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Abstract
This article uses a memory-dependent derivative (MDD) — which may be better than a
fractional derivative — to develop a novel heat conduction problem in a functionally graded
material (FGM) layer with a distinct exponential gradient model. A theoretical framework is
designed for a functionally graded plate (FGP) incorporating the fractional heat conduction
theory that incorporates single-phase-lag (SPL) and two-temperature discrepancy factors
to capture the thermoelastic response and the memory-dependent effect. Then, the modi-
fied model is used to investigate the thermoelastic response of an FGP subjected to thermal
shock at the left surface of the plate, keeping other faces at zero temperature. The tempera-
ture change is determined using the integral transform technique, and the solution is obtained
in the Laplace transform domain. The transient temperature response in the time domain is
evaluated through numerical inversion of the Laplace transform to generate numerical data.
The general solutions of the governing equation of stress function are obtained by utiliz-
ing material attributes represented by the exponential-law index. The transient responses,
namely temperature, displacement, and stress, are graphically depicted. FGP is composed
of partially stabilized zirconia (PSZ) particles, and the austenitic stainless steel (SUS304)
matrix was used in the analysis. The use of FGM requires careful compositional choices to
prevent thermal stresses from being generated in the FGP. The study compares temperature
distributions using non-Fourier and classical Fourier models, revealing wave-like phenom-
ena in fractional heat transfer, which are undetected in classical Fourier heat conduction.
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Nomenclature
Iα Riemann-Liouville fraction integral of the αth order
α fractional order
h thickness of the layer, m

τq phase lag of heat flux, s

q heat transfer rate, W·m−2

β1, β2, β3, β4, δ gradient indices
s Laplace transform variable
T conductive temperature, °C
k, k0, kh thermal conductivity, W· m−1 · K−1

� Gamma function
ρ, ρ0, ρh mass density, kg·m−3

c, c0, ch specific heat capacity, J·kg−1 ·K−1

∇ spatial gradient operator
� thermodynamic temperature
b temperature discrepancy parameter
κ = k/ρc thermal diffusivity in the medium, m2 · s−1

Ee, E0 Young’s modulus, GPa
αe

t , α0, αh coefficient of linear thermal expansion, K−1

υ Poison’s ratio
χ stress function
Iη first-kind modified Bessel function of the ηth order
Kη second-kind Bessel function of the ηth order
∇2 two-dimensional Laplacian operator

1 Introduction

Functionally graded materials (FGMs) are heterogeneous materials with continuous vari-
ations in properties along specific axes. They are renowned for their excellent mechani-
cal toughness and heat resistance, making them widely used in advanced industries like
aerospace and aviation. Many investigations have been conducted in related fields to better
understand the mechanical properties of FGMs at extremely high temperatures. These stud-
ies have employed functionally graded layers (Byrd and Birman 2010; Zhou et al. 2011;
Wang et al. 2018; Ma and Chen 2011; Ohmichi et al. 2016), cylinders and spheres (Tarn
and Wang 2004; Zhao et al. 2007; Hosseini et al. 2007; Asgari and Akhlaghi 2009; Nezhad
et al. 2011; Daneshjou et al. 2015), and three-dimensional (Ootao and Tanigawa 2005; Kim
and Noda 2001; Li and Wen 2014; Yu et al. 2016) models. The research investigation was
performed using techniques such as analytical methods (Delale and Erdogan 1983; Eischen
1987; Erdogan 1995; Bao and Wang 1995; Erdogan and Wu 1997; Choi et al. 1998; Cai
and Bao 1998; Long and Delale 2005; Ding et al. 2010), numerical simulations (Santare and
Lambros 2000; Kim and Paulino 2002; Comi and Mariani 2007), and experimental methods
(Butcher et al. 1998; Abanto-Bueno and Lambros 2006). However, the extensive use of laser
heating technology has led to significant interest in studying high-rate heat transfer.
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Heat conduction analysis needs to be revised due to the infinite speed at which thermal
disturbances propagate in the traditional Fourier law. Several other heat conduction models
or generalized heat conduction theories have been proposed to overcome this disadvantage,
such as the hyperbolic heat conduction model (Lord and Shulman 1967) and the dual-phase-
lag heat conduction model (Tzou 1995a,b). Torabi and Saedodin (2011) examined hyper-
bolic heat conduction with a heat flux boundary condition. Askarizadeh and Ahmadikia
(2016) examined the impact of non-Fourier thermal conduction on convective straight fins
with a constant cross-section under periodic boundary conditions. They proposed an exact
analytical solution for the dual-phase-lag heat conduction. Rahideh et al. (2012) simulated
heat conduction in composite materials and FGMs. They specifically focused on a multi-
layered FGM medium that experiences heat generation. The simulation utilized non-Fourier
heat transfer equations and accounted for finite heat-wave speed. Babaei and Chen (2010)
addressed the problem of transient hyperbolic heat conduction in a functionally graded hol-
low cylinder of infinite length. Keles and Conker (2011) proposed a hyperbolic heat con-
duction problem in FGM cylinders and spheres with varied material characteristics. Ak-
barzadeh and Chen (2012, 2013) examined the transient heat conduction in a functionally
graded medium using the dual-phase-lag theory. Peng et al. (2018) employed the hyper-
bolic heat-moisture coupling model to explore the impact of phase delays between heat flux
and moisture flux on the transient hygrothermal response in an elastic cylinder. The frac-
tional calculus, which is an extension of the conventional integer order calculus, has been
developed to investigate many problems in science and technology, such as thermoelastic
difficulties (Podlubny 1998; Ortigueira 2011). Povstenko (2004) introduced a quasi-static
uncoupled theory of thermoelasticity that relies on a time-fractional equation. This equation
combined aspects of both heat conduction and wave equations and was also examined by
Fujita (1990). In addition, Sherief et al. (2010) and Youssef (2010) expanded the Cattaneo
heat conduction equation into fractional versions, respectively. Ezzat (2011, 2011) formu-
lated a novel model for the equation of fractional heat conduction by employing the recently
constructed Taylor series expansion of time-fractional order, as proposed by Jumarie (2010).
Ezzat et al. (2018, 2016, 2013, 2023, 2019) work on fractional calculus applications to ther-
moelasticity, including the introduction of new models of the fractional heat conduction
equation. The study examined the transient thermal stresses caused by a crack in a hollow
elastic cylinder using the fractional thermoelasticity theory and the superposition method
(Zhang and Li 2017). Zhang et al. (2018) examined the issue of thermal shock in an elastic
half-space with a penny-shaped crack close to the surface. Their investigation was based on
a fractional thermoelasticity theory. Ma and He (2016) conducted a study on the fractional
order theory of thermoelasticity, examining the transient thermo-piezoelectric reaction of
a functionally graded piezoelectric rod under dynamic heat. Recently, Zhang et al. (2019)
investigated the problem of FGMs based on the fractional order generalized fractional heat
conduction with heat flow phase-lag, examining two typical scenarios of convective heat or
temperature movement at boundaries using the Laplace transform method. From the study
mentioned above articles, it is evident that most literature pertains to classical, hyperbolic,
or phase-lag thermoelasticity theories. However, various authors suggest different formulas.;
that is, the thermoelastic theories are not unique in their form.

