
Mechanics of Time-Dependent Materials
https://doi.org/10.1007/s11043-024-09687-3

R E S E A R C H

Nonlocal and micropolar effects in a transversely isotropic
functionally graded thermoelastic solid under an inclined
load

Priti Dhankhar1 · M.S. Barak1 · Ravinder Poonia2

Received: 31 December 2023 / Accepted: 21 March 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
The objective of this study is to analyze the thermo-mechanical interactions occurring in a
nonlocal transversely isotropic functionally graded (nonhomogeneous) micropolar thermoe-
lastic half-space when subjected to an inclined load, based on the Lord and Shulman (LS)
theory. The material properties are assumed to be graded exponentially along the z-direction.
Utilizing the normal mode technique, the exact expressions for physical fields such as nor-
mal displacement, normal stress, shear stress, temperature field, and couple stress are de-
rived. Numerical computation of the derived results is performed for a material resembling
a magnesium crystal, and graphical representations are presented to illustrate the impacts of
nonhomogeneity parameter, material’s anisotropy, time, nonlocal parameter, microinertia,
and the inclination angle of the applied load on the variations of different physical fields.
Some specific cases of interest have been deduced from the present investigation.

Keywords Nonlocal · Transversely isotropic · Micropolar · Functionally graded · Lord and
Shulman theory

1 Introduction

The process of thermal energy transfer in solids is intricately linked to temperature dif-
ferentials and is described by Fourier’s law of heat conduction. Biot (1956) introduced
the coupled theory of thermoelasticity, which combines the equations governing both heat
conduction and elasticity. However, a notable limitation of Biot’s theory lies in its pre-
diction of an infinite speed of propagation for thermal signals, attributed to the parabolic
nature of the heat transport equation, rendering it physically implausible. To overcome
this limitation, Lord and Shulman (1967) presented a significant and comprehensive gen-
eralization of thermoelasticity theory. They introduce a crucial modification by incor-
porating a single relaxation time into the heat conduction equation. This modification
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ensures that heat signals now exhibit a finite speed of propagation, rectifying the pre-
viously unacceptable prediction of an infinite speed of thermal signals in Biot’s the-
ory. This development signifies a noteworthy evolution in the understanding and mod-
eling of heat conduction in thermoelastic materials. Some important research work of
wave propagation are performed by Zheng et al. (2021) and Yu et al. (2022) among oth-
ers.

Functionally graded materials (FGMs) are materials characterized by a gradual varia-
tion in elastic and thermal properties corresponding to changes in spatial coordinates, mak-
ing them nonhomogeneous in nature. FGMs find substantial applications in structures sub-
jected to intense thermal gradients, including combustion chambers in space vehicles, ther-
mal barrier structures in aircraft, the inner walls of nuclear furnaces in nuclear reactors,
and fins in heat exchangers, among others. Aboudi et al. (1996) presented an extension of
FGMs that involves development of a two-dimensional framework to enable modeling of
materials functionally graded in two directions. Lotfy and Tantawi (2020) examined the
interactions of photothermal elastic waves in a nonhomogeneous medium with magnetic
effects. Barak and Dhankhar (2022) addressed a problem involving thermoelastic interac-
tions in a functionally graded nonhomogeneous fiber-reinforced thermoelastic material with
temperature-dependent properties. Subsequently, Barak and Dhankhar (2023) conducted an
analysis of disturbances induced in a rotating functionally graded transversely isotropic
nonlocal thermoelastic half-space within the framework of the LS theory. Recently, Wang
et al. (2023) studied the nonlocal effect on attenuation and phase velocity of thermoelas-
tic Lamb waves in functionally graded nanoplates using an improved Legendre polynomial
approach.

Eringen and Suhubi (1964), Suhubi and Eringen (1964) and Eringen (1966) proposed
the theory of micropolar elasticity by assuming that micropolar solids are a collection of
interconnected particles in the form of small rigid bodies and can undergo macrodeforma-
tions and microrotations. This theory was further extended to include the thermal effects
by Nowacki (1966a, 1966b, 1966c) and Eringen (1970). The microcontinuum field theories
especially theories of micromorphic, microstretch, and micropolar continua are discussed
in detail by Eringen (1999). Abbas and Kumar (2014) determined the interaction in trans-
versely isotropic micropolar media due to a mechanical source. Kalkal et al. (2020) studied
the reflection of plane waves at the free surface of a rotating nonlocal micropolar isotropic
thermoelastic medium. Abouelregal et al. (2023) presented a study of two-dimensional de-
formations in a micropolar thermoelastic medium whose surface is influenced by a trans-
verse magnetic field and heated by a thermal source.

The nonlocal theories of thermoelasticity allow a characteristic length scale of the
medium which is very useful for many physically acceptable situations, where the cou-
pled thermoelasticity theory (1956) is found to be quite inefficient. In nonlocal theory, the
value of stress at any spatial reference point inside a continuum does not depend upon the
value of strain at that spatial point but also depends on the values of strain fields at other
points of the continuum. The presence of nonlocality residuals of mass, internal energy,
body force, and entropy, etc., in nonlocal elasticity models has been analyzed by Edelen
and Laws (1971), Edelen et al. (1971) and Eringen and Edelen (1972). Eringen extended
his research work on the notion of nonlocality to several different fields such as polar elas-
tic, thermoelastic, and micropolar elastic continua, etc., as are mentioned in Eringen (1972,
1974, 1984, 2002). Khurana and Tomar (2013) conducted a study on the reflection of plane
longitudinal waves in a nonlocal micropolar elastic half-space. A nonlocal Fourier’s law and
its application to the conduction of heat in two-dimensional thermal lattices are presented
by Challamel et al. (2016). Sarkar and Tomar (2019) investigated the propagation of plane
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waves in an isotropic nonlocal thermoelastic material with voids. Kalkal et al. (2023) inves-
tigated the reflection of time-harmonic plane waves from the stress free surface boundary
of a nonlocal fiber-reinforced transversely isotropic rotating thermoelastic half-space in the
context of LS theory. Poonia et al. (2023) analyzed the wave propagation in a nonlocal trans-
versely isotropic rotating voided thermoelastic half-space in the context of LS theory. In the
recent times, Barak et al. (2024) examined the effect of nonlocal parameter in a transversely
isotropic exponentially graded thermoelastic voided medium in the context of dual-phase
lag theory.

