [diag(p̃T
1 /δ1, p̃T

2 /δ2, p̃T
3 ΨT

2 /δ3)]i ,
while p̃i

1 as explicitly p̃i
1 = (BP1p1)i for i = I, I I and I I I , and the 9×9 matrices

Li are defined for each open chain as

LI =




1 O O

[K−1Φ2 − 1]I [K−1Φ2]I I [K−1Φ2]I I I

[K−1Φ2 − 1]I [K−1Φ2]I I [K−1Φ2]I I I




LI I =




O 1 O

[K−1Φ2]I [K−1Φ2 − 1]I I [K−1Φ2]I I I

[K−1Φ2]I [K−1Φ2 − 1]I I [K−1Φ2]I I I




LI I I =




O O 1

[K−1Φ2]I [K−1Φ2]I I [K−1Φ2 − 1]I I I

[K−1Φ2]I [K−1Φ2]I I [K−1Φ2 − 1]I I I




where O and 1 are 3 × 3 zero and identity matrices. Equation (35) can be written
in compact form as

θ̇ = P̄LBPθ̇A (36)

where the 9 × 27 matrix P̄ is defined as P̄ = diag(P̄I , P̄I I , P̄I I I ) and the 27×9
matrix L is defined as L = [

(LI )T (LI I )T (LI I I )T
]T

. Note that, except for L,
which is full but still retains a special form, all other matrices are block-diagonal.

4.1.3. Acceleration Analysis

The acceleration terms, for any chain, are obtained by differentiating Equation (26)
as

ṫP = ḂP3t3 + BP3(Ḃ32t2 + B32ṫ2 + ṗ3θ̇3) + BP3p3θ̈3 (37)

Adopting a process similar to the one discussed for the velocity analysis, we may
eliminate the passive joint acceleration contributions as

Φ3ṫP = Φ3[ḂP3t3 + BP3(Ḃ32t2 + B32ṫ2 + ṗ3θ̇3)] (38)

Substituting t3 and θ̇3 into Equation (38) and re-arranging,

Φ3ṫP = Φ3BP2ṫ2 + Φ3ḂP2t2 −
[
Φ3(ḂP3p3 + BP3ṗ3)

p̃T
3

δ3

]
BP2t2

+
[
Φ3(ḂP3p3 + BP3ṗ3)

p̃T
3

δ3

]
tP (39)
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where the property (ḂP3B32 + BP3Ḃ32) = ḂP2 has been used. An expression for
Φ̇i can be computed as:

Φ̇i = Φi (ḂP,i pi + BP,i ṗi )
p̃T

i

δi
= −Φi

˙̃pi p̃
T
i

δi
(40)

Similarly, noting the general form for ti we may derive

ṫi = Ḃi,i−1ti−1 + Bi,i−1ṫi−1 + pi θ̈i + ṗi θ̇i (41)

Substituting expressions for Φ̇3, t2 and ṫ2 into Equation (39) we obtain

(Φ̇3tP + Φ3ṫP ) = Φ3BP2p2θ̈2 + [Φ3BP2(Ḃ21t1 + B21ṫ1 + ṗ2θ̇2)

+Φ3ḂP2t2 + Φ̇3BP2t2] (42)

The passive joint acceleration contributions from the second axis can be eliminated
by premultiplying the Equation (42) with Φ̄2, the twist annihilator of p̃2 = Φ3BP2p2

as

Φ̄2(Φ̇3tP + Φ3ṫp) = Φ̄2[Φ3BP2(Ḃ21t1 + B21ṫ1 + ṗ2θ̇2)

+Φ3ḂP2t2 + Φ̇3BP2t2] (43)

Noting that Φ̄2Φ3 = Φ2 and rearranging Equation (43) leads to:

θ̈2 = p̃T
2

δ2
[Φ3(ṫP − a1) − a2] (44)

Φ2ṫP = Φ2a1 + Φ̄2a2 (45)

where a1 = BP2(Ḃ21t1 + B21ṫ1 + ṗ2θ̇2) + ḂP2t2 and a2 = Φ̇3(BP2t2 − tP ). Finally
adding Equation (45) for each open chain and solving for ṫP ,

ṫP = K−1([Φ2a1 + Φ̄2a2]I + [Φ2a1 + Φ̄2a2]I I + [Φ2a1 + Φ̄2a2]I I I ) (46)

