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Abstract
This study investigates the role of a breathing crack on a viscoelastic composite rotor-shaft
system supported at the ends by journal bearings. A finite element-based mathematical for-
mulation is developed to model the breathing crack. The geometry of the crack configuration
is used to derive a time-dependent stiffness matrix. This matrix is then incorporated into the
equation of motion for the composite shaft, derived with the Equivalent Modulus Theory
(EMT). The equation of motion is of higher order due to the inclusion of the material’s
internal damping behavior, modeled using an operator-based viscoelastic model. Upon val-
idating the mathematical model of the breathing crack, we analyzed its effects over one
complete shaft rotation. This analysis further compared the strain energy and orbit plots of
the cracked shaft with those of an intact shaft.

Keywords Breathing crack model · Material internal damping · Composite shaft ·
Time-varying stiffness

Nomenclature
h Depth of the crack
r Radius of the cross-section of the shaft
μ Crack depth ratio
O Origin
C Centroid
γ Angle subjected at the origin by the crack
A1 Constant Uncrack Area
Ac Maximum Crack Area
θ Angle by which the cross-section rotated
θ1 Angle at which the crack starts to close
θ2 Angle at which the crack is fully closed
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� Spin speed of the shaft
t Time
y, z Original stationary plane
ỹ, z̃ Original rotating plane
Y, Z Centroidal stationary plane
Ỹ, Z̃ Centroidal rotating plane
e Eccentricity (Vertical distance between y-axis and Y-axis)
yc Time-dependent y-coordinate of the centroid C
zc Time-dependent z-coordinate of the centroid C
A2 Time-dependent area of the closing crack (Triangle Part)
A3 Time-dependent area of the closing crack (Segment Part)
Aeff Effective uncrack area (A1 + A2(t)+A3(t))
I Area moment of inertia
β Angle subtended at the origin by segment A3

y1 y-coordinate of the centroid of time-dependent area A1

z1 z-coordinate of the centroid of time-dependent area A1

y2 y-coordinate of the centroid of time-dependent area A2

y3 y-coordinate of the centroid of time-dependent area A3

z2 z-coordinate of the centroid of time-dependent area A2

z3 z-coordinate of the centroid of time-dependent area A3

1 Introduction

A rotating machine consists of several parts, but the rotating module, i.e., the shaft or ro-
tor, is responsible for the key cause of vibration in the structure. Heavy loading of these
machines eventually leads to an asymmetrical defect or final failure, resulting in equipment
and loss of life. Out of several failures in rotating structures, vibration and fatigue cracks are
considered the major failure causes, propagating in due sequence of operation. Eventually,
to solve the vibration issue in rotating structures, the conventional materials used for mod-
eling the shaft system are replaced with materials with lesser density and higher strength,
like composites. Under conditions when unconventional materials are used to construct the
rotating module, proper modeling of the material damping properties is necessary, which
tends to generate a rotating damping force tangential to whirl orbit, destabilizing the rotor
shaft system (Dimentberg 1961).

Several researchers have published works depicting different modeling techniques and
experimental procedures for predicting the dynamic behavior of the shaft made of compos-
ite materials. Zinberg and Symonds (1970) performed experiments on the composite shaft
and compared the critical speed by modeling the shaft using the Equivalent Modulus Beam
Theory (EMBT). Bert (1993) analyzed a composite shaft incorporating the effects of bend-
ing and torsion coupling as well as gyroscopic moment modeled using the Euler–Bernoulli
beam theory. Kim and Bert (1993) developed the equation of motion for cylindrical hollow
composite shaft using the Sanders first-order approximation. Singh and Gupta (1994) used
First-Order Shear Deformation Theory (FSDT) to formulate the equation of motion and per-
form the eigenvalue analysis of a composite shaft. Singh and Gupta (1996) performed the
dynamic analysis of composite shaft employing Layered Beam Theory (LBT) and EMBT.
It was perceived that EMBT had limitations to symmetric stacking sequences. Gubran et al.
(2000) used modified EMBT and Rayleigh-Ritz displacement method for stress analysis of
fiber-reinforced thin composite shaft subjected to steady torque and unbalanced excitation.
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Kam and Liu (1998) applied a nondestructive evaluation approach to determine the dis-
tribution of bending stiffness along the span of a composite shaft. Kim et al. (1999) used
the general Galerkin method to study the effect of shaft tapering and the use of filament-
wound composite shaft for high-speed cutting tool operations. Chang et al. (2004) adopted
the Mori–Tanaka mean field theory to study the vibration behavior of the composite shaft
embedded with randomly oriented reinforcements. Gubran and Gupta (2005) used EMBT
to model a composite tubular shaft integrating the effect of shear deformation, rotary inertia,
and gyroscopic effect and performed a parametric study over different stacking sequences.
Alwan et al. (2010) performed experimental as well as numerical analysis over compos-
ite tube and solid shafts made of different materials such as carbon-epoxy, glass-epoxy, and
boron-epoxy to determine system eigen frequencies and damping characteristics. Yongsheng
et al. (2014) used the Galerkin method to solve the governing equation and carry out the dy-
namic analysis of a thin-walled, internally damped rotating composite shaft. Further, Irani
et al. (2016) applied the Differential Quadrature numerical Method (DQM) to derive the
governing equation of a composite Timoshenko rotor considering longitudinal-transverse
vibration. The authors studied the effects of spin speed, lamination angles, and boundary
conditions over the system’s natural frequencies and instability speed limits.