The investigation aims to examine the thermo-mechanical interactions in a nonlocal
transversely isotropic functionally graded micropolar thermoelastic medium under an in-
clined load within the framework of LS theory. Although, numerous research problems
have addressed local isotropic functionally graded micropolar thermoelastic media, ho-
mogeneous nonlocal transversely isotropic thermoelastic media and nonlocal functionally
graded transversely isotropic thermoelastic media, no prior study has explored thermo-
mechanical disturbances in a nonlocal transversely isotropic functionally graded (nonho-
mogeneous) micropolar thermoelastic medium under an inclined load in the context of
LS theory. This study examines the impact of the nonhomogeneity parameter, material
anisotropy, time, nonlocal parameter, microinertia, and load inclination angle on various
physical fields. The observed phenomena find practical applications in automobiles, nu-
clear reactors, atomic physics, aerospace, industrial engineering, and thermal power plants
etc.

2 Basic equations

Following Eringen (1970, 1984) and Abbas and Kumar (2014), the constitutive relations in
a nonlocal functionally graded (nonhomogeneous) transversely isotropic micropolar ther-
moelastic centrosymmetric medium under the purview of LS theory are given as:

(1 − ε2∇2)σij = σL
ij = Aijkl(ul,k + Elkr�r) − βij θ, (1)

(1 − ε2∇2)mij = mL
ij = Bijkl�k,l , (2)

(1 − ε2∇2)ρT0η = (ρT0η)L = ρCEθ + T0βij eij , (3)

eij = 1

2
(ui,j + uj,i), (4)

where i, j, k, l, r = 1,2,3, ∇2 denotes the Laplacian operator, ε = e0s is nonlocal parameter,
s being the internal characteristic length, e0 is the corresponding material constant, σij are
the components of stress tensor, mij are the components of couple stress tensor, ui are the
components of displacement vector uuu, Elkr is the permutation symbol, �i are the components
of microrotation vector ���, Aijkl and Bijkl are characteristic constants of the considered
micropolar material, βij = βiiδij are the components of thermal elastic coupling tensor, δij

is Kronecker delta, η is the specific entropy, CE is the specific heat at constant strain, eij are
the components of strain tensor, θ is temperature deviation from the reference temperature
given by θ = T − T0, T is absolute temperature, T0 is temperature of the material in its
natural state assumed to be | θ

T0
| � 1. The quantities σL

ij , mL
ij , and (ρT0η)L correspond to

local thermoelastic solid.
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The stress equation of motion for a nonlocal nonhomogeneous transversely isotropic
micropolar thermoelastic medium in the absence of body forces is given as

σji,j = ρüi . (5)

Following Challamel et al. (2016), the nonlocal generalization of the modified Fourier’s law
of heat conduction for thermoelastic solids is described as

(
1 − ε2∇2

)(
1 + τ0

∂

∂t

)
qi = −Kij θ,j , (6)

where qi are the components of heat flux vector, τ0 is the relaxation time, and Kij is thermal
conductivity such that Kij = Kii δij .

Within the framework of linear theory of nonlocal thermoelastic materials developed by
Eringen (1974), the energy equation for the considered model takes the following form:

ρT0η̇ = −qi,i . (7)

Using equations (2) and (6) in equation (7), one can obtain the following form of heat con-
duction equation:

(Kij θ,j ),i =
(

1 + τ0
∂

∂t

)(
∂

∂t

)[
ρCEθ + T0 βij eij

]
. (8)

The couple stress equation of motion for the considered model is described as

mik,i + Eijkσij = ρJ �̈k, (9)

where J is the microinertia.
In the above relations, a comma denotes material derivative, dot indicates partial temporal

derivative, and the summation convention is used.
For a functionally graded, i.e., nonhomogeneous material, the parameters Aijkl , βij , Bijkl ,

ρ, and Kij are no longer constant but become space-dependent. Hence we consider

[Aijkl, βij , Bijkl, ρ, Kij ] = f (xxx) [A′
ijkl, β ′

ij , B ′
ijkl, ρ ′, K ′

ij ], (10)

where A′
ijkl , β ′

ij , B ′
ijkl , ρ ′, and K ′

ij are constants and f (x) is a given dimensionless function
of the space variable xxx = (x, y, z). Keeping in view the nonhomogeneity of the parameters
defined in (10), the equations (1), (2), (5), (8), and (9) take the following forms:

(
1 − ε2∇2

)
σij = σL

ij = f (xxx)
[
A′

ijkl(ul,k + Elkr�r) − β ′
ij θδij

]
, (11)

(1 − ε2∇2)mij = mL
ij = f (xxx)B ′

ijkl�k,l , (12)
(
1 − ε2∇2

)
f (xxx)ρ ′üi = σL

ji,j , (13)

[
f (xxx)K ′

ij θ,j
]
,i =

(
1 + τ0

∂

∂t

)
∂

∂t
f (xxx)

(
ρ ′CEθ + β ′

ij T0ui,j

)
, (14)

(
1 − ε2∇2

)
f (xxx)ρ ′J �̈k = mL

ik,i + Eijkσ
L
ij . (15)
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Fig. 1 Geometry of the problem

3 Formulation of the problem

A model made up of a nonlocal functionally graded transversely isotropic micropolar ther-
moelastic medium under an inclined load in the context of LS theory is considered. The
present formulation is restricted to the xz-plane with the z-axis pointing vertically down-
wards into the medium, as shown in Fig. 1. With the consideration of the xz-plane, all the
field quantities are independent of the space variable y. The displacement vector uuu and mi-
crorotation vector ��� are taken as

uuu = (u,0,w) such that u = u(x, z, t), w = w(x, z, t) and ��� = (0,�,0). (16)