4.1.4. Summary of Forward Kinematics

The overall process of computing the forward kinematics can be summarized
as:
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1. With the data, calculate B21, B32, B31, BP3 ,BP2, BP1, p1, p2 and p3. For each
chain,

p̃3 = BP3p3

δ3 = p̃T
3 p̃3

Φ3 =
[

1 − p̃3p̃T
3

δ3

]

p̃2 = Φ3 BP2p2

δ2 = p̃T
2 p̃2

Φ̄2 =
[

1 − p̃2p̃T
2

δ2

]

Φ2 = Φ̄2Φ3

2. Form matrices K, Φ, B and P with values received from each chain and calculate
the platform twist tP from:

KtP = ΦBPθ̇A

3. Obtain the twists and joint rates recursively for each chain, using tP calculated
by the central processor

t1 = p1θ̇1

θ̇2 = p̃T
2

δ2
(tP − BP1t1)

t2 = B21t1 + p2θ̇2

θ̇3 = p̃T
3

δ3
(tP − BP2t2)

t3 = B32t2 + p3θ̇3

Now calculate the twist rates and joint accelerations. First, calculate Ḃ21, Ḃ32,
Ḃ31, ḂP3 ,ḂP2, ḂP1, ṗ1, ṗ2 and ṗ3 using the joint rates calculated above

ṫ1 = p1θ̈1 + ṗ1θ̇1

a1 = BP2(Ḃ21t1 + B21ṫ1 + ṗ2θ̇2) + ḂP2t2

Φ̇3 = −Φ3(ḂP3p3 + BP3ṗ3)
p̃T

3

δ3

a2 = Φ̇3(BP2t2 − tP )

Φ̄2 = 1 − p̃2p̃T
2

δ2
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4. Using Φ2, Φ̄2, a1 and a2 from each chain, calculate ṫP from:

KṫP = [Φ2a1 + Φ̄2a2]I + [Φ2a1 + Φ̄2a2]I I + [Φ2a1 + Φ̄2a2]I I I

5. Calculate the joint accelerations and twist rates for each chain:

θ̈2 = p̃T
2

δ2
[Φ3(ṫP − a1) − a2]

ṫ2 = Ḃ21t1 + B21ṫ1 + ṗ2θ̇2 + p2θ̈2

θ̈3 = p̃T
3

δ3
[ṫP − ḂP3t3 − BP3(Ḃ32t2 + B32ṫ2 + ṗ3θ̇3)]

ṫ3 = B32ṫ2 + Ḃ32t2 + p3θ̇3 + ṗ3θ̈3

4.2. INVERSE DYNAMICS

The inverse-dynamics problem is defined as: Given the time-histories of all the
system degrees-of-freedom, compute the time-histories of the controlling actuated
joint torques and forces. As in the case of the kinematics calculations, we again
cut the platform into three parts and assign cut sections of platform P to each
open chain. Each cut section thus becomes the “third link” of the corresponding
chain. Further, we divide the mass of the platform (including any tool carried by
the platform) and assign its corresponding moment of inertia, with respect to the
mass center of the platform, to the “third link” of each chain. The Newton-Euler
equations for each open chain are thus,

Mṫ + Ṁt = wA + wW + wg︸ ︷︷ ︸
wG

+wC (47)

where M is the 9 × 9 mass matrix, t is the 9-dimensional twist vector of the whole
chain, wA is the wrench applied by the actuators, wW is the working wrench applied
at the platform, wg is the gravity wrench and wC are the constraint wrenches, all
these being 9-dimensional vectors. The friction forces have been neglected for the
sake of simplicity, but, these can be readily incorporated into the model by means
of a Rayleigh dissipation function [2]. In particular, the twist vector t may now be
written as [38]

t = NlNd θ̇ (48)

where NlNd is the decoupled orthogonal complement and θ̇ is the joint-rate vector of
the chain. These matrices Nl and Nd can also be identified with the spatial operators
of Rodriguez and Kreutz-Delgado [35] and are “anti-causal” and “memory-less”
respectively. For our manipulator, and for each open chain, Equation (48) becomes,
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in block form,