Over the past decade, fractional calculus has gained significant attention due to its ap-
plications in physics and various engineering fields. Wang and Li (2011) presented the
memory-dependent derivative (MDD) concept has been introduced as an integral version
of a common derivative, including a kernel function across a sliding interval. This defini-
tion accurately represents the memory effect, where the previous state influences the pace
of instantaneous change. The MDD is more intuitive for understanding the physical signif-
icance and has more expressive power than the fractional one. Several seminal studies may
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be reviewed in the literature by Ezzat et al. (2014, 2016, 2017) and Sur et al. (2024, 2023a,
2023b, 2023, 2024, 2024) after the development of the MDD philosophy. It is widely under-
stood that time-fractional-order thermoelasticity can be applied to depict memory-dependent
derivative (MDD) behaviours. Therefore, the study of thermoelasticity within the framework
of the memory-dependent two-temperature theory holds significant importance. As far as the
author is aware, there is no existing analysis for a transient thermal conduction problem of
a two-dimensional functionally graded plate with a memory-dependent derivative, and this
may be due to the extreme difficulty of using the analytical approach.

The purpose of this paper is to modify the conventional Fourier law of heat conduction
and establish analytical solutions to two-dimensional problems to capture the thermoelastic
response using fractional-order single-phase-lag (FOSPL) by introducing a temperature dis-
crepancy factor in the context of memory-dependent effect. The resulting non-dimensional
equations are applied to a specific problem of an FGP subjected to thermal shock on the
boundary, which is traction-free. An integral transform approach is introduced to obtain the
exact solutions in the Laplace transform domain for different forms of kernel function. The
Laplace transforms are inverted using the modified Durbin’s numerical inversion method.
The innovative theory is analyzed using graphical representations, with FGMs as represen-
tative composite materials due to their exceptional heat resistance in non-isothermal condi-
tions. The presence of a memory-dependent derivative also enhances the exceptional predic-
tive capability exhibited. In conclusion, the definition of MDD is more intuitive as compared
to the fractional derivative. Some parametric results are established to display the influences
of the fractional-order parameter, the phase-lag parameter and the exponential-law index on
the considered physical quantities.

The subsequent sections of this paper is organized as follows: The modified mathematical
model for the governing equations with FOSPL and two-temperature theory via MDD effect
is described in Sect. 2. The practical statement of heat conduction and thermoelastic field
is the topic of discussion in Sect. 3. An overview of the formation of analytical solutions
for the temperature distribution and the stress that is associated with it is given in Sect. 3.
The numerical results are provided, and parametric studies are undertaken in Sect. 4. The
findings that were presented are included in Sect. 5.

2 Mathematical model

The generalized fractional single phase-lag (FSPL) heat transfer model (Ezzat and Kara-
many 2011):

q(x, y, t)

(
1 + τα

q

α!
∂α

∂tα

)
= −∇T (x, y, t, k),0 < α ≤ 1 (1)

where the fractional derivative (Sherief et al. 2010) is

∂αf (t)

∂tα
=

⎧⎨
⎩

f (t) − f (0), α → 0
Iα−1 ∂αf (t)

∂tα
,0 < α < 1

∂f (t)

∂t
, α = 1

(2)

and

Iα = 1

�(α)

∫ t

0
(t − τ)α−1f (τ)dτ,α > 0 (3)
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As the variable α → 1, Eq. (1) simplifies to the widely recognized Cattaneo law. Kim-
mich (2002) states that the time-fractional diffusion equation, with fractional-order α de-
scribes various diffusion cases where 0 < α < 1 correspond to weak diffusion, α = 1, it
correspond to normal diffusion, 1 < α < 2 corresponds to strong diffusion, and α = 2, it
corresponds to ballistic diffusion.