Viscoelastic composites are known for their superior damping characteristics, crucial in
mitigating vibrations and reducing noise in rotor-shaft systems. These properties enhance
the stability and longevity of rotor shafts, particularly in high-speed and high-performance
applications. Roy and Dutt (2016) applied a constitutive relationship based on an operator-
based approach to developing a higher-order Finite Element (FE) model of the viscoelastic
composite rotor using an ADF (Anelastic displacement field) approach after assuming the
viscoelastic nature of both fiber and matrix materials. Mendonça et al. (2017) studied the
effect of internal damping present in the composite shaft over the rotors mounted on it. The
authors simulated different composite shaft layup to present its influence on the rotor’s be-
havior. Most recently, Ben Arab et al. (2017, 2018) used Equivalent Single Layer Theory
(ESLT) to formulate the equation of motion and perform vibration analysis of an oper-
ating composite shaft considering the effects of stacking sequence, fiber alignments, and
normal-shear coupling and hysteretic damping. The authors recognized ESLT as a fairly ap-
propriate approach for the dynamic analysis of rotating composite shafts in symmetric and
nonsymmetric stacking arrangements. Following this, Ganguly and Roy (2021a) proposed
the Equivalent Modulus Technique (EMT) to include the effect of viscoelastic properties of
different composite layers while deriving the equation of motion of the rotating shaft and
performing its dynamic analysis.

Along with the modeling of evolving new materials for shafts such as composites, proper
modeling and execution of dynamic analysis of operating shafts detected with cracks due
to cyclic loading or manufacturing fault early to circumvent catastrophic failure is also im-
portant. The presence of a crack adversely affects the stiffness of a structure as complex as
rotating shafts and its mechanical behavior. Several researches show that it is important to
study the dynamics in such conditions so as to determine the operation limits of the structure.

Though literature provides an abundant study on modeling cracks of varying nature us-
ing different techniques and further incorporated in structures to investigate its effects, a
perfect modeling technique resembling the breathing behavior, i.e., closing and opening
of a crack, is approximated. Precisely, the breathing crack model on a rotating shaft is
entirely different, which, however, was estimated by a few researchers through different
unique techniques. Mayes and Davies (1984) formulated the time-dependent stiffness of
a cracked rotor, showing its breathing nature using classical breathing function, and per-
formed a dynamic analysis of the cracked rotor system. Jun et al. (1992) applied the con-
cepts of fracture mechanics to derive a simplified model for breathing crack by assuming
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the crack to behave as switching in nature and studied its effect on the vibration character-
istics of a simple rotor system. Green and Casey (2005) and Jun and Gadala (2008) studied
the breathing crack behavior on the crack responses and harmonic characteristics of a ro-
tating shaft using the Transfer Matrix Method. Papadopoulos (2008) approached modeling
switching and breathing cracks in a rotor shaft by applying the strain energy release rate
approach. Patel and Darpe (2008) performed a comparative study on the nonlinear dynam-
ics of a rotor, considering both switching and breathing crack models formulated using a
response-dependent flexibility matrix. Al-Shudeifat and Butcher (2011) modeled a breath-
ing crack and derived the time-dependent moment of inertia on the basis of geometry and
objective functions. Guo et al. (2013) worked on approximating and detecting the breath-
ing crack and its propagation in a Jeffcott rotor using the empirical mode decomposition
method. A methodical 3-D computational approach was presented by El Arem and Ben Zid
(2017) to identify the breathing crack nature based on the unilateral contact conditions on
the crack lips and further study the shaft dynamics. Varney and Green (2017) performed
a stability analysis on an overhung rotor to study the effect of a breathing crack modeled
using Floquet stability analysis. The authors concluded that with increasing crack depth, the
thick shaft rotating at a lower speed tends to reach unstable regions. Prawin et al. (2019)
performed a novel experiment using a single sensor based on the zero strain energy node
concept to locate the exact position of a breathing crack in space. Most recently, Ganguly
and Roy (2021b) presented an optimization-based novel mathematical model based on the
crack geometry to exactly replicate the breathing behavior of the crack on a composite rotor
system.