The material properties are assumed to be graded in z-direction only, so we take f (xxx)

as f (z). Along with these assumptions, the mechanical stresses and couple stresses arising
from relations (11) and (12) in the xz-plane can be expressed as

(1 − ε2∇2)σxx = σL
xx = f (z)

(
A′

11

∂u

∂x
+ A′

13

∂w

∂z
− β ′

11θ

)
, (17)

(1 − ε2∇2)σzx = σL
zx = f (z)

(
A′

56

∂w

∂x
+ A′

55

∂u

∂z
+ S1�

)
, (18)

(1 − ε2∇2)σxz = σL
xz = f (z)

(
A′

66

∂w

∂x
+ A′

56

∂u

∂z
+ S2�

)
, (19)

(1 − ε2∇2)σzz = σL
zz = f (z)

(
A′

13

∂u

∂x
+ A′

33

∂w

∂z
− β ′

33θ

)
, (20)
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(1 − ε2∇2)mzy = mL
zy = f (z)

(
B ′

66

∂�

∂z

)
, (21)

(1 − ε2∇2)mxy = mL
xy = f (z)

(
B ′

77

∂�

∂x

)
, (22)

where S1 = A′
56 − A′

55 and S2 = A′
66 − A′

56.
In view of restrictions (16) and components of stresses defined in equations (17)–(22),

the stress equation of motion (13), the heat conduction equation (14), and the couple stress
equation of motion (15) yield the following equations:

(1 − ε2∇2)f (z)ρ ′ ∂
2u

∂t2
= ∂f (z)

∂z

[
A′

55

∂u

∂z
+ A′

56

∂w

∂x
+ S ′

1�

]
+ f (z)

[
A′

11

∂2u

∂x2

+(A′
13 + A′

56)
∂2w

∂x∂z
+ A′

55

∂2u

∂z2
− β ′

11

∂θ

∂x
+ S ′

1

∂�

∂z

]
, (23)

(1 − ε2∇2)f (z)ρ ′ ∂
2w

∂t2
= ∂f (z)

∂z

[
A′

13

∂u

∂x
+ A′

33

∂w

∂z
− β ′

33θ

]
+ f (z)

[
A′

66

∂2w

∂x2

+(A′
13 + A′

56)
∂2u

∂x∂z
+ A′

33

∂2w

∂z2
− β ′

33

∂θ

∂z
+ S ′

2

∂�

∂x

]
, (24)

∂f (z)

∂z
K ′

33

∂θ

∂z
+ f (z)

[
K ′

11

∂2θ

∂x2
+ K ′

33

∂2θ

∂z2

]

=
(

1 + τ0
∂

∂t

)
∂

∂t
f (z)

[
ρ ′CEθ + β ′

11T0
∂u

∂x
+ β ′

33T0
∂w

∂z

]
, (25)

(1 − ε2∇2)f (z)ρ ′J
∂2�

∂t2
= ∂f (z)

∂z
B ′

66

∂�

∂z
+ f (z)

[
B ′

77

∂2�

∂x2
+ B ′

66

∂2�

∂z2

−S ′
3� − S ′

1

∂u

∂z
− S ′

2

∂w

∂x

]
, (26)

where S3 = S2 − S1.
For convenience, the governing field equations can be normalized by introducing the

following set of nondimensional quantities:

(x̂, ẑ, û, ŵ, ε̂) = ω∗

c1
(x, z, u, w, ε), (m̂

ij , mL
ij

̂
) = c1

ω∗ B ′
66

(mij , mL
ij ),

(σ̂
ij , σL

ij

̂
) = 1

ρ ′c2
1

(σij , σL
ij ), (t̂, τ̂0) = ω∗(t, τ0), �̂= A′

55

S1
�,

θ̂= 1

T0
θ, (27)

where

c2
1 = A′

11

ρ ′ ,ω∗2 = S3

ρ ′ J
.
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4 Exponential variation of nonhomogeneity

To account for the nonhomogeneity of the model, let us consider f (z) = e−nz, where n is
the nonhomogeneity parameter. Using this expression of f (z) and the dimensionless quan-
tities (27), the governing equations (17)–(26) transform to the following forms (ignoring the
hats):

(1 − ε2∇2)σxx = σL
xx = e−nz

(
∂u

∂x
+ J1

∂w

∂z
− J2θ

)
, (28)

(1 − ε2∇2)σzx = σL
zx = e−nz

(
J5

∂w

∂x
+ J6

∂u

∂z
+ J7�

)
, (29)

(1 − ε2∇2)σxz = σL
xz = e−nz

(
J8

∂w

∂x
+ J5

∂u

∂z
+ J9�

)
, (30)

(1 − ε2∇2)σzz = σL
zz = e−nz

(
J1

∂u

∂x
+ J3

∂w

∂z
− J4θ

)
, (31)

(1 − ε2∇2)mzy = mL
zy = e−nz

(
J11

∂�

∂z

)
, (32)

(1 − ε2∇2)mxy = mL
xy = e−nz

(
J10

∂�

∂x

)
, (33)

(1 − ε2∇2)
∂2u

∂t2
=

[
∂2u

∂x2
+ J20

∂2w

∂x∂z
+ J6

∂2u

∂z2
− J2

∂θ

∂x
+ J7

∂�

∂z

]

−n

[
J5

∂w

∂x
+ J6

∂u

∂z
+ J7�

]
, (34)

(1 − ε2∇2)
∂2w

∂t2
=

[
J8

∂2w

∂x2
+ J20

∂2u

∂x∂z
+ J3

∂2w

∂z2
− J4

∂θ

∂z
+ J9

∂�

∂x

]

−n

[
J1

∂u

∂x
+ J3

∂w

∂z
− J4θ

]
, (35)

J0
∂2θ

∂x2
+ ∂2θ

∂z2
− n

∂θ

∂z
=

(
1 + τ0

∂

∂t

)
∂

∂t

[
J12θ + J13

∂u

∂x
+ J14

∂w

∂z

]
, (36)