Consider the energy balance while considering heat flux

ρ(x)c(x)
∂

∂t
T (x, y, t, k) = −∇q(x, y, t) (4)

Chen and Gurtin (1968) proposed dividing real materials into simple and non-simple
categories by considering two temperatures, that is, conductive and thermodynamic, and the
two temperatures are related by

�(x,y, t, k) = (1 − b∇2)T (x, y, t, k), b > 0 (5)

The material parameter b is a crucial distinction between the two-temperature and clas-
sical theories. As a limiting case, b → 0, � → T give rise to the classical Fourier theory.
Combing Eqs. (1), (4), and (5), and multiplying (1 − b∇2) and neglecting differential coef-
ficients of order higher than ∇2, and using ∇2 ≈ (1/κ)(∂/∂t), one obtains

(
1 + τα

q

α!
∂α

∂tα

)
ρ(x)c(x)

∂

∂t

(
1 − b

κ(x)

∂

∂t

)
T (x, y, t) = ∇2T (x, y, t, k) (6)

Wang and Li (2011) introduced the concept of ‘memory-dependent derivatives’ as a cap-
tivating and distinct alternative to fractional order derivatives, which accurately capture the
influence of memory. The Caputo and Mainardi (1971) fractional derivative was transformed
into an integral representation of a first-order ordinary derivative using the kernel function.
The MDD for the first order of a function f (t) can be expressed as an integral using a kernel
function over a sliding interval, mathematically as

Dωf (t) = (1/ω)

∫ t

t−τ

K(t − ξ)f ′(ξ)dξ (7)

The selection of the kernel function K(t − ξ) and the time-delay parameter ω > 0 is
flexible and can be selected freely, as

K(t − ξ) = 1 − 2g

ω
(t − ξ) + e2

ω2
(t − ξ)2 =

⎧⎨
⎩

1; ife = 0, g = 0
1 − (t − ξ)/ω; ife = 0, g = 0.5
(1 − (t − ξ)/ω)2 ; ife = 1, g = 1

(8)

where ω > 0 is the delay time; e and g are constants, respectively. The kernel can be con-
sidered the degree of the past effect on the present. Moreover, if K ≡ 1,

Dωf (t) = 1

ω

∫ t

t−ω

f ′(ξ)dξ = f (t) − f (t − ω)

ω
→ f ′(t) asω → 0 (9)

and it is noted that an ordinary function d/dt is obtained if the limiting case of Dω is taken
as K = 1 and ω → 0 (Mondal et al. 2021). The right-hand side of Eq. (7) can be interpreted
as the mean of f ′(ξ) over the previous interval [t −ω, t ], with varying weights. From an ap-
plications perspective, memory significantly impacts at 0 ≤ K(t − ξ) < 1 for ξ ∈ [t − ω, t],
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resulting in memory-dependent derivatives that are often smaller in magnitude compared to
the common derivatives f ′(t). The possibility of this situation depends on implementing the
concept of MDD, as fractional derivatives are insufficient when the lower-end value greatly
varies from the top-end value in the definition of fractional order derivatives. The modified
partial differential equation of Eq. (6), which expresses memory-dependent characteristics,
can presented as:

e−γ x

(
1 + τα

q

α! D
α
ω

)
ρ(x)c(x)

∂

∂t

(
1 − b

κ(x)

∂

∂t

)
T (x, y, t) = ∇2T (x, y, t, k) (10)

In a layered FGM, the characteristics of the material vary depending on its location. How-
ever, in practical applications, FGMs are typically engineered to have material properties
that change in a specified direction for specific reasons. For instance, combining ceramics
with metals can result in materials that can withstand high temperatures and minimize ther-
mal stresses. Ceramics with lower heat conductivity and thermal expansion coefficient are
matched by metals, which possess stronger toughness and better heat conductivity. There-
fore, for the sake of simplicity, it is logical to assume in this document that the material
properties are only dependent on spatial variable x and exhibit an exponential gradient pat-
tern (Noda and Jin 1993) as follows:

ρ(x) = ρ0e
β1x, c(x) = c0e

β2x, k(x) = k0e
δx (11)

where ρ0(ρh), c0(ch), k0(kh) are the corresponding values that vary through the way x axis,
and gradient indices are defined by

β1 = 1

h
ln

ρh

ρ0
, β1 = 1

h
ln

ch

c0
, δ = 1

h
ln

kh

k0
(12)

where γ = β1 + β2 − δ is the graded parameter. The limiting case γ = 0 means that the
thermal conductivity and the volumetric heat capacity have the same exponential law and
correspond to a homogenous plate. Under the assumption of the exponential gradient (11),
Eq. (10) can be written as

e−γ x

(
1 + τα

q

α!
∂α

∂tα

)
ρ(x)c(x)

∂

∂t

(
1 − b

κ(x)

∂

∂t

)
T (x, y, t) = ∇2T (x, y, t, k) (13)

By adjusting the values of fractional order α, and phase-lag τq one can derive the limiting
cases of the two-temperature FSPL heat conduction, Eq. (10) as