The current analysis emphasizes presenting a methodology to model the breathing na-
ture of a crack and investigate its effect on the journal-bearing mounted viscoelastic lami-
nated composite shaft. The breathing behavior of a crack over one complete shaft rotation is
generated based on closed-loop relations derived from the crack geometry. The geomet-
ric relations are used to derive the time-dependent uncracked area, centroidal positions,
and, finally, the area moment of inertia. On further formulating the time-dependent stiff-
ness and mass matrix, which also tends to imitate the opening and closing behaviors of
the crack, it is assembled in the respective global matrices of the FE model of the lami-
nated composite shaft. A comparative study of the intact shaft with that of the crack shaft
for one complete rotation is presented to show the impact of the breathing crack for dif-
ferent stacking sequences in terms of strain energy, mode shapes, time response, and orbit
plot.

2 Mathematical modeling

2.1 Geometric modeling of breathing crack

In general, the breathing behavior implies the opening and closing of the crack during
one complete rotation of the cracked cross-section. In rotating machinery, the breathing
mechanism of the crack mainly appears due to the shaft weight. Among all types of
cracks, breathing crack models closely resemble the practical situation (Liu and Barkey
2018).

Numerous methodologies are cited in the literature asserting diverse modeling methods
to efficiently replicate the genuine breathing nature of a crack in a circular cross-section of
a rotor system (Al-Shudeifat and Butcher 2011; Guo et al. 2013). However, this segment
describes a much easier and equally effective method to depict the closing and opening



Mechanics of Time-Dependent Materials

phenomenon of a breathing crack, specifically in a dynamic rotor system. The breathing
behavior, which depends on shaft rotation, is modeled using its geometry.

The following are the assumptions considered for modeling the breathing behavior of the
shaft and performing the analysis of the cracked viscoelastic composite shaft.

• Linear Viscoelastic Material: The shaft material is assumed to be linearly viscoelastic,
meaning that the stress-strain relationship follows the Hooke law, and the material de-
forms proportionally to the applied load. Linear viscoelastic models are used to represent
the viscoelastic behavior of the material.

• Small Deformations: Deformations are assumed to be small, allowing the use of linear
theories of elasticity and beam theory. This means that the changes in geometry due to
deformation are negligible.

• Symmetric Geometry: The shaft is assumed to be perfectly circular in cross-section and
symmetric about its longitudinal axis, except for the presence of the crack.

• Breathing Crack Behaviour: The crack is assumed to exhibit breathing behavior, mean-
ing it opens and closes periodically during rotation. The crack opens due to tensile stress
and closes under compressive stress. The modeling of such behavior is done using the
geometry that the cross-section follows throughout one full shaft rotation.

• Crack Location and Orientation: The location, size, and orientation of the crack are
precisely defined. The crack is typically assumed to be transverse (perpendicular to the
shaft axis) and located at a specific position along the length and circumference of the
shaft.

• Uniform Rotational Speed: The shaft rotates at a constant angular velocity, and the ef-
fects of acceleration and deceleration are neglected. This simplifies the dynamic analysis.

The labeled diagram at different instances of the cracked circular cross-section depict-
ing breathing behavior is represented in Fig. 1. The crack with the maximum crack depth
ratio μ = h

r
subtends an angle γ = 2 cos−1 (1 − μ) to the center. The crack divides the

cross-section into two areas, i.e., A1 the constant uncrack area and the maximum crack area
denoted by Ac . The expressions for these variables can be derived using basic geometrical
relations. For any instant of rotation of the cross-section with breathing crack varying be-
tween 0 ≤ θ ≤ 2π where θ = �t , point C denotes the time-dependent centroid coordinates
while the cracked area Ac becomes θ dependent.

The zoomed-in view of Fig. 1(c), which focuses on the instant of time, where the crack
is partially closed, is shown in Fig. 2. The labeling clearly indicates that the time-dependent
closed portion is further divided into two geometrically known areas denoted as A2(t) and
A3(t). However, the coordinates of the centroid C for the range of time while the crack is
fully open are given by,

y1 = −e sin θ; z1 = e cos θ (1)

For the range of θ where the crack starts to close (θ1) to the instant when the crack
fully closes (θ2), it is known that the geometrical parameters related to the total circular
cross-section, such as total uncracked area, centroid position and moment of inertia becomes
time-dependent. In this case, all the variables used to define the instantaneous area and
respective moment of inertia are a function of γ , r , and zC. Out of these α and r are the
known quantities, while zC is the instantaneous centroid coordinate, which remains unknown
throughout shaft rotation.
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Fig. 1 Breathing behavior of cracked circular cross-section a) θ = 0; b) θ = θ1; c) θ1 ≤ θ ≤ θ2; and d) θ = θ2