t1

t2

t3




︸ ︷︷ ︸
t

=




1 O O

B21 1 O

B31 B32 1




︸ ︷︷ ︸
Nl




p1 0 0

0 p2 0

0 0 p3




︸ ︷︷ ︸
Nd




θ̇1

θ̇2

θ̇3




︸ ︷︷ ︸
θ̇

(49)

where all terms have been previously defined. Now, the constraint wrenches wC do
not develop any power, and hence, tT wC is 0; by virtue of Equation (48), wC lies
in the nullspace of NT

d NT
l . To eliminate joint constraint wrenches, we pre-multiply

both sides of Equation (47) by NT
d NT

l , and noting that, for planar manipulators
Ṁ = O [2],

NT
d NT

l Mṫ = τ̃ + NT
d NT

l wG (50)

Time differentiating Equation (48) and substituting the expression for ṫ in Equation
(50),

NT
d NT

l [MNlNd θ̈ + (MṄlNd + MNlṄd)θ̇] = τ̃ + NT
d NT

l wG (51)

where τ̃ = NT
d NT

l wA is the joint torque vector for the chain and is given by
τ̃ = [

τ̃1 τ̃2 τ̃3
]T

for each open chain. We can write the above equation in compact
form as

Iθ̈ + Cθ̇ = τ̃ + τG (52)

where I = NT
d NT

l MNlNd and C = NT
d NT

l (MṄlNd +MNlṄd), I being the general-
ized joint-space inertia matrix of the chain and C the joint-space matrix of coriolis
and centrifugal forces.

4.2.1. Projecting Joint Torques onto Minimal-Coordinate Space

As a second step, we write the dynamics equation for each open chain and couple
them with Lagrange multipliers, thereby obtaining the dynamics equation of the
whole manipulator as




[Iθ̈ + Cθ̇]I

[Iθ̈ + Cθ̇]I I

[Iθ̈ + Cθ̇]I I I


 =




τ I

τ I I

τ I I I


 +




τ I
G

τ I I
G

τ I I I
G


 − ATλ (53)

where A is the loop-closure constraint Jacobian of the constraints in differential
form Aθ̇ = 0. Now, by defining θ̇ = Jθ̇A and substituting in the above equation
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we obtain

AJθ̇A = 0 (54)

Since values for θ̇A can be assigned arbitrarily, to satisfy Equation (54), J must lie
in the null space of A and may be called the loop-closure orthogonal complement.
Pre-multiplying both sides of Equation (53) by JT we obtain

JT




[Iθ̈ + Cθ̇ − τG]I

[Iθ̈ + Cθ̇ − τG]I I

[Iθ̈ + Cθ̇ − τG]I I I


 = JT




τ̃ I

τ̃ I I

τ̃ I I I


 = τ A (55)

where τ A is the vector of actuator torques. Notice that the bracketed terms are
nothing more than τ̃ j , which can be found for each open chain, for j = I, I I and
I I I , recursively [38]. The J noted in Equation (36) i.e. J = P̄LBP can be re-written
in a slightly different and expanded form as

J =




P̄I O O

O P̄I I O

O O P̄I I I




︸ ︷︷ ︸
P̄




1 O O

(SI − 1) SI I SI I I

(SI − 1) SI I SI I I

O 1 O

SI (SI I − 1) SI I I

SI (SI I − 1) SI I I

O O 1

SI SI I (SI I I − 1)

SI SI I (SI I I − 1)




︸ ︷︷ ︸
LB




p̃I
1 0 0

0 p̃I I
1 0

0 0 p̃I I I
1




︸ ︷︷ ︸
P

where S j = K−1Φ j
2 for j = I, I I and I I I . Substituting J into Equation (55) and

rearranging we obtain the actuated torques as

τ I
1 = (

p̃I
1

)T [
(SI )T

(
p̌I

2 + p̌I
3 + p̌I I

2 + p̌I I
3 + p̌I I I

2 + p̌I I I
3

)
+ p̌I

1 − p̌I
2 − p̌I

3

]
τ I I

1 = (
p̃I I

1

)T [
(SI I )T (p̌I

2 + p̌I
3 + p̌I I

2 + p̌I I
3 + p̌I I I

2 + p̌I I I
3

)
+ p̌I I

1 − p̌I I
2 − p̌I I

3

]
τ I I I

1 = (
p̃I I I

1

)T [
(SI I I )T (p̌I

2 + p̌I
3 + p̌I I

2 + p̌I I
3 + p̌I I I

2 + p̌I I I
3

)
+ p̌I I I

1 − p̌I I I
2 − p̌I I I

3

]
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where p̌ j
k = [τ̃kΨk−1p̃k/δk] j for k = 1, 2 and 3 and j = I, I I and I I I , where Ψ0

and Ψ1 are identical with the three-dimensional identity matrix. But p̃T
1 p̌1 = τ̃1,

and hence, the above equation set is written finally as

τA =




τ̃ I
1 + (

p̃I
1

)T
[(SI )T (p̄I + p̄I I + p̄I I I ) − p̄I ]