• if we put τq = 0, it reduces to classical thermoelasticity (CTE).
• when τq ≥ 0 and α = 1, it reduces to hyperbolic thermoelasticity (HTE) (Lord and Shul-

man 1967).
• If α! = 1 and τα

q ≥ 0, it reduces to Sherief’s fractional model (SFTE) (Sherief et al. 2010)
• Eq. (13) is yielded to Ezzat’s fractional model (EFTE) when τα

q ≥ 0 (Ezzat and Karamany
2011)

Thus, Eq. (10) expresses the partial differential heat conduction in the context of the
memory-dependent two-temperature theory the authors are curious about.
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Fig. 1 FGP subjected to a
thermal shock and boundary
conditions

3 Statement of the problem

Let us consider an FGM plate with a thickness a and a width h occupying the space D :
−h/2 ≤ x ≤ h/2, 0 ≤ y ≤ a as shown in Fig. 1. In this case, the thermal shock T0H(t)

is applied on the left face surface (x = h/2), and the temperature on the other face surface
(x = −h/2) is kept at zero. Both the top and lower faces are adiabatic. The heat conductivity,
Young’s modulus, and the coefficient of the linear thermal expansion may be described using
exponential functions that depend on their position.

When a material property changes along x-axis, a two-dimensional transient heat con-
duction equation based on Eq. (13) is given by

e−γ x

(
1 + τα

q

α! D
α
ω

)
ρ(x)c(x)

∂

∂t

(
1 − b

κ(x)

∂

∂t

)
T =

(
∂

∂x
k(x)

∂

∂x
+ ∂

∂y
k(x)

∂

∂y

)
T (14)

As an example, we have examined the specific boundary condition influenced by thermal
shock on one side of a plate using FGP varying according to an exponential law and its
thermoelastic response with a memory effect is studied.

3.1 Single-phase lag two-temperature thermal field

By referring to the dimensionless variables

(x∗, y∗) = (x, y)/h, (t∗, τ α∗
q ,Dα∗

ω ) = (t, τ α
q ,Dα

ω)k0/ρ0c0h
2,

(T ∗,�∗) = (T ,�)/T0, (β
∗
1 , β∗

2 , δ∗, γ ∗) = (β1, β2, δ, γ )h,

(u∗, v∗) = (u, v)/ρ0c0h
2, σ ∗

ij = σij /ρ0c0h
2

(15)

Here and in the following, the asterisk * of the dimensionless variables is omitted for
simplicity for later stages. The dimensionless two-dimensional transient heat conduction
equation of Eq. (14) is given by

e−γ x

(
1 + τα

q

α! D
α
ω

)
1

κ(x)

∂

∂t

(
1 − b

κ(x)

∂

∂t

)
T = ∂2T

∂x2
+ k′(x)

k(x)

∂T

∂x
+ ∂2T

∂y2
(16)

subjected to mechanical conditions

σxy(x,0, t) = σyy(x,0, t) = v(x,0, t) = 0,−h/2 < x < h/2 (17)
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and initial and associated thermal boundary conditions

�(x,y,0) = T (x, y,0) = 0,
∂

∂t
T (x, y,0) = 0 (18)

T (−h/2, y, t) = 0, T (h/2, y, t) = T0H(t) (19)

3.2 Thermoelastic field

The equilibrium equation (in the absence of body forces) for the plane problem:

∂σxx

∂x
+ ∂σyx

∂y
= 0,

∂σxy

∂x
+ ∂σyy

∂y
= 0 (20)

The strain-displacement relations and compatibility equation have the form

εxx = ∂u

∂x
, εyy = ∂v

∂y
, εxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
(21)

∂2εxx

∂y2
+ ∂2εyy

∂x2
= 2

∂2εxy

∂x∂y
(22)

The constitutive equations are

εxx = (σxx − υσyy)/E
e + αe

t T ,

εyy = (σyy − υσxx)/E
e + αe

t T ,

εyy = Eeσxx/(1 + υe)

(23)

where

Ee = E,υe = υ,αe
t = αt forplanestress

Ee = E/(1 − υ2), υe = υ/(1 − υ),αe
t = (1 + υ)αt forplanestrain

(24)

while the material properties depend on the position.
The stress components in terms of stress function χ are obtained as

σxx = ∂2χ

∂y2
, σxy = ∂2χ

∂x∂y
, σyy = ∂2χ

∂x2
(25)

The basic equation governing the temperature and the stress function in the FGM plate
can be obtained by substituting Eqs. (25) into the compatibility condition (22) through the
constitutive law (23), as

∇2

(
1

Ee
∇2χ + αtT

)
= ∂2

∂x2

(
1 + υe

Ee

∂2χ

∂y2

)
+ ∂2

∂y2

(
1 + υe

Ee

∂2χ

∂x2

)

− 2
∂2

∂x∂y

(
1 + υe

Ee

∂2χ

∂x∂y

)
(26)

It is supposed that the material possesses the exponential gradient pattern (Noda and Jin
1993):

Ee(x) = E0e
β3x, αe

t (x) = α0e
β4x (27)
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where E0(Eh), α0(αh) are the corresponding values that vary through the way x- axis, and
β3(< 0), β4 are gradient indices defined by

β3 = 1

h
ln

Eh

E0
, β4 = 1

h
ln

αh

α0
(28)

Substituting Eq. (27) into Eqs. (26) and using Eq. (15), one obtains the following dimen-
sionless forms

∇2∇2χ − 2β3
∂∇2χ

∂y
+ β2

3

[
∇2χ − (1 + υ)

∂2χ

∂x2

]
+ e(β3+β4)x

(
∇2T + 2β4

∂T

∂x
+ β2

4T

)
= 0

(29)
The traction-free boundary conditions as

σxx = σxy = 0 atx = ±h/2 (30)

∫ h/2

−h/2
σyydy =

∫ h/2

−h/2
σyyydy = 0 aty = 0, a (31)

Equations (1)-(34) constitute the mathematical formulation of the problem.