Fig. 2 Zoomed-in portion of
partially closed crack from
Figure 1c

Following Ganguly and Roy (2021b), the equations of the labels in Fig. 2 are expressed
in terms of zC.

yA = r sin
(
θ + γ

2

)
, zA = −r cos

(
θ + γ

2

)
(2a)
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yB = yA − (zA − zC) cot θ (2b)

yD = r cos
(

sin−1
(zC

r

))
(2c)

β = θ + γ

2
− π

2
− sin−1

(zC

r

)
(2d)

Similarly, the areas A2 and A3 and their respective centroid coordinates (y2, z2) and
(y3, z3) can also be derived using the above relations,

A2 = 1

2
(yD − yB) (zA − zC) (3a)

A3 = r2 (β − sinβ)

2
(3b)

y2 = yB + (yD − yB)

3
; z2 = zC + (zA − zC)

3
(3c)

y3 = e3 cos

((
β

2

)
+ sin−1

(zC

r

))
; z3 = e3 sin

((
β

2

)
+ sin−1

(zC

r

))
(3d)

where, e3 = 4r
(

sin
(

β
2

))3

3(β−sinβ)
is the centroid distance of area A3 from O .

Since the expressions for individual segments of the total uncracked area are now ob-
tained, a conventional formula based on geometrical decomposition can be used to deter-
mine the centroid distance of the total closed area (zC) in the following form,

zC = A1z1 + A2z2 + A3z3

A1 + A2 + A3
(4)

On substituting the equation for z1 (Eq. (1)) as well as all other variables from
Eq. (2a)–(2d) and Eq. (3a)–(3d), Eq. (4) is formed to be nonlinear in nature for zC and
dependent on θ . A nonlinear equation solver is used to solve for zC at any value of θ .

Once the value of zC is in hand, all the labels (Eq. (2a)–(2d) and Eq. (3a)–(3d)) are now
reassessed. Therefore, at any θ instant, the centroid coordinate yC can be regenerated using
the similar conventional equation.

yC = A1y1 + A2y2 + A3y3

Aeff

(5)

Further, to find the area moment of inertia of the entire closed region at any point of time
between θ1 and θ2, the area moment of inertia of each area, i.e., A1, A2, and A3 are found
out individually.

Further following Ganguly et al. (2021), the total area moment of inertia about the cen-
troid axis can be calculated as,

I
Aeff

Y (t) = I
Aeff
y (t) − Aeff z2

C (6a)

I
Aeff

Z (t) = I
Aeff
z (t) − Aeff y2

C (6b)

The above expression for moment of inertia is ultimately used in the FE-based bending
stiffness and circulatory stiffness matrix of the crack element of the shaft continuum, making
it a function of time.
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2.2 Viscoelastic crack composite shaft: FE model

This segment concisely represents the FE modeling of cracked composite shaft considering
material damping. The composite shaft encompasses concentric laminas of unidirectional
fiber reinforced into the matrix material. The structure being 1-dimensional in nature and
dominant longitudinal strain, the 1-D constitutive relationship is considered through plane
stress condition.

Applying EMT (Ganguly et al. 2021), the stiffness matrix [K] of the composite laminated
shaft considering Timoshenko beam theory is given by,

[K] =
∑n

i=1 Q11i
Ai∑n

i=1 Ai

I

(1 + φ)l3

⎡
⎢⎢⎣

12 6l −12 6l

6l (4 + φ)l2 −6l (2 − φ)l2

−12 −6l 12 −6l

6l (2 − φ)l2 −6l (4 + φ)l2

⎤
⎥⎥⎦

=
∑n

i=1 Q11i
Ai∑n

i=1 Ai

[
K

]
(7)

Where Ai is the uncracked area of the ith layer of the laminated composite rotor. As the
crack depth increases, the crack tends to reach consecutive layers of the rotor, resulting in
a decrease in the uncracked area of the ith layer. In contrast, the moment of inertia denoted
by I is replaced by the time-dependent relation derived in the previous section. Hence, the
equivalent modulus of the composite structure happens to be dependent on the area and the
moment of inertia of the uncracked lamina, which is further a function of the crack depth.