τ̃ I I
1 + (

p̃I I
1

)T
[(SI I )T (p̄I + p̄I I + p̄I I I ) − p̄I I ]

τ̃ I I I
1 + (

p̃I I I
1

)T
[(SI I I )T (p̄I + p̄I I + p̄I I I ) − p̄I I I ]


 (56)

where p̄ = p̌2 + p̌3 for corresponding chains.

4.2.2. Summary of Inverse Dynamics

To summarize the process of computation of the inverse dynamics,

1. From Equation (50),

τ̃ = NT
d NT

l (Mṫ + wG)

which can be calculated recursively for each chain as follows

γ3 = (
M3ṫ3 + wG

3

)
γ2 = (

M2ṫ2 + wG
2

) + BT
32γ3

γ1 = (
M1ṫ1 + wG

1

) + BT
21γ2

τ̃3 = pT
3 γ3

τ̃2 = pT
2 γ2

τ̃1 = pT
1 γ1

Now we calculate p̄ for each open chain

p̄ = τ̃2
p̃2

δ2
+ τ̃3

Ψ2p̃3

δ3

2. Add all p̄ from each open chain
3. Calculate the actuated joint torques

Chain I :

τ I
1 = τ̃ I

1 + (
p̃I

1

)T
[(SI )T (p̄I + p̄I I + p̄I I I ) − p̄I ]
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Chain I I :

τ I I
1 = τ̃ I I

1 + (
p̃I I

1

)T
[(SI I )T (p̄I + p̄I I + p̄I I I ) − p̄I I ]

Chain I I I :

τ I I I
1 = τ̃ I I I

1 + (
p̃I I I

1

)T
[(SI I I )T (p̄I + p̄I I + p̄I I I ) − p̄I I I ]

4.3. FORWARD DYNAMICS

Now we obtain expressions for the forward dynamics of the manipulator. Re-writing
Equation (55) in a slightly different form, we obtain

JT







II O O

O II I O

O O II I I




︸ ︷︷ ︸
Ī




θ̈
I

θ̈
I I

θ̈
I I I


 +




CI O O

O CI I O

O O C I I I




︸ ︷︷ ︸
C̄




θ̇
I

θ̇
I I

θ̇
I I I


 −




τ I
G

τ I I
G

τ I I I
G




︸ ︷︷ ︸
τ̄ G




= τ A

JT (Īθ̈ + C̄θ̇ − τ̄G) = τ A

Moreover, θ̇ = Jθ̇A, and hence θ̈ = Jθ̈A + J̇θ̇A. Substituting these expressions
into the above equation, we obtain

(JT ĪJ)θ̈A = −JT (ĪJ̇θ̇A + C̄Jθ̇A − τ̄G) + τ A (57)

which is the minimal-order dynamics equation sought. The left-hand side matrix
coefficient is the generalized inertia matrix of the manipulator. The right-hand
side of the equation may be gathered in a single vector τ̄ and may be computed
recursively by using the above inverse dynamics algorithm for θ̈A = 0, as originally
suggested by [49]. Each diagonal block of Ī is the generalized inertia matrix of
each serial chain and may be computed recursively, as suggested by [38], using the
DeNOC matrices. The loop-closure orthogonal complement J = P̄LBP is, in turn,

J =




P̄I O O

O P̄I I O

O O P̄I I I







LI

LI I

LI I I




︸ ︷︷ ︸
T

BP︸︷︷︸
B̄
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or

J =




TI

TI I

TI I I


 B̄

Substituting J into Equation (57), we obtain

B̄T
[
(TI )T (TI I )T (TI I I )T

]