(1 − ε2∇2)
∂2�

∂t2
= J15

∂2�

∂x2
+ J16

∂2�

∂z2
− J17� − J18

∂u

∂z
− J19

∂w

∂x
− nJ16

∂�

∂z
, (37)

where

J0 = K ′
11

K ′
33

, [J1, J3, J5, J6, J8] = 1

A′
11

[A′
13, A′

33, A′
56, A′

55, A′
66],

[J2, J4] = T0

A′
11

[β ′
11, β ′

33], [J7, J9] = S ′
1

A′
11A

′
55

[S ′
1, S ′

2],

[J10, J11] = S ′
1

B ′
66A

′
55

[B ′
77, B ′

66], [J12, J13, J14] = c2
1

ω∗K ′
11

[ρ ′CE, β ′
11, β ′

33],
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[J15, J16, J1] = 1

J A′
11

[B ′
77, B ′

66,
S ′

3c
2
1

ω∗2
], [J18, J19] = A′

55

Jω∗2ρS ′
1

[S ′
1, S ′

2],

[J18, J19] = 1

ω∗K11
[K∗

11, K∗
33], J20 = J1 + J5.

5 Solution methodology

The exact solutions without any assumed constraints on the physical quantities are obtained
in this section using normal mode analysis. Therefore, the physical quantities under discus-
sion can be decomposed in terms of normal modes in the following form:

[u, w, σij , σL
ij , mij , mL

ij , θ, �](x, z, t) = [u∗, w∗, σ ∗
ij , σL

ij

∗
, m∗

ij , mL
ij

∗
,

θ∗, �∗](z) exp(ωt + ιmx), (38)

where m is the wave number in the x-direction, ι is the imaginary unit, ω is the frequency,
and u∗, w∗, σ ∗

ij , σL
ij

∗
, m∗

ij , mL
ij

∗
, θ∗, and �∗ are the amplitudes of the functions u, w, σij ,

σL
ij , mij , mL

ij , θ , and �, respectively.
Introducing expression (38) to equations (32)–(35), one can get

(I11D
2 + I12D + I13) u∗(z) + (I14D + I15) w∗(z) + I16 θ∗(z)

+(I17D + I18) �∗(z) = 0, (39)

(I14D + I21) u∗(z) + (I22D
2 + I23D + I24) w∗(z) + (I25D + I26)θ

∗(z)

+I27�
∗(z) = 0, (40)

I31 u∗(z) + I32D w∗(z) + (D2 + I33D + I34) θ∗(z) = 0, (41)

I41D u∗(z) + I42 w∗(z) + (I43D
2 + I44D + I45) �∗(z) = 0, (42)

where

D = d

dz
, I11 = J6 + ε2ω2, I12 = −nJ6, I13 = −[m2 + ω2(1 + ε2m2)],

I14 = ιmJ20, I15 = −ιnmJ5, I16 = −ιmJ2, I17 = J7, I18 = −nJ7,

I21 = −nmJ1ι, I22 = J3 + ε2ω2, I23 = −nJ3, I24 = −J8m
2 − ω2(1 + ε2m2),

I25 = −J4, I26 = nJ4, I27 = J9mι, I28 = ω(1 + τ0ω), I31 = −ιmJ13I28,

I32 = −J14I28, I33 = −n, I34 = −J0m
2 − J12I28, I41 = −J18,

I42 = −J19mι, I43 = J16 + ε2ω2, I44 = −J18 − nJ16,

I45 = −[ω2(1 + ε2m2) + J15m
2 + J17].

A system of four linear differential equations in the physical quantities u∗(z), w∗(z), θ∗(z),
and �∗(z) are formed by the equations (39) through (42). The following differential equation
of order eight is derived by using the elimination method:

[
D8 + A1D

7 + A2D
6 + A3D

5 + A4D
4 + A5D

3 + A6D
2 + A7D + A8

]
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(u∗, w∗, θ∗, �∗)(z) = 0, (43)

where Ai (i = 1,2,3, . . . ,8) are listed in the Appendix.
The solution of equation (43), which is bounded as z → ∞, is given by

(u∗,w∗, θ∗, �∗)(z) =
4∑

j=1

(Hj ,H
′
j ,H

′′
j ,H ′′′

j )(m,ω)e−λj z, for Re(λj ) > 0, (44)

where Hj , H ′
j , H ′′

j , and H ′′′
j are expressions which depend upon ω and m. Using the solu-

tions (44) in the system of equations (39)–(42), one can get the following expressions:

[u∗, w∗, θ∗, �∗](z) =
4∑

j=1

[1, N1j , N2j , N3j ]Hj(m, ω)e−λj z, for Re(λj ) > 0, (45)

where

N1j = −(H11λ
4
j − H21λ

3
j + H22λ

2
j − H23λj + H24)

(−H14λ
5
j + H25λ

4
j − H26λ

3
j + H27λ

2
j − H28λj + H29)

,

N2j = (H11λ
2
j − H12λj + H13) + (−H14λ

3
j + H15λ

2
j − H16λj + H17)N1j

(−H18λ
2
j + H19λj − H20)

,

N3j = (I11λ
2
j − I12λj + I13) + (−I14λj + I15)N1j + I16N2j

(I17λj − I18)
,

H11 = (I27I11 − I17I14), H12 = (I27I12 − I14I18 − I21I17),

H13 = (I13I27 − I21I18), H14 = (−I22I17), H15 = (−I22I18 − I23I17),

H16 = (I14I27 − I23I18 − I24I17), H17 = (I27I15 − I24I18), H18 = (−I25I17),

H19 = (−I25I18 − I26I17), H20 = (I16I27 − I18I26), H21 = H11I33 + H12,

H22 = (H11I34 + H12I33 + H13 − H18I31),

H23 = (H12I34 + H13I33 − H19I31),

H24 = (H13I34 − H20I31), H25 = (H14I33 + H15),

H26 = (H14I34 + H15I33 + H16 − H18I32),

H27 = (H15I34 + H16I33 + H17 − H19I32),

H28 = (H16I34 + H17I33 − H20I32),

H29 = (H17I34).