4 Solution of the problem

4.1 Solution of the heat conduction problem

Employing the Laplace transform defined by

f̄ (r, s) = L[f (r, t)] =
∫ ∞

0
e−stf (r, t)dt,Re(s) ≥ d > 0 (32)

By utilizing the convolution theorem, it becomes possible to employ the Laplace trans-
form to the higher-order memory-derivative Dp

ω , satisfying the property

L[ωDp
ωf (x, t)] = L[

∫ t

t−ω

K(t − ξ)f p(x, ξ)dξ ] = sp−1G(s,ω)L[f (x, t)] (33)

where p ∈ R and

G(s,ω) = (1 − e−sω)

(
1 − 2f

sω
+ 2e2

s2ω2

)
−

(
e2 − 2f + 2e2

sω

)
e−sω (34)

Using Eqs. (11), (18), and applying Laplace transforms to the governing Eqs. (16), and
(19), we obtain the transformed equation; one obtains

e−γ xq2T̄ = ∂2T̄

∂x2
+ ∂2T̄

∂y2
+ γ

∂T̄

∂x
(35)

T̄ (−h/2, y, s) = 0, T̄ (h/2, y, s) = T0/s (36)

where

q2 =
(

1 + 1

α!G(s,ω)

)
s

κ0

(
1 − b

κ0
s

)
(37)
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We bring in a finite sine-Fourier integral transform in the interval 0 < y ≤ ā, stated as

Fs{g(z)} = g̃(n) =
∫ ā

0
g(z) sin(ϑnz)dz;0 ≤ z ≤ ā, ϑn = nπ/h̄, n = 1,2,3... (38)

together with its inverse transform

F
−1
s {g̃(n)} = g(z) = (2/ā)

∞∑
n=1

g(n) sin(ϑnz) (39)

and the orthogonal property as

Fs{∂2g(z)/∂z2} = ϑn[g(0) − (−1)ng(ā)] − ϑ2
n g̃(n) (40)

Applying the sine-Fourier transform as defined in Eq. (39) to the governing Eqs. (35),
one obtains the transformed equation as

∂2 ¯̄T
∂x2

+ γ
∂ ¯̄T
∂x

− (e−γ xq2 + ϑ2
n ) ¯̄T = 0 (41)

¯̄T (−h/2, n, s) = 0, ¯̄T (h/2, n, s) = T0/s (42)

Taking the transformation of variables as

ξ = (2q/γ )e−γ x/2 (43)

and taking

¯̄T (x,n, s) = ξ ¯̄θ(ξ, n, s) (44)

Considering Eqs. (43)-(44) into (41)-(42), one obtains

∂2 ¯̄θ
∂ξ 2

+ 1

ξ

∂ ¯̄θ
∂ξ

−
(

1 + η2

ξ 2

)
¯̄T = 0 (45)

¯̄θ(−h/2, n, s) = 0, ¯̄θ(h/2, n, s) = θ0/s (46)

The general solution of Eq. (18) with the aid of modified Bessel functions

¯̄θ = C1Iη(ξ) + C2Kη(ξ) (47)

where η2 = 1+ (2ϑn/γ )2, and Ci (i = 1,2) are two parameters independent of ξ , which can
be determined by two boundary conditions (46) as

C1 = θ0Kη(−h/2)

s[Iη(h/2)Kη(−h/2) − Iη(−h/2)Kη(h/2)] (48)

C2 = θ0Iη(−h/2)

s[Iη(h/2)Kη(−h/2) − Iη(−h/2)Kη(h/2)] (49)
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From Eqs. (44) and (48)-(49), we obtain the solution for Eq. (41)

¯̄T (x,n, s) = θ0[Kη(−h/2)Iη(ξ) + Iη(−h/2)Kη(ξ)]ξ
s[Iη(h/2)Kη(−h/2) − Iη(−h/2)Kη(h/2)] (50)

and then using Eq. (39), the temperature Eq. (50) in the Laplace domain as

T̄ (x, y, s) =
∞∑

n=1

θ0[Kη(−h/2)Iη((2q/γ )e−γ x/2) + Iη(−h/2)Kη((2q/γ )e−γ x/2)]
s[Iη(h/2)Kη(−h/2) − Iη(−h/2)Kη(h/2)]

× (2q/γ )(2/a)e−γ x/2 sin(ϑny)

(51)

Equation (51) depicts the temperature at each instant and all positions of the plate with a
finite height in the Laplace domain.