II O O

O II I O

O O II I I







TI

TI I

TI I I


 B̄θ̈A = τ̄

or

B̄T

(
I I I∑
i=I

[TT IT]i

)
B̄θ̈A = τ̄ (58)

The terms in parentheses are the contributions from the separate chains and can be
distributed. The 9 × 9 matrix [TT IT] j , for j = I, I I and I I I , is written in block
form as

[TT IT] j =




L11 sym

L21 L22

L31 L32 L33




j

(59)

where each L(k,l) is a 3 × 3 block as given below, for each chain

Chain I

LI
11 = II

1,1aI
1

(
aI

1

)T + aI
1

(
ǎI

1

)T
AI + (AI )T ǎI

1

(
aI

1

)T + (AI )T ĀI AI

LI
21 = (SI I )T

[
ǎI

1

(
aI

1

)T + ĀI AI
]

LI
22 = (SI I )T ĀI SI I

LI
31 = (SI I I )T

[
ǎI

1

(
aI

1

)T + ĀI AI
]

LI
32 = (SI I I )T ĀI SI I

LI
33 = (SI I I )T ĀI SI I I

Chain I I

LI I
11 = (SI )T ĀI I SI

LI I
21 = [

aI I
1

(
ǎI I

1

)T + (
AI I

)T
ĀI I

]
SI

LI I
22 = II I

1,1aI I
1

(
aI I

1

)T + aI I
1

(
ǎI I

1

)T
AI I + (AI I )T ǎI I

1

(
aI I

1

)T

+ (AI I )T ĀI I AI I
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LI I
31 = (SI I I )T ĀI I SI

LI I
32 = (SI I I )T

[
ǎI I

1

(
aI I

1

)T + ĀI I AI I
]

LI I
33 = (SI I I )T ĀI I SI I I

Chain I I I

LI I I
11 = (SI )T ĀI I I SI

LI I I
21 = (SI I )T ĀI I I SI

LI I I
22 = (SI I )T ĀI I I SI I

LI I I
31 = [

aI I I
1

(
ǎI I I

1

)T + (AI I I )T ĀI I I
]
SI

LI I I
32 = [

aI I I
1

(
ǎI I I

1

)T + (AI I I )T ĀI I I
]
SI I

LI I I
33 = II I I

1,1 aI I I
1

(
aI I I

1

)T + aI I I
1 (ǎI I I

1 )T AI I I + (AI I I )T ǎI I I
1

(
aI I I

1

)T

+ (AI I I )T ĀI I I AI I I

where a j
k = [Ψ(k−1)p̃k/δk] j , ǎk

j = [I(2,k)aT
2 + I(3,k)aT

3 ] j , Ā j = [a2ǎ2
T + a3ǎ3

T ] j

and A j = (S j − 1) for k = 1, 2 and 3 and j = I, I I and I I I . Further, matrix B̄ is
block-diagonal, namely,

B̄ = diag
(
BI

P1pI
1, BI I

P1pI I
1 , BI I I

P1 pI I I
1

)
diag(b̄I , b̄I I , b̄I I I ) (60)

Substituting B̄ into Equation (58) we obtain




(b̄I )T L11b̄I sym

(b̄I I )T L21b̄I (b̄I I )T L22b̄I I

(b̄I I I )T L31b̄I (b̄I I I )T L32b̄I I (b̄I I I )T L33b̄I I I


 θ̈A =




τ̄1

τ̄2

τ̄3


 = τ̄ (61)

where L(k,l) = LI
(k,l) + LI I

(k,l) + LI I I
(k,l). Now we solve the above system for θ̈A using

the reverse Gaussian elimination technique, as suggested by [38] and [40], to obtain

θ̈ I
1 =

ˆ̂τ 1

α1
(62)

θ̈ I I
1 = τ̂2 − (bI I )T L̂21bI θ̈T

1

α2
(63)

θ̈ I I I
1 = τ̄3 − [(bI I I )T L31bI θ̈ I

1 + (bI I I )T L32bI I θ̈ I I
1 ]

α3
(64)
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where

α3 = (bI I I )T L33bI I I

L̂11 = L11 − LT
31bI I I

α3
(bI I I )T L31

L̂21 = L21 − LT
32bI I I

α3
(bI I I )T L31

L̂22 = L22 − LT
32bI I I

α3
(bI I I )T L32

τ̂1 = τ̄1 − (bI )T LT
31bI I I

α3
τ̄3

τ̂2 = τ̄2 − (bI I )T LT
32bI I I

α3
τ̄3

α2 = (bI I )T L̂22bI I

ˆ̂τ 1 = τ̂1 − (bI )T L̂T
21bI I

α2
τ̂2

α1 = (bI )T L̂11bI − (bI )T L̂T
21bI I

α2
(bI I )T

thereby completing the analysis.