The higher-order equation of motion of the laminated composite shaft element can be
written as (Ganguly and Roy 2021a),

[A5] {q.....} + [A4] {q....} + [A3] {q...} + [A2] {q..} + [A1] {q.} + [A0] {q} = [B] {u} (8)

where,

[A5] = [M]n3

[A4] = {
[M]n2 + [G]n3 + m4

[
K̄B

]}

[A3] = {
[M]n1 + [G]n2 + m3

[
K̄B

] + 4m4�
[
K̄C

]}

[A2] = {
[M]n0 + [G]n1 + m2

[
K̄B

] + 3m3�
[
K̄C

]}

[A1] = {
[G]n0 + m1

[
K̄B

] + 2m2�
[
K̄C

]}

[A0] = (
m0 − �2m2

) [
K̄B

] + (
�m1 − �3m3

) [
K̄C

]

[B] = (
n0 + n1D + n2D2 + n3D3

) [P]

The bending stiffness
[
K̄B

]
, circulatory matrices

[
K̄C

]
, and mass matrix [M] used in the

above equation of motion are for the intact element of the shaft. However, these matrices are
replaced with the matrices derived for crack element in the shaft system and further assem-
bled according to the finite element procedure depending upon the crack element position.
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Fig. 3 A deformed rotor bearing arrangement

3 Results and discussion

3.1 Problem statement

The composite is fabricated by reinforcing carbon fiber into the epoxy matrix. A single
lamina composite sample fabricated using unidirectional carbon fibers embedded into epoxy
resin is experimented with in DMA to acquire their storage and loss modulus properties.
For numerical illustration, a rotor shaft of continuum length 1 m and diameter 0.048 m is
considered to be mounted over two journal bearings at its two extreme ends, as shown in
Fig. 3, to closely relate to realistic models. The stiffness coefficients Kbyy , Kbyz , Kbzy , Kbzz

and damping coefficients Cbyy , Cbyz , Cbzy , Cbzz for the journal bearing are determined based
on the methodology described by Friswell et al. (2010). The parameters for calculating these
coefficients include a bearing length-to-diameter ratio Lbrg/Dbrg = 0.3, a bearing diameter
Dbrg = 0.048m, an oil viscosity of 0.1 Pa-s, and a radial clearance of 0.0001 m between
the journal and the bearing. The static thrust forces on the left and right bearings, resulting
from the self-weight of the system, generate different bearing coefficients at the two ends.
Equivalent Modulus Theory is applied to configure the composite modeling of the shaft
while the FE model based on Euler–Bernoulli beam theory is formulated after meshing the
shaft continuum into ten 1-D 2-noded elements, with each node having 4 degrees of freedom,
i.e., two translational and two rotational. The detailed properties of the composite material
are tabulated in Table 1, while Table 2 provides the details of the discs mounted on the rotor
at two different nodal positions, i.e., nodes 4 and 8, following Ganguly and Roy (2021a).

3.2 Strain energy

The strain energy stored in the laminated composite shaft due to deformation is given by,

U = 1

2

∫

V

εT σdV (9)
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Table 1 Composite material properties

Epoxy Carbon fibre

Density
ρm

(kg/m3)

Poisson’s
Ratio

Young’s
modulus
(GPa)

Volume
fraction
(%)

Density
ρf

(kg/m3)

Poisson’s
Ratio

Young’s
modulus

Volume
fraction
(%)

1100 0.31 3.5 83 1750 0.26 310 17

Table 2 Properties of disc

Disc No. Material Diameter (m) Thickness (m) Disc node Mass Unbalance

Disc - 1 Aluminium 0.15 0.02 4 0

Disc - 2 Aluminium 0.15 0.02 8 0.2e-4

Considering longitudinal strain εxx subjected to bending, the deformation energy can be
written as

U = 1

2

∫

V

Q11ε
2
xxdV (10)

For the finite element formulation, the total strain energy stored can be represented as the
summation of elemental deformation energy to which the system continuum is discretized,
i.e., the total strain energy of the system with E number of discretized elements can be
signified as

U =
E∑

e=1

Ue (11)

The expression of the deformation energy for the eth element having n number of layers
is given as,

Ue = 1

2

∑n

i=1 Q11i
Ai∑n

i=1 Ai

I

∫ l

0

×
[{

qe
v

}T d2

dx2
φ(x)T d2

dx2
φ(x)

{
qe

v

} + {
qe

w

}T d2

dx2
φ(x)T d2

dx2
φ(x)

{
qe

w

}]
dx

Following Fig. 4(a) and Fig. 4(b), the nodal degrees of freedom of the shaft element
{
qe

v

}
and

{
qe

w

}
mentioned in the above equation can be arranged in the following manner;

{
qe

v

} = {v1θz1v2θz2}T

{
qe

w

} = {
w1 − θy1w2 − θy2

}T

On solving the above equation of deformation energy and substituting in Eq. (7), the total
strain energy stored due to deformation is given by,

U =
E∑

e=1

Ue =
E∑

e=1

1

2
{qe}T

[
Ke] {qe} (12)
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Fig. 4 a) Descriptive view of rotary and stationary frame b) Nodal degrees of freedom of the shaft element

Table 3 Stack sequence
Sequence No. Stacking sequence

1 [ 90, 90, 45, 0, 0, 45, 90, 90]

2 [90, 45, 45, 0, 0, 45, 45, 90]

3 [90, 90, 0, 45, 45, 0, 90, 90]

4 [45, 0, 45, 0, 90, 0, 90, 0]

The matrix [Ke] in the above equation is derived and globalized for E number of ele-
ments while modeling the viscoelastic laminated composite shaft using EMT. Hence, the
globalized matrix is represented by the matrix [A0] from Eq. (8).