4.2 Solution of thermal stress

Using temperature is given by Eq. (51), Eq. (29) reduces to

∇4χ − 2β3
∂∇2χ

∂y
+ β2

3∇2χ − (1 + υ)β2
3

∂2χ

∂x2 =
〈 [−γ 2β2

4Kη(h/2)Iη((2q/γ )e−γ x/2) + Iη(−h/2)Kη((2q/γ )e−γ x/2)]
×[eγ x(γ − 2β4) − γ 2β2

4 ] + [Kη(h/2)Iη((2q/γ )e−γ x/2β4)

+Iη(−h/2)Kη((2q/γ )e−γ x/2β4)][eγ x/2γ (5γ − 4β4)β4]

〉

aπs[Iη(−h/2)−Iη(h/2)]2
×θ0β4(2q/γ )(2/a)e(β3+β4)x−3γ x/2 sin(hπ/2) sin(ϑny)

(52)

The general solution can be expressed as the sum of the complementary and particular
solutions as χ = χc + χp . The separation of variables can get the complementary part χc

(Ohmichi and Noda 2006) of Eq. (52)

(
1
x

)⎛
⎜⎜⎝

1
y

β3

yeβ3y

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
x

x2

x3

⎞
⎟⎟⎠

(
1

eβ3y

)(
1
x

)(
eβ3

√
υ/2

e−β3
√

υ/2

)
eϒixe℘ye�xe�iyi = 1,2,3,4 (53)

in which β3 = 0 and ϒi is root of the characteristic equation

ϒ4 + (2℘2 − 2β3℘ − υβ2
3 )ϒ2 + ℘2(℘ − β3)

2 = 0 (54)

and �i is root of the characteristic equation

�4 − 2β3�
3 + (β2

3 + 2�2)�2 − 2β3�
2� + �2(�2 − υβ2

3 ) = 0 (55)

and pni is root of the characteristic equation

p4
n − 2β3p

3
n + (β2

3 − 2β2
n)p

2
n + 2β3β

2
npn + β2

n(β
2
n + υβ2

3 ) = 0 (56)

Therefore, the complementary solution χc of the equation

χc = A0 + B0y + C0e
β3y + D0yeβ3y

+
∞∑

n=1

(Ane
pn1y + Bne

pn2y + Cne
pn3y + Dne

pn4y) cosϑnx
(57)



Mechanics of Time-Dependent Materials

The particular integral χp is given by

χp = 4θ0β
2
4q sin(hπ/2)Kη(h/2)

a2πs[Iη(−h/2) − Iη(h/2)]2

∞∑
m=0

A2m+ηe�x sin(ϑny)

m!�(m + η + 1)
[�1 + �2e

−γ x + �3e
−γ x/2]

(58)
where

�1 = −γβ4(γ−2β4)

�4−2β3�3+β2
3 �2 ,�2 = γ 3β3

4
(�−γ )4−2β3(�−γ )3+β2

3 (�−γ )2 ,

�3 = (5γ−4β4)β
2m+η
4

(�−γ /2)4−2β3(�−γ /2)3+β2
3 (�−γ /2)2 ,

� = 2k + η + β3 + β4 − γ /2

(59)

Thermal stresses can be obtained from Eq. (57)-(58) and (25)

σxx = (C0β
2
3 + D0β

2
3y + 2D0β3)e

β3y

+
∞∑

n=1

(Anp
2
n1e

pn1y + Bnp
2
n2e

pn2y + Cnp
2
n3e

pn3y + Dnp
2
n4e

pn4y) cosϑnx

− ϑ2
n

4θ0β
2
4q sin(hπ/2)Kη(h/2)

a2πs[Iη(−h/2) − Iη(h/2)]2

∞∑
m=0

A2m+ηe�x sin(ϑny)

m!�(m + η + 1)

× [�1 + �2e
−γ x + �3e

−γ x/2]

(60)

σxy = −
∞∑

n=1

(Anpn1e
pn1y + Bnpn2e

pn2y + Cnpn3e
pn3y + Dnpn4e

pn4y)ϑn sinϑnx

+ 4θ0β
2
4q sin(hπ/2)Kη(h/2)

a2πs[Iη(−h/2) − Iη(h/2)]2

∞∑
m=0

A2m+ηe�xβ cos(ϑny)

m!�(m + η + 1)

× [��1 + �2(� − γ )e−γ x + �3(� − γ /2)e−γ x/2]

(61)

σyy = −
∞∑

n=1

(Ane
pn1y + Bne

pn2y + Cne
pn3y + Dne

pn4y)β2
n cosϑnx

+ 4θ0β
2
4q sin(hπ/2)Kη(h/2)

a2πs[Iη(−h/2) − Iη(h/2)]2

∞∑
m=0

A2m+ηe�x sin(ϑny)

m!�(m + η + 1)

× [�2�1 + �2(� − γ )2e−γ x + �3(� − γ /2)2e−γ x/2]

(62)

The unknown constants An, Bn, Cn, Dn can be obtained from Eqs. (60)-(61) and (30);
and C0, D0 can be obtained from Eqs. (62) and (31). The lengthy calculation has been
omitted for conciseness, but it should still be considered for numerical calculations.