4.3.1. Summary of Forward Dynamics

The steps required for the distribution of the forward dynamics computations are
summarized below

1. Conduct a displacement analysis and obtain all joint angles for the actuated joint
angles θA available.

2. Perform the inverse dynamics for θ̈A = 0 of the platform, as discussed above,
to obtain τ̄ for each open chain.

3. Calculate L j = [TT IT] j for j = I, I I and I I I .
4. Calculate the actuated joint accelerations θ̈A.
5. Integrate the actuated joint accelerations, to obtain the actuated joint rates and

velocities.

However, conducting a displacement analysis at each iteration is not advisable. The
alternative, as mentioned previously, is to integrate all joint rates, which is done as
described below

1. Conduct a velocity analysis and obtain the unactuated joint rates for the actuated
joint rates θ̇A available.
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2. Perform the inverse dynamics for θ̈A = 0 of the platform, as discussed above to
obtain τ̄ for each open chain.

3. Calculate L j = [TT IT] j , for j = I, I I and I I I .
4. Calculate the actuated joint accelerations θ̈A.
5. Integrate the actuated joint accelerations and all joint rates in corresponding

chain nodes, to obtain the actuated joint rates and all joint angles.

5. A Numerical Example

5.1. PARAMETERS AND INITIAL CONDITIONS

We use the same parameters for the 3 RRR planar parallel manipulator shown in
Figure 3 as in [28]. The end effector, labeled 7, has the shape of an equilateral
triangle, with sides of length l7, links 1,2 and 3 have a length l1, links 4, 5 and 6
have length l4, and the three fixed revolute joints form an equilateral triangle with
sides of length l0. The prescribed motion drivers given by [28] are

θ1(t) = 1

3
π + 1

6

(
2π t

T
− sin

2π t

T

)

θ2(t) = 4

3
π − 1

6

(
2π t

T
− sin

2π t

T

)

θ3(t) = 11

6
π + 1

12

(
2π t

T
− sin

2π t

T

)

where T = 3 s. However, since the initial values of the foregoing joint angles are
not sufficient to define a unique initial posture of the manipulator, we use the initial

Figure 3. The three-dof planar parallel manipulator used in the example in its initial posture.
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Figure 4. End effector trajectory: (a) Orientation; (b) x-position; and (c) y-position.

configuration given by [17]:

θ1(0) = 1

3
π θ4(0) = −0.865 rad x7(0) = 0.728 m

θ2(0) = 4

3
π θ5(0) = −2.102 rad y7(0) = 0.233 m

θ3(0) = 11

6
π θ6(0) = −0.976 rad θ7(0) = 3.916 rad

The end effector trajectory for the prescribed motion drivers and the chosen initial
configuration was first computed using the method outlined in [28]. Figure 4 shows
the resulting end effector trajectory. The parameters of the manipulator are given
in Table I, with gravity in the −Y direction.

Table I. Dimensions and inertia properties of the example manipulator

Link i Li (m) mi (kg) Ii (kg m2)

1, 2, 3 0.4 3.0 0.04

4, 5, 6 0.6 4.0 0.12

7 0.4 8.0 0.0817
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Figure 5. Desired trajectory and required driving torques.

5.2. RESULTS

We first perform the inverse dynamics in order to compute a time history of actuation
forces that would realize the prescribed motions. Using the above parameters,
the resulting torques for the actuated joints 1, 2 and 3 were evaluated using the
inverse dynamics model discussed in this paper. The resulting set of torques which
realize the prescribed motions is shown in Figure 5, which tally with those given by
[28].