In view of solution equation (45), normal stress (31), shear stress (29), and couple stress
(32) take the form

[σ ∗
zz, σ ∗

zx, m∗
zy](z) =

4∑

j=1

[N4j , N5j , N6j ]Hj(m, ω)e−λj z−nz, for Re(λj ) > 0, (46)
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where

N4j =
(
ιmJ1 − J3λjN1j − J4N2j

)

[
1 − ε2(λ2

j − m2)
] , N5j =

(−J6λj + J5ιmN1j + J7N3j

)

[
1 − ε2(λ2

j − m2)
] ,

N6j =
(−J11λjN3j

)

[
1 − ε2(λ2

j − m2)
] .

6 Application: inclined mechanical load is subjected to the surface
boundary of the medium

The surface of the nonlocal transversely isotropic micropolar functionally graded thermoe-
lastic half-space, i.e., z = 0, is subjected to a mechanical load RRR (R1,R2,0), having an in-
clination angle ϕ with the negative x-axis, as shown in Fig. 1. The applied load RRR is de-
composed as a normal load R1 = R cosϕ and shear load R2 = R sinϕ, where |RRR| = R.
Temperature field and couple stress are assumed to be zero at the surface of the half-space,
therefore the boundary conditions can be written as

σzz(x,0, t) = −R1, (47)

σzx(x,0, t) = −R2, (48)

θ(x,0, t) = 0, (49)

mzy(x,0, t) = 0, at z = 0. (50)

Using the normal mode technique (38), expressions (45) and (46), the boundary conditions
(47)–(50) yield a nonhomogeneous system of four linear equations, which can be written in
matrix form as

⎡

⎢⎢
⎣

N41 N42 N43 N44

N51 N52 N53 N54

N21 N22 N23 N24

N61 N62 N63 N64

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

H1

H2

H3

H4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−R∗
1

−R∗
2

0
0

⎤

⎥⎥
⎦ , (51)

where R∗
1 = R∗ cosϕ, R∗

2 = R∗ sinϕ, and R∗ is defined by the expression R = R∗ exp(ωt +
imx).

The expressions for Hj(j = 1,2,3,4) obtained by solving the system (51) are:

H1 = �1

�
, H2 = �2

�
, H3 = �3

�
, H4 = �4

�
, (52)

where

� = N41r1 − N42r2 + N43r3 − N44r4,�1 = −R∗
1r1 + R∗

2o1,

�2 = R∗
1r2 − R∗

2o2,�3 = −R∗
1r3 + R∗

2o3, �4 = R∗
1r4 − R∗

2o4,

r1 = N52(N63N24 − N23N64) − N53(N62N24 − N22N64) + N54(N62N23 − N22N63),

r2 = N51(N63N24 − N23N64) − N53(N61N24 − N21N64) + N54(N61N23 − N21N63),

r3 = N51(N62N24 − N22N64) − N52(N61N24 − N21N64) + N54(N61N22 − N21N62),
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r4 = N51(N62N23 − N22N63) − N52(N61N23 − N21N63) + N53(N61N22 − N21N62),

o1 = N42(N63N24 − N23N64) − N43(N62N24 − N22N64) + N44(N62N23 − N22N63),

o2 = N41(N63N24 − N23N64) − N43(N61N24 − N21N64) + N44(N61N23 − N21N63),

o3 = N41(N62N24 − N22N64) − N42(N61N24 − N21N64) + N44(N61N22 − N21N62),

o4 = N41(N62N23 − N22N63) − N42(N61N23 − N21N63) + N43(N61N22 − N21N62).

Substitution of (52) into (45) and (46) provides us the following expressions of physical
fields:

u∗(z) = 1

�
[�1e

−λ1z + �2e
−λ2z + �3e

−λ3z + �4e
−λ4z], (53)

w∗(z) = 1

�
[N11�1e

−λ1z + N12�2e
−λ2z + N13�3e

−λ3z + N14�4e
−λ4z], (54)

θ∗(z) = 1

�
[N21�1e

−λ1z + N22�2e
−λ2z + N23�3e

−λ3z + N24�4e
−λ4z], (55)

�∗(z) = 1

�
[N31�1e

−λ1z + N32�2e
−λ2z + N33�3e

−λ3z + N34�4e
−λ4z], (56)

σ ∗
zz(z) = 1

�
[N41�1e

−λ1z + N42�2e
−λ2z + N43�3e

−λ3z + N44�4e
−λ4z]e−nz, (57)

σ ∗
zx(z) = 1

�
[N51�1e

−λ1z + N52�2e
−λ2z + N53�3e

−λ3z + N54�4e
−λ4z]e−nz, (58)

m∗
zy(z) = 1

�
[N61�1e

−λ1z + N62�2e
−λ2z + N63�3e

−λ3z + N64�4e
−λ4z]e−nz. (59)

7 Particular cases

7.1 Neglecting nonlocality effect

To discuss the problem in a local transversely isotropic functionally graded micopolar ther-
moelastic medium under an inclined load in the context of LS theory, it is sufficient to set the
value of nonlocal parameter ε as ε = 0 in the basic field equations. Furthermore, by setting
the values of stiffness parameters in the constitutive relations as A′

11 = A′
33 = λ + 2μ + K ,

A′
13 = λ, A′

56 = μ, A′
55 = A′

66 = μ + K , −S ′
1 = S ′

2 = K , B ′
77 = B ′

66 = γ , K11 = K33,
β ′

11 = β ′
33 = (3λ + 2μ)αt , α11 = α33 = αt , one can investigate the interactions in a local

isotropic functionally graded micropolar thermoelastic medium under an inclined load in
the context of LS theory. Along with this modification, the results obtained match with the
limiting case (without magnetic field) of Kalkal et al. (2020).