5 Inversion of the transformed functions

The inversion formula for Laplace transform for Eq. (32) can be written as

f (x, y, t) = L−1[f (x, y, t)] = 1

2πi

∫ d+i∞

d−i∞
est f̄ (x, y, s)ds (63)
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Taking s = d + iz in Eq. (63), one obtains

f (x, y, t) = edt

2π

∫ ∞

−∞
eitzf̄ (x, y, d + iz)dz (64)

Now, taking Fourier series expansion of the function h(x, y, t) = e−dtf (x, y, t) in the
interval [0,2L], one obtains the approximate formula (Durbin 1974) summed up to a finite
number N0 of terms as

fN(x, y, t) = edt

L

{
f̄ (x, y, d)

2
+ Re

N∑
k=1

[ei℘f̄ (x, y, d + i℘)]
}

+ Er

= 1

2
C0 +

N∑
k=1

Ck + Er

(65)

where ℘ = kπ/L, N0 is a finite integer, d parameter has a value of 5 ≤ dt ≤ 10, and Er is
discretization error is added to produce the total approximate error, and

Ck = exp(dt)

T

{
exp

[
ikπt/T f

(
x, d + i

kπt

T

)]}
(66)

The “Korrektur” method allows a reduction of the discretization error without enlarging
the truncation error. Therefore, using Eq. (65) can be expressed as

fN(x, y, t) = fN(x, y, t) − e−2dLfN ′(x, y,2L + t),N < N ′ (67)

we shall now describe the ε-algorithm that is used to accelerate the convergence of the series
in Eq. (65). Let N = 2q + 1, where q is a natural number and let Sm = ∑m

k=1 Ck be the
sequence of partial sums of series in (65). We define the ε-sequence by ε0,m = 0, . . . ε1,m =
Sm and εp+1,m = εp−1,m+1 + 1/(εp,m+1 − εp,m), p = 1,2,3,.... It can be shown (Honig and
Hirdes 1984) that the sequence ε1,1, ε3,1, ε5,1, . . . εN,1 converges to f (x, y, t) + Er − C0/2
faster than the sequence of partial sums sm (m = 1,2,3, . . .). The actual procedure used to
invert the Laplace transform consists of using Eq. (79) together with the ε-algorithm. The
actual procedure used to invert the Laplace transform consists of using Eq. (66). The values
of d = 7.5 and L are chosen according to the criterion outlined in Durbin (1974).

6 Numerical results and discussion

This section conducts numerical computations to demonstrate the impact of phase delays
of heat flux, fractional order, temperature discrepancy factor, and material attributes on the
transient temperature field and its associated stress under memory-dependent derivatives.
For numerical calculations, the following physical parameters were considered: h = 1, a =
1, and the reference temperature as 1500C. The thermomechanical properties composed
of partially stabilized zirconia (PSZ), and austenitic stainless steel (SUS304) are given in
Table 1.

In this session, numerical calculations were conducted to analyze the impact of heating
on the plate. The results of these calculations are shown in the following figures using the
MATHEMATICA program.
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Table 1 Thermo-mechanical
properties of PSZ and SUS 304 Material properties PSZ SUS304

Thermal conductivity 1.67 15.97

Thermal diffusivity (× 10−6) 6.24 5.58

Coefficient of thermal expansion (× 10−6) 2.93 14.87

Density 5730 7930

Specific heat 0.467 0.361

Young’s Modulus 211 193

Poisson’s ratio 0.3 0.3

Fig. 2 Temperature profile when
α = 0.8, τq = 0.3, b = 0.8,
δ = −1, γ = 1

Figure 2 illustrates the spatial arrangement of the temperature distribution at different
dimensionless time intervals using the MDD kernel function. At the beginning, the dimen-
sionless temperature change is zero on the initial surface, as anticipated. However, the x-axis
along the far end surface has a greater magnitude in dimensionless temperature. The temper-
ature change in the FGM layer is time-dependent and observed with propagation character-
istics of wave-like phenomena. For instance, the temperature up to position x = 0.5 remains
constant or slightly gradual change for t = 0.2 and 0.8, respectively. It suggests that thermal
waves do not propagate to these positions within such short time intervals. However, when
the value of x exceeds 0.5, the temperature shift can be observed over the entire FGM layer.

Figure 3 illustrates the impact of the FGM parameter γ along the y-axis on the tempera-
ture distributions represented by Eq. (51) with x = 0.5. The temperatures slightly fall along
the y-axis in proportion to the γ , since the heat flow from the boundary x = 1 also rises
with the parameter γ . Table 2 displays the disparity in temperature distributions between
homogeneous materials (HM) and functionally graded materials (FGM) along the y-axis, as
shown by Eq. (51). For γ = 1.2, the thermal conductivities of FGM are greater than those
of HM. As a result, the heat input of FGM from the boundary x = 0.5 is bigger than that of
HM.