The motion of the manipulator, using these driving torques, was simulated and
the results are reported below. Briefly, we note that MATLABTM ODE suite offers
two groups of integration schemes: (a) fixed time-stepping schemes, where the
user can specify the size of the time step; and (b) adaptive time-stepping, where an
estimate of the integration error is made, and the time step is adapted to keep this
error below a specific tolerance level. In the latter case, the error in each state is
estimated to ensure the e(i) ≤ max(RelTol∗ abs(x(i)), AbsTol(i)) condition for the
i th component of the state vector x, where e is the error vector. The two quantities
under user-control here, in addition to the actual selection of the algorithm, are
the value for the relative tolerance (RelTol) and the absolute tolerance (AbsTol).
Below, we report on the results from the forward dynamics simulations with both
fixed time-stepping and adaptive time stepping algorithms.
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Adaptive-Time-Stepping Case

In this case, the relative tolerance was pre-specified and an adaptive time-stepping
scheme was used for the simulation. The two primary metrics of performance
evaluation for this case were: (a) extent of the constraint error and (b) number
of iterations. Four different relative tolerances, varying in orders of magnitude
from 10−3 to 10−6, were examined in this case. The ode45 (Dormand-Prince) in-
tegration scheme from MATLABTM’s ODE suite was used for the for adaptive
time-stepping simulation. Testing the models with adaptive time-stepping methods
can give insight into the overall characteristics of a formulation, including: (a) for-
mulation stiffness and computational complexity of implementation, as measured
by the number of iterations or the total time taken to simulate a fixed simulation
time.

Fixed Time-Stepping Case

In this case, the principal parameter that can be selected by the user, in addition
to the actual algorithm from the ODE suite, is the step size of fixed time step.
This selection has critical implications in that an order of magnitude reduction
in step-size increases the number of iterations by the same order of magnitude.
The principal metric for evaluating the effectiveness of reducing the time step,
and thereby slowing the computation by increasing the number of iterations, will
be the actuated joint-angle errors between the prescribed and the simulated joint-
trajectories.

The results of the DeNOC model now follow: Figure 6 shows the resulting error
between desired and simulated motion trajectories for adaptive time stepping with
relative tolerances of 10−3 and 10−6, respectively. A relatively small number of

Figure 6. Joint-angle errors between desired and actual joint trajectories for the decoupled
natural orthogonal complement with adaptive time stepping for: (a) relative tolerance of 10−3;
and (b) relative tolerance of 10−6.
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Figure 7. Simulation results for the DeNOC with fixed time-step. Joint-angle errors between
desired and actual joint trajectories for time steps of: (a) 0.01 s; and (b) 0.001 s.

time-steps was required, namely, 301, when simulated with a relative tolerance of
10−3, and 319 when simulated with a tolerance of 10−6.

Figure 7a shows the errors between the desired trajectory and the trajectory ob-
tained from simulation, for a fixed time step of 0.01s. The ode5(Dormand-Prince)
integration scheme in MATLABTMwas used for the for fixed time stepping simu-
lation. Figure 7b shows the same for fixed time stepping of 0.001s. The deviation
is due to the corresponding zero eigenvalue instability, which is overcome using
feedback control.

In order to have a better picture of the accuracy of the model, we created a feed-
back compensation control scheme to force the simulated actuated joint trajectories
to match their prescribed counterparts. Figure 8a shows the error between the

Figure 8. Simulation results for the DeNOC with feedback control for a fixed time step of
0.001s: (a) joint angle errors between the desired and actual joint trajectories; and (b) driving-
torque correction time history.
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desired trajectory and the trajectory obtained from simulation with feedback con-
trol. Figure 8b shows the percentage of torque correction required to obtain the
desired trajectory where we would like to highlight the extremely small correction
required. Based on the above results we can conclude that:

1. The number of iterations required for adaptive time stepping for relative toler-
ances of 10−3 and 10−6 is low.

2. The accuracy of this method, for our experiment, is quite high, of around
99%.

6. Conclusion

A dynamic modeling methodology for parallel multibody mechanical systems –
based on the Newton-Euler EOM and the decoupled natural orthogonal complement
(DeNOC) matrices associated with the loop-closure kinematic constraints – was
presented for parallel architecture manipulators.