7.2 Without micropolarity effect

To discuss the problem in a nonlocal transversely isotropic functionally graded thermoelastic
medium without micropolarity effect under an inclined load in the context of LS theory, it is
sufficient to set the values of parameters in basic equations as Aij = Cij , Bij = J = mij =
Eijk = 0. Along with these modifications, by setting ϕ = 0◦, the results obtained match with
the limiting case (without rotation) of Barak and Dhankhar (2023).
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Table 1 Physical values of the material parameters

Parameter Unit Value Parameter Unit Value

A′
11 N m−2 17.80 × 1010 A′

13 N m−2 7.59 × 1010

A′
33 N m−2 1.843 × 1010 A′

55 N m−2 4.357 × 1010

A′
56 N m−2 1.89 × 1010 A′

66 N m−2 4.42 × 1010

K ′
11 W m−1 deg−1 1.7 × 102 K ′

33 W m−1 deg−1 1.73 × 102

B ′
66 N 5.648 × 109 B ′

77 N 2.63 × 109

ρ′ kg m−3 1.74 × 103 T0 K 298

J m2 0.2 × 10−2 CE J kg−1 deg−1 1.04 × 103

β ′
11 N m−2 deg−1 2.68 × 106 β ′

33 N m−2 deg−1 2.61 × 106

n m−1 0.1 × 10−1 ω s−1 1.0

t s 0.1 × 10−1 ϕ degree (◦) 30

λ′ N m−2 7.59 × 109 μ′ N m−2 1.89 × 109

γ ′ N 2.63 × 109 K ′ N m−2 1.49 × 109

ε m 0.39 × 10−2 τ0 s 0.02

7.3 Homogeneous transversely isotropic medium without micropolarity effect

By setting n = 0, i.e., nonhomogeneity function f (x) = 1 in formulation of without mi-
cropolarity effect case of this model, we shall be dealing with a nonlocal homogeneous
transversely isotropic thermoelastic medium under an inclined mechanical load in the con-
text of LS theory. In addition, by setting inclination angle of the load as nonlocal parameter
as ϕ = 0◦, the governing equations and formulation of this particular case match exactly
with those of Sheoran et al. (2021) and hence, the results obtained in this particular case
match with the limiting case (without rotation) of Sheoran et al. (2021).

7.4 Local isotropic nonhomogeneous medium without micropolarity effect

To discuss the problem in an isotropic nonlocal functionally graded micropolar thermoe-
lastic medium in the context of LS, it is sufficient to set the values of stiffness param-
eters Aij in the constitutive relations as A11 = A33 = λ + 2μ + K , A13 = λ, A56 = μ,
A55 = A66 = μ + K , −S1 = S2 = K , B77 = B66 = γ , K11 = K33, β11 = β33 = (3λ + 2μ)αt ,
α11 = α22 = α33 = αt . Furthermore, by setting ϕ = 0◦, ε = 0, and neglecting micropolarity
effect along with these modifications, if we assimilate GN theory of type III instead of LS
theory, our results match with the limiting case (without magnetic field) of Gunghas et al.
(2019).

8 Numerical results and discussion

In support of the theoretical approach presented earlier, a numerical computation has been
carried out using MATLAB software to illustrate the problem in greater details. For the
purpose of simulation, we are considering a model made up of a magnesium crystal-like
material whose relevant parameters are listed in Table 1 (Eringen (1984) and Kumar and
Gupta (2010)). Utilizing the numerical values of the parameters mentioned in Table 1, the
values of the dimensionless physical field variables have been computed and results are
shown as graphs at various positions along the z-axis with m = 1.1, R∗ = 1.0, and x = 1.0.



Mechanics of Time-Dependent Materials

Fig. 2 Effect of nonhomogeneity parameter on normal displacement

Fig. 3 Effect of nonhomogeneity parameter on normal stress

Fig. 4 Effect of nonhomogeneity parameter on shear stress

Figures 2–6 illustrate the effect of nonhomogeneity parameter n on physical fields, i.e.,
normal displacement, normal stress, shear stress, temperature field, and couple stress, re-
spectively, for three different values of n (0.010, 0.005, and 0.000). The influences of mate-
rial’s anisotropy and time on normal displacement, normal stress, shear stress, temperature
field, and couple stress for transversely isotropic and isotropic media at two different values
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Fig. 5 Effect of nonhomogeneity parameter on temperature field

Fig. 6 Effect of nonhomogeneity parameter on couple stress

Fig. 7 Influences of material’s anisotropy and time on normal displacement

of time t (0.01 and 0.20) are shown in Figs. 7–11, respectively. Figures 12–16 offer the
graphic details about the effect of nonlocal parameter on the physical fields for three differ-
ent values of ε (0.39 × 10−2, 0.39 × 10−3, and 0.00). To analyze the effect of microinertia J
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Fig. 8 Influences of material’s anisotropy and time on normal stress

Fig. 9 Influences of material’s anisotropy and time on shear stress

Fig. 10 Influences of material’s anisotropy and time on temperature field

on the physical fields, Figs. 17–21 are presented for three different values of J (0.2 × 10−2,
0.4 × 10−2, and 0.6 × 10−2). Figures 22–26 are plotted to analyze the effect of inclination
angle ϕ of the load on all the physical fields for three different values of ϕ (0◦, 30◦, and 60◦).
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Fig. 11 Influences of material’s anisotropy and time on couple stress

Fig. 12 Effect of nonlocal parameter on normal displacement

Fig. 13 Effect of nonlocal parameter on normal stress

Figure 2 illustrates that corresponding to three different values (0.01, 0.005, and 0.000)
of nonhomogeneity parameter n, all three curves of normal displacement w exhibit same
pattern of distribution with difference in magnitudes. It is observed from the figure that the
nonhomogeneity parameter has a mixed influence on the profile of normal displacement. It
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Fig. 14 Effect of nonlocal parameter on shear stress

Fig. 15 Effect of nonlocal parameter on temperature field

Fig. 16 Effect of nonlocal parameter on couple stress

is seen from Fig. 3 that normal stress is compressive in nature and all three curves of normal
stress start with a coinciding nonzero value at the boundary surface of the medium, which
satisfies the boundary condition as an inclined mechanical load is imposed on the half-space.
It is noted from Fig. 4 that the nonhomogeneity parameter has a mixed effect on shear stress.