Following Akbarzadeh and Chen (2013), Ortigueira (2011), fixing α = 1 in Eq. (16), the
heat flux propagation velocity can be obtained as V = √

1/τqDω . As the kernel function
in Eq. (34) is 1 and taking τq = 0.0146, one obtains V = {68.49}1/2. The dimensionless
propagation distance �x = V t = {68.49}1/2(0.06) = 0.5, is in agreement with the numeri-
cal prediction, as shown in Fig. 4. It is reflected that if the time is taken as t = 0.05, then
the hyperbolic temperature increases with the increase in position is less than �x = 0.5. By
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Fig. 3 Temperature profile when x = 0.5, α = 0.8, τq = 0.3, b = 0.8, δ = −1

Table 2 Comparison of
temperature profile at x = 0.5
along the x-axis

Conditions Material Ohmichi et al. (2016) Present study

steady-state HM 0.3314 0.3327

FGM 0.4271 0.4284

setting η = 1 in Eq. (45), we observe that the above modified Bessel equation is mathemati-
cally equivalent to the one described in reference Zhou et al. (2011). To verify the validity of
the numerical inversion of the Laplace transform, an exact solution for the classical Fourier
heat conduction with kernel K(t − ξ) = 1 was obtained. The exact temperature, denoted as
Texact, is provided in reference Zhou et al. (2011), as shown in Figure 6. The temperature
Tnum may be determined using Eq. (51). The error ratio is defined as (Tnum - Texact)/Texact
× 100 [%]. The error ratio reaches its highest value of 0.611 when x is equal to 0.8 and y

is equal to 0.2. Figures 5 and 7 show the effects of gradient indices γ and δ on the dis-
tribution of temperature fields, respectively. From Fig. 5, it can be seen that with a fixed
fractional order α with gradient indices γ varying from −1 to 1, the wave-like behaviour
of the fractional heat conduction model becomes more evident. Therefore, the fractional
heat conduction model can capture not only the essence of hyperbolic heat conduction but
also the diffusion characteristic of classical Fourier heat conduction, irrespective of MDD
kernels. Figure 7 also shows a wave-like distribution with gradient indices δ varying from
−2 to 2 for different MDD kernel functions. Initially it is noticed that the temperature rises
slightly, then decrease till to attain minimum value and then increases exponentially with
the increase of x until finished.

The through-the-length variation of the longitudinal normal stress σxx , the transverse
shear stress σxy , and the transverse normal stress σyy change significantly along the x-axis.
For example, in Fig. 8, at x = 0.4 ∼ 0.5, the magnitude of the longitudinal stress σxx is
maximum at a point throughout the length due to high tensile area during the fixed value of
α = 0.8, τq = 0.0146, b = 0.6, δ = − 1, γ = 1. Figures 8 and 10 show that the normal stress
σxx and shear stress σxy have zero temperature at both ends, thus satisfying Eq. (30). Similar
comments apply to the transverse shear stress σxy whose value is about 33% less than that
of the longitudinal normal stress σxx . The through-the-width variation of the normal stress
σyy is a non-linear sinusoidal nature since material properties and the temperature change
vary through the thickness, as illustrated in Fig. 9.



Mechanics of Time-Dependent Materials

Fig. 4 Temperature when
α = 0.8, τq = 0.0146, b = 0.6,
δ = −1, γ = 1

Fig. 5 Effect of gradient index γ when x = 0.75, α = 0.8, τq = 0.3, and δ = −1

Fig. 6 Exact Vs numerical
inversion Laplace
transform-based temperature

7 Conclusion

The study develops a comprehensive thermal uncoupled model for memory-dependent dif-
ferential, examining thermal flow under rapid temperature increase with a two-dimensional
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Fig. 7 Temperature for various
gradient indices δ when α = 0.8,
τq = 0.3, λ = 1

Fig. 8 Normal stress σxx when α = 0.8, τq = 0.0146, b = 0.6, δ = −1, γ = 1

FG plate. Appropriately selecting the volumetric ratio of ceramics and metal components
can greatly lower the heat stresses in the plate. An increase in the coefficient of linear ther-
mal expansion reduces both maximum and lowest thermal stresses, while an increase in
Young’s modulus increases both. Using appropriate compositional materials can minimize
thermal stresses, potentially reaching negligible levels. The numerical results yield several
inferences:

• Memory-dependent derivatives’ non-Fourier effects significantly impact thermal field re-
sponse history and distribution, with energy dissipation potentially causing temperature
decrease without heat transfer.

• Revised categorization system for materials based on memory-dependent derivative pa-
rameters evaluates heat conduction capacity, considering thermoelasticity with two tem-
peratures.

• The phase-lag heat and temperature gradient significantly impact thermal field variables in
memory-dependent derivatives time. The temperature change rate increase is influenced
by the fractional order and relaxation time during the process. Thus, different theories like
CTE, HTE, SFTE, and EFTE models can be derived.

• The PSZ/SUS304 FGP material experiences the maximum compressive stress on the heat-
ing surface. It experiences a maximum tensile stress, which is lower than the maximum
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Fig. 9 Normal stress σyy when α = 0.8, τq = 0.0146, b = 0.6, δ = −1, γ = 1

Fig. 10 Shear stress σxy when α = 0.8, τq = 0.0146, b = 0.6, δ = −1, γ = 1

compressive stress. The maximum stresses occur along the normal stress σyy , whereas
they are less in normal stress σxx and shear stress σxy .

The study suggests that future research could effectively utilize micro- and nano-
functionally graded resonators with different compositional materials like ZrO2/Ti-6Al-4V,
ZrO2/Ti-6Al-4V and ZrO2/SUS304.

Appendix A: The kernel function

In this context, Laplace transform of Eq. (8)

G(s,ω) ==

⎧⎪⎨
⎪⎩

1 − e−sω;κ(t − ξ) = 1
1 − 1−e−sω

s
;κ(t − ξ) = 1 − (t − ξ)(

1 − 2
sω

) + 2(1−e−sω)

s2ω2 ;κ(t − ξ) = (
1 − t−ξ

ω

)2
(A.1)
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