The modeling methodology takes advantage of the spatial parallelism of the
supporting legs inherent in such parallel manipulators systems to develop a modu-
lar composition of the overall system dynamics in the extended configuration space
with non-minimal generalized coordinates. The resulting equations are projected
onto the space of feasible motions described in terms of a minimal, actuated set
of joint-configuration coordinates using the decoupled natural orthogonal comple-
ment matrices of the loop-closure kinematic constraints. Traditional approaches to
deriving closed-loop dynamics equations tend to sacrifice recursivity at this stage –
however, the recursive computation of DeNOC matrices facilitates a recursive for-
mulation of both inverse and forward dynamics algorithms in this paper. Further,
inverse and forward dynamics of both exactly actuated and redundant manipulators
can be easily incorporated within this framework.

These concepts were applied to an example of a 3 RRR planar parallel ma-
nipulator and the results showed good numerical behavior both in terms of the
accuracy of the results and perhaps more importantly the absence of formulation
stiffness.

Appendix A: Hybrid Twist Representation

Consider a body in motion with an instantaneous screw axis L. In any given refer-
ence frame Fi , the associated unit screw may be defined in terms of the axis unit
vector u, the position vector p of a point P on L and the pitch h as

$ =
[

u
(p × u) + hu

]
(65)
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For a revolute joint R the underlying unit screw $R has zero pitch, and may be
written as

$R =
[

u
p × u

]
(66)

Thus the spatial twist tS [21] of the body B associated with rotation about this unit
screw axis $R can be written as

tS = ω$R =
[
ωS

vS
O

]
=

[
ωS

−ωS × p

]
(67)

whereωS is the angular velocity ofB expressed in the inertial frameFi ; and vS
O is the

velocity of a (potentially imaginary) point on B that is instantaneously coincident
with origin O of Fi . Given the spatial twist tS , the velocity ċ of a given point C on
the body may be written as

ċ = vS
C = vS

O + ωS × c (68)

leading to

tS
C =

[
ωS

ċ

]
=

[
1 O

−[c×] 1

] [
ωS

vS
O

]

where tS
C is the “hybrid representation” [32] of the twist of bodyB in a newly selected

inertial frame FC
i whose origin is instantaneously coincident with the point C. In

this light it is also evident that the so-called “twist transfer formula”, introduced in
Equation (9), is nothing other than the adjoint transformation between two inertial
frames. In this paper, we will preferentially employ this hybrid representation of
the twist.

Figure 9. A body undergoing a twist motion about an axis.
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Appendix B: Twist Annihilators

Both twists and wrenches may be denoted in terms of a unit screw scaled by a
magnitude. Thus, while both admit representation as 6-tuples, neither is a member
of a bi-invariant metric vector space. Therefore the notion of orthogonality of two
twists (or correspondingly two wrenches) is not well-defined since it is not possible
to define an inner product. However, a reciprocity relationship may be defined by
considering twists to be members of a vector space and wrenches to be members
of the corresponding dual vector space. This reciprocity principle, also termed
“natural pairing” is no more than a restatement of the Principle of Virtual Work in
the mechanics context.

Thus, noting the existence of such a reciprocal wrench for any given twist, the
twist annihilator [1], may be defined as a 6×6 singular mapping of a twist into a six
dimensional zero vector. The annihilator Φ of a unit twist $R = [u, (p − c) × u]T

may be explicitly constructed geometrically as

Φ =
[

1 − uuT O
−r̂ 1

]
(69)

where r̂ is the cross product matrix of p − c such that Φ$R = 0. Twist annihilators
for other types of joints are presented in detail in [1].

As we shall see in the paper, this annihilator matrix plays a critical role in
eliminating the unactuated joint twists from the kinematics equations without de-
stroying the recursive nature of the relationships. It is noteworthy that this definition
is possible solely in geometric terms i.e. in terms of the underlying unit screw of
the twist.We also note that such a formal construction of Φ does not lead to any
dimensional inconsistencies.

However, we would also like to note a useful relation which will be exploited in
analysis in the paper. Given a recursive velocity expression relating twists between
two links of the form tB = tA + $Rθ̇ where tA and tB are n-dimensional twists, $R

is a unit twist and θ̇ is a scalar, we may obtain explicit expressions for Φ and θ̇ as

Φ =
[

1 − $R$T
R

δ

]
(70)

θ̇ = $T
R

δ
(tB − tA)

where δ = $R
T $R and 1 is the 6 × 6 identity matrix. These expressions offer

a convenient method to compute expressions for the annihilator eliminating the
need for decomposing the unit twist $R into its geometric components and then
constructing the annihilator as shown in Equation (69).
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