As the [A0] matrix is a function of �t , as a result ofresulting from the breathing phe-
nomenon, the strain energy stored can be represented for one complete rotation (0 ≤ �t ≤
2π ) of the cracked composite shaft at a spin speed within a stable range. The study is per-
formed considering four different laminate stack sequences of the 8-layer composite shaft as
tabulated in Table 3, considering a breathing crack of depth ratio μ = 0.5 in the fifth element
of the discretized continuum of the shaft.

Figure 5 represents the strain energy stored in an uncracked composite shaft and com-
pares it with the same composite shaft system, considering a breathing crack for all four
sequences, as mentioned in Table 3. The plot represents the strain energy stored for one full
rotation of both cracked and uncracked composite shaft, i.e., from 0 to 2π at a spin speed
of � = 1000rpm, below the stability limit of spin speed. For certain region, within one full
rotation of the cracked shaft, as the breathing crack tends to close or open, the energy stored
is observed to be increasing and decreasing, depending on the rise and fall of the stiffness
due to the breathing phenomenon.

Compared with the uncracked shaft for any sequence, the cracked shaft with a fully open
condition shows the maximum loss in energy. Although the deflection {q} for the fully open
cracked shaft is more than the deflection in the uncracked shaft, the stiffness, i.e., [A0],
which is >> {q}, varies inversely for the cracked and uncracked shaft system. However, for
the part of the rotation when the crack is in fully closed condition, the energy stored matched
for both cracked and uncracked system. Hence, a loss in stored energy is observed to follow
such a pattern for one full rotation.

When it comes to the stacking sequences, the maximum energy loss in Sequence
1 is minimal, while Sequence 4 (Fig. 5(d)) shows that the maximum loss in energy
is the highest among all the sequences. Considering the fact that as the 0̊ fiber lami-
nas move outwards (Sequence 3) and also increase in number (Sequence 4), the system
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Fig. 5 Strain energy stored at a spin speed of 1000 rpm a) Sequence 1; b) Sequence 2; c) Sequence 3; d)
Sequence 4

tends to exhibit more stored energy. For the considered crack depth ratio μ = 0.5, which
cracks the first four laminas of each sequence from outside, Sequence 4 is observed to
crack down two 0̊ fibre laminas resulting in maximum loss in energy when compared
to uncracked shaft among all the sequences. Table 4 represents the maximum percent-
age error in the energy storage during one full shaft rotation for all the considered se-
quences.

3.3 Mode shapes

The mode shape represents the shape of the composite shaft by indicating the path trav-
eled by all the points throughout the continuum at different modes. The eigenvectors of the
composite shaft system are used to plot the 3D forward and backward mode shapes ow-
ing to forward (F) and backward (B) whirling, respectively, at a spin speed of 1000 rpm.
Figure 6 shows the first four bending modes of the uncracked composite shaft and is fur-
ther compared with the composite shaft considering the breathing crack of in μ = 0.5. The



Mechanics of Time-Dependent Materials

Table 4 Maximum percentage error in the energy storage

Sequence No. Energy Stored (J) Maximum % Error

Fully open Fully closed (Uncrack)

1 1.32e-7 1.52e-7 13.15

2 1.8e-7 2.4e-7 25

3 2.12e-7 2.76e-7 23.18

4 2.4e-7 3.7e-7 35

locus of each node starts with a (*) mark and is kept unfinished to demonstrate the di-
rection. Clockwise rotations of the circles present in the figure are considered backward
whirl, while the forward whirl is determined by counterclockwise rotation of the circles.
The first two modes, 1B (Fig. 6(a)) and 3F (Fig. 6(b)), respectively, signify the backward
and forward whirl corresponding to the first mode of vibration, while 2B (Fig. 6(c)) and
4F (Fig. 6(d)) denotes the backward and forward whirl corresponding to the second mode
of vibration. A clear distortion in the mode shapes for all modes is observed under crack
conditions.

3.4 Time response and orbit plot

This section delves into the dynamic behavior of the crack over time, as illustrated by
the time response and orbit plot. Specifically, in Sect. 3.1, we conduct a numerical study
of a cracked composite rotor shaft and compare its responses to those of an uncracked
shaft. This comparison is made for the fourth stacking sequence at the second disc position
from the left end of the shaft (node 7), operating within a stable speed region (� = 3200
rpm).