Mechanics of Time-Dependent Materials

Fig. 17 Effect of microinertia J on normal displacement

Fig. 18 Effect of microinertia J on normal stress

Fig. 19 Effect of microinertia J on shear stress

In Figs. 5–6, there is significant decrement in the modulus values of temperature distribu-
tion and couple stress for increasing values of nonhomogeneity parameter n. Therefore, the
nonhomogeneity parameter has a decreasing effect on temperature distribution and couple
stress.



Mechanics of Time-Dependent Materials

Fig. 20 Effect of microinertia J on temperature field

Fig. 21 Effect of microinertia J on couple stress

Fig. 22 Effect of inclination angle of the load on normal displacement

Figures 7 and 9 show that all the curves of normal displacement and shear stress start
with positive and negative values, respectively, at the boundary surface of the medium. The
curves exhibit variations with difference in magnitude to finally approach zero as z ≥ 6. A
careful observation of the figure reveals that the anisotropy of the material has a mixed effect
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Fig. 23 Effect of inclination angle of the load on normal stress

Fig. 24 Effect of inclination angle of the load on shear stress

Fig. 25 Effect of inclination angle of the load on temperature field

on normal displacement and shear stress. Figures 8, 10, and 11 show that the magnitude of
values of normal stress, temperature field, and couple stress is larger in the transversely
isotropic medium than in the isotropic medium. Therefore, material’s anisotropy has an
increasing effect on the profiles of normal stress, temperature field, and couple stress. In
addition, it is also noticed from Figs. 7–11 that all the physical fields are markedly and
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Fig. 26 Effect of inclination angle of the load on couple stress

increasingly influenced by the passage of time t . Figures 12–16 are drawn to observe the
graphical details of normal displacement, normal stress, shear stress, temperature field, and
couple stress, respectively, against the spatial distance z for three different values of nonlocal
parameter ε (0.39 × 10−2, 0.39 × 10−3, and 0.00). The figures clearly indicate that nonlocal
parameter ε has a mixed kind of effect on normal displacement, normal stress, and shear
stress, whereas it has a decreasing effect on temperature field and couple stress.

Figure 17 is portrayed to examine the influence of micropolar parameter, microiner-
tia J , on the variations of normal displacement for the three different models having
J = 0.2 × 10−2, 0.4 × 10−2, and 0.6 × 10−2. It is noticed from the figure that the gen-
eralized theories have a mixed effect on normal displacement. Figures 18 and 19 reveal the
variations of normal stress and shear stress, respectively, for the three specific values of mi-
croinertia. A view of the figures emphasizes the point that the normal and shear stresses
start with nonzero negative values at the boundary surface of the considered medium, which
satisfies the boundary conditions. Also, an increment in value of the microinertia increases
the magnitude of normal stress. The variations of temperature distribution and couple stress
against distance z are depicted in Figs. 20 and 21, respectively. The figures show that the
temperature field and couple stress begin with a zero value at the surface, which is physi-
cally plausible and consistent with the theoretical boundary condition because the medium
is considered under an inclined mechanical load only. It is observed from these figures that
all the physical fields are significantly impacted by the micropolar parameter (microinertia)
in a mixed manner, except the normal stress.

Figures 22–26 are drawn to observe the graphical details of normal displacement, normal
stress, shear stress, temperature field, and couple stress, respectively, against the spatial dis-
tance z for three different values of inclination angle ϕ of the mechanical load applied at the
boundary of the half-space. The figures clearly indicate that inclination angle of the load has
a mixed effect on displacement and shear stress, with a decreasing impact on normal stress
and an increasing influence on the temperature distribution and couple stress.

9 Concluding remarks

The present study offers a mathematical model for examining the disturbances in a trans-
versely isotropic nonhomogeneous nonlocal micropolar thermoelastic medium due to an
inclined mechanical load within the framework of LS theory, utilizing the normal mode
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technique. Various factors such as nonhomogeneity parameter, material’s anisotropy, time,
nonlocal parameter, microinertia, and inclination angle influences the distribution of physi-
cal fields. The following remarks are concluded from the analysis of this study:

1. The nonhomogeneity parameter has a mixed effect on the normal displacement and shear
stress, but it has a decreasing effect on the normal stress, temperature distribution, and
couple stress.

2. The anisotropy of the material increasingly affects the profiles of normal stress, temper-
ature field, and couple stress. However, its impact on the profiles of normal displacement
and shear stress is mixed. Time has an increasing effect on all the profiles of all the
physical fields.

3. The nonlocal parameter exhibits a mixed impact on the normal displacement, normal
stress, and shear stress, whereas it consistently increases the profiles of temperature dis-
tribution and couple stress.

4. All the physical fields, i.e., normal displacement, normal stress, shear stress, temperature
distribution, and couple stress, are significantly impacted by the micropolar parameter,
namely microinertia.

5. The inclination angle of the load has a mixed effect on the displacement and shear stress,
with a decreasing impact on the normal stress and an increasing influence on the temper-
ature distribution and couple stress.

The aforementioned study examines applications for problems relating to seismology, the
second sound effect, developing novel materials, etc.