The Y- and Z-direction time response patterns, depicted in Fig. 7, exhibit the steady-state
vibration characteristics of both the uncracked and cracked shafts. For enhanced clarity, a
magnified view of the comparative time response is presented in Fig. 7(a). This zoomed-
in perspective highlights the periodic deviations between the responses of the cracked and
uncracked shafts, which are indicative of the crack’s breathing action — the opening and
closing of the crack over time.

Figure 7(b) features the orbit plot, which illustrates the trajectory of the shaft’s rotation
over one complete cycle. This plot provides further insight into the dynamic behavior of
the shaft. During the phases when the crack closes, the response of the cracked shaft aligns
closely with that of the uncracked shaft, demonstrating similar vibration patterns. This align-
ment occurs because the closing of the crack temporarily restores the structural integrity of
the shaft, making its dynamic response resemble that of an uncracked shaft. The periodic
nature of these deviations, as shown in the time response and orbit plot, underscores the
repetitive opening and closing of the crack, which is a critical aspect of the shaft’s dynamic
behavior under operational conditions.

4 Conclusions

The presented study is carried out to model a breathing crack and show its effect on the
composite rotor-shaft system. A surface breathing crack is integrated into the continuum of
the shaft, the mechanism of which is derived on the basis of closed-loop time-dependent
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Fig. 6 Bending mode shapes a) 1B b) 3F c) 2B d) 4F
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Fig. 6 (Continued)

Fig. 7 Time response comparison between uncrack-crack shaft for Sequence 4

geometric parameters. Geometry-based systems of closed nonlinear equations are derived
and solved to find the accurate time-dependent geometric variables, viz. centroidal location,
uncrack area, and moment of inertia. FE formulation of the viscoelastic laminated composite
shaft is modified after incorporating those derived time-dependent geometric parameters.
A comparison between the intact and cracked composite shaft is performed to study the
loss in a reduction in strain energy for one complete shaft rotation. The mode shapes are
compared between the intact and cracked shaft for the first four bending modes to show the
effect of crack. Finally, the time responses are depicted to show the breathing behavior with
time.
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Fig. 7(a) Zoomed view of Time response showing breathing behavior through comparison

Fig. 7(b) Zoomed view of Orbit
plot showing breathing behavior
through comparison

Author contributions S.K.S. and K.G. were involved in building Methodology, Conceptualization, Investiga-
tion, Visualization, Software, Validation, Writing, Review & Editing – Original draft, Revision. S. K. P. and
R.P. were involved in building the Methodology, Conceptualization and provided Supervision.

Funding The author(s) received no financial support for the research, authorship, and/or publication of this
article.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Competing interests The authors declare no competing interests.

References

Al-Shudeifat, M.A., Butcher, E.A.: New breathing functions for the transverse breathing crack of the cracked
rotor system: approach for critical and subcritical harmonic analysis. J. Sound Vib. 330(3), 526–544
(2011)



Mechanics of Time-Dependent Materials

Alwan, V., Gupta, A., Sekhar, A.S., Velmurugan, R.: Dynamic analysis of shafts of composite materials. J.
Reinf. Plast. Compos. 29(22), 3364–3379 (2010)

Arab, S.B., Rodrigues, J.D., Bouaziz, S., Haddar, M.: A finite element based on Equivalent Single Layer
Theory for rotating composite shafts dynamic analysis. Compos. Struct. 178, 135–144 (2017)

Arab, S.B., Rodrigues, J.D., Bouaziz, S., Haddar, M.: Stability analysis of internally damped rotating com-
posite shafts using a finite element formulation. C. R. Mecanique 346(4), 291–307 (2018)

Bert, C.W.: The effect of bending-twisting coupling on the critical speed of a driveshaft. In: Japan-U. S.
Conference on Composite Materials, 6 th, Orlando, FL, pp. 29–36 (1993)

Chang, C.Y., Chang, M.Y., Huang, J.H.: Vibration analysis of rotating composite shafts containing randomly
oriented reinforcements. Compos. Struct. 63(1), 21–32 (2004)

Dimentberg, F.M.: Flexural vibrations of rotating shafts. Butterworths’. (1961)
El Arem, S., Ben Zid, M.: On a systematic approach for cracked rotating shaft study: breathing mechanism,

dynamics and instability. Nonlinear Dyn. 88(3), 2123–2138 (2017)
Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Rotor Dynamics: Modelling and Analysis of Rotating

Machines. Cambridge University Press, Cambridge (2010)
Ganguly, K., Roy, H.: Modelling and analysis of viscoelastic laminated composite shaft: an operator-based

finite element approach. Arch. Appl. Mech. 91(1), 343–362 (2021a)
Ganguly, K., Roy, H.: A novel geometric model of breathing crack and its influence on rotor dynamics. J.

Vib. Control 28(21–22), 3411–3425 (2021b)
Ganguly, K., Raj, A., Roy, H.: Modelling and comparative study of viscoelastic laminated composite beam–

an operator based finite element approach. Mech. Time-Depend. Mater. 25(4), 691–710 (2021)
Green, I., Casey, C.: Crack detection in a rotor dynamic system by vibration monitoring—part I: analysis. J.

Eng. Gas Turbines Power 127(2), 425–436 (2005)
Gubran, H.B.H., Gupta, K.: The effect of stacking sequence and coupling mechanisms on the natural fre-

quencies of composite shafts. J. Sound Vib. 282(1–2), 231–248 (2005)
Gubran, H.B.H., Singh, S.P., Gupta, K.: Stresses in composite shafts subjected to unbalance excitation and

transmitted torque. Int. J. Rotating Mach. 6(4), 235–244 (2000)
Guo, C., Al-Shudeifat, M.A., Yan, J., Bergman, L.A., McFarland, D.M., Butcher, E.A.: Application of empir-

ical mode decomposition to a Jeffcott rotor with a breathing crack. J. Sound Vib. 332(16), 3881–3892
(2013)

Irani, R.M., Mohebbi, A., Afshari, H.: Longitudinal-torsional and two plane transverse vibrations of a com-
posite Timoshenko rotor. J. Solid Mech. 8(2), 418–434 (2016)

Jun, O.S., Gadala, M.S.: Dynamic behavior analysis of cracked rotor. J. Sound Vib. 309(1–2), 210–245
(2008)

Jun, O.S., Eun, H.J., Earmme, Y.Y., Lee, C.W.: Modelling and vibration analysis of a simple rotor with a
breathing crack. J. Sound Vib. 155(2), 273–290 (1992)

Kam, T.Y., Liu, C.K.: Stiffness identification of laminated composite shafts. Int. J. Mech. Sci. 40(9), 927–936
(1998)

Kim, C.D., Bert, C.W.: Critical speed analysis of laminated composite, hollow drive shafts. Compos. Eng.
3(7–8), 633–643 (1993)

Kim, W., Argento, A., Scott, R.A.: Free vibration of a rotating tapered composite Timoshenko shaft. J. Sound
Vib. 226(1), 125–147 (1999)

Liu, W., Barkey, M.E.: The effects of breathing behaviour on crack growth of a vibrating beam. In: Shock
and Vibration (2018). 2018

Mayes, I.W., Davies, W.G.R.: Analysis of the response of a multi-rotor-bearing system containing a transverse
crack in a rotor. J. Vib. Acoust. 106(1), 139–145 (1984)

Mendonça, W.R.D.P., De Medeiros, E.C., Pereira, A.L.R., Mathias, M.H.: The dynamic analysis of rotors
mounted on composite shafts with internal damping. Compos. Struct. 167, 50–62 (2017)

Papadopoulos, C.A.: The strain energy release approach for modeling cracks in rotors: a state of the art
review. Mech. Syst. Signal Process. 22(4), 763–789 (2008)

Patel, T.H., Darpe, A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J.
Sound Vib. 311(3–5), 953–972 (2008)

Prawin, J., Lakshmi, K., Rao, A.R.M.: A novel vibration based breathing crack localization technique using
a single sensor measurement. Mech. Syst. Signal Process. 122, 117–138 (2019)

Roy, H., Dutt, J.K.: Dynamics of polymer and polymer composite rotors–an operator based finite element
approach. Appl. Math. Model. 40(3), 1754–1768 (2016)

Singh, S.P., Gupta, K.: Free damped flexural vibration analysis of composite cylindrical tubes using beam
and shell theories. J. Sound Vib. 172(2), 171–190 (1994)

Singh, S.P., Gupta, K.: Composite shaft rotordynamic analysis using a layerwise theory. J. Sound Vib. 191(5),
739–756 (1996)



Mechanics of Time-Dependent Materials

Varney, P., Green, I.: Comparing the Floquet stability of open and breathing fatigue cracks in an overhung
rotordynamic system. J. Sound Vib. 408, 314–330 (2017)

Yongsheng, R., Xingqi, Z., Yanghang, L., Xiulong, C.: Vibration and instability of rotating composite thin-
walled shafts with internal damping. Shock Vib. 2014, 123271 (2014)

Zinberg, H., Symonds, M.F.: The development of an advanced composite tail rotor driveshaft. In: Proceedings
of the 26th Annual Forum of the American Helicopter Society, Washington, United States (1970)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a pub-
lishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.


	The effect of a geometry-based breathing crack model on a viscoelastic composite rotor-shaft system
	Abstract
	Introduction
	Mathematical modeling
	Geometric modeling of breathing crack
	Viscoelastic crack composite shaft: FE model

	Results and discussion
	Problem statement
	Strain energy
	Mode shapes
	Time response and orbit plot

	Conclusions
	References