Appendix

A1 = L12

L11
, A2 = L13

L11
, A3 = L14

L11
, A4 = L15

L11
, A5 = L16

L11
, A6 = L17

L11
,

A7 = L18

L11
, A8 = L19

L11
, L11 = I11I22I43,

L12 = I11I22I44 + I11I23I43 + I12I22I43 + I11I22I33I43,

L13 = T1 + T2 + T3,L14 = T4 + T5 + T6 + T7 + T8,

L15 = T9 + T10 + T11 + T12 + T13 + T14 + T15 + T16 + T17,

L16 = T18 + T19 + T20 + T21 + T22 + T23 + T24 + T25 + T26 + T27,

L17 = T28 + T29 + T30 + T31 + T32 + T33 + T34 + T35 + T36,

L18 = T37 + T38 + T39 + T40 + T41,L19 = +T42 + T43,

T1 = I11I22I45 − I 2
14I43 + I11I23I44 + I11I24I43 + I12I22I44 + I12I23I43,

T2 = I13I22I43 − I17I22I41 + I11I22I33I44 + I11I22I34I43 + I11I23I33I43,

T3 = I12I22I33I43 − I11I25I32I43,

T4 = I11I23I45 − I14I15I43 − I14I21I43 − I 2
14I44 + I11I24I44 + I12I22I45,

T5 = +I12I23I44 + I12I24I43 + I13I22I44 + I13I23I43 − I17I23I41 − I18I22I41,

T6 = −I 2
14I33I43 + I11I22I33I45 + I11I22I34I44 + I11I23I33I44 + I11I23I34I43,



Mechanics of Time-Dependent Materials

T7 = I11I24I33I43 + I12I22I33I44 + I12I22I34I43 + I12I23I33I43 + I13I22I33I43,

T8 = −I11I25I32I44 − I11I26I32I43 − I12I25I32I43 − I17I22I33I41,

T9 = I14I17I42 − I14I15I44 − I 2
14I45 − I14I21I44 − I15I21I43 + I11I24I45,

T10 = −I11I27I42 + I12I23I45 + I12I24I44 + I13I22I45 + I13I23I44 + I13I24I43,

T11 = I14I27I41 − I17I24I41 − I18I23I41 − I 2
14I33I44 − I 2

14I34I43 − I14I15I33I43,

T12 = I14I16I32I43 − I14I21I33I43 + I11I22I34I45 + I11I23I33I45 + I11I23I34I44,

T13 = I11I24I33I44 + I11I24I34I43 + I12I22I33I45 + I12I22I34I44 + I12I23I33I44,

T14 = I12I23I34I43 + I12I24I33I43 + I13I22I33I44 + I13I22I34I43 + I13I23I33I43,

T15 = −I16I22I31I43 − I11I25I32I45 − I11I26I32I44 − I12I25I32I44 − I12I26I32I43,

T16 = −I13I25I32I43 + I14I25I31I43 − I17I22I34I41 − I17I23I33I41 − I18I22I33I41,

T17 = I17I25I32I41,

T18 = I14I18I42 − I14I15I45 − I14I21I45 − I15I21I44 + I17I21I42 + I12I24I45,

T19 = −I12I27I42 + I13I23I45 + I13I24I44 + I15I27I41 − I18I24I41 − I 2
14I33I45,

T20 = −I 2
14I34I44 − I14I15I33I44 − I14I15I34I43 + I14I16I32I44 + I14I17I33I42,

T21 = −I14I21I33I44 − I14I21I34I43 − I15I21I33I43 + I16I21I32I43 + I11I23I34I45,

T22 = I11I24I33I45 + I11I24I34I44 − I11I27I33I42 + I12I22I34I45 + I12I23I33I45,

T23 = I12I23I34I44 + I12I24I33I44 + I12I24I34I43 + I13I22I33I45 + I13I22I34I44,

T24 = I13I23I33I44 + I13I23I34I43 + I13I24I33I43 − I16I22I31I44 − I16I23I31I43,

T25 = −I11I26I32I45 − I12I25I32I45 − I12I26I32I44 − I13I25I32I44 − I13I26I32I43,

T26 = I14I25I31I44 + I14I26I31I43 + I15I25I31I43 + I14I27I33I41 − I17I23I34I41,

T27 = −I17I24I33I41 − I18I22I34I41 − I18I23I33I41 + I17I26I32I41 + I18I25I32I41,

T28 = I18I21I42 − I15I21I45 + I13I24I45 − I13I27I42 − I 2
14I34I45 − I14I15I33I45,

T29 = −I14I15I34I44 + I14I16I32I45 + I14I17I34I42 + I14I18I33I42 − I14I21I33I45,

T30 = −I14I21I34I44 − I15I21I33I44 − I15I21I34I43 + I16I21I32I44 + I17I21I33I42,

T31 = I11I24I34I45 − I11I27I34I42 + I12I23I34I45 + I12I24I33I45 + I12I24I34I44,

T32 = −I12I27I33I42 + I13I22I34I45 + I13I23I33I45 + I13I23I34I44 + I13I24I33I44,

T33 = I13I24I34I43 − I16I22I31I45 − I16I23I31I44 − I16I24I31I43 − I12I26I32I45,

T34 = −I13I25I32I45 − I13I26I32I44 + I14I25I31I45 + I14I26I31I44 + I15I25I31I44,

T35 = I15I26I31I43 − I17I25I31I42 + I14I27I34I41 + I15I27I33I41 − I16I27I32I41,

T36 = −I17I24I34I41 − I18I23I34I41 − I18I24I33I41 + I18I26I32I41,

T37 = I14I18I34I42 − I14I15I34I45 − I14I21I34I45 − I15I21I33I45 − I15I21I34I44,

T38 = I16I21I32I45 + I17I21I34I42 + I18I21I33I42 + I12I24I34I45 − I12I27I34I42,
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T39 = I13I23I34I45 + I13I24I33I45 + I13I24I34I44 − I13I27I33I42 − I16I23I31I45,

T40 = −I16I24I31I44 − I13I26I32I45 + I14I26I31I45 + I15I25I31I45 + I15I26I31I44,

T41 = −I17I26I31I42 − I18I25I31I42 + I15I27I34I41 − I18I24I34I41,

T42 = −I15I21I34I45 + I18I21I34I42 + I13I24I34I45 − I13I27I34I42 − I16I24I31I45,

T43 = I16I27I31I42 + I15I26I31I45 − I18I26I31I42.
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