
Mechanics of Time-Dependent Materials (2024) 28:65–79
https://doi.org/10.1007/s11043-024-09673-9

R E S E A R C H

Creep instability analysis of viscoelastic sandwich shell
panels

Nasrin Jafari1 · Mojtaba Azhari1

Received: 23 December 2023 / Accepted: 2 February 2024 / Published online: 13 February 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
This paper considers the creep instability analysis of time-dependent sandwich cylindrical
and spherical shell panels of quadrilateral planforms having elastic faces and viscoelastic
cores according to the first-order shear deformation theory. The viscoelastic properties of
the core are extracted based on the Boltzmann integral law. The equilibrium equation is
expressed utilizing the virtual work principle. The space and time parts of the displace-
ment vector are approximated using the simple HP-cloud mesh-free method (which has H
refinement and P enrichment properties), and the exponential time function, respectively.
The stiffness and geometry matrices are constructed in the Laplace–Carson domain. Finally,
the time behavior of viscoelastic sandwich shell panels under in-plane compressions is pre-
dicted by solving the eigenvalue problem in the Laplace–Carson domain. Also, the maxi-
mum compressive load is determined which can be applied to the time-dependent sandwich
shell panels without any creep instability. This critical compression is less than the buckling
load of the viscoelastic sandwich shell panel at time zero.

Keywords Creep instability analysis · Time function · Time-dependent core · Viscoelastic
sandwich shell panels

1 Introduction

Recently the employment of sandwich shell panels with viscoelastic cores has increased in
various advanced industries. These structures possess some good mechanical characteristics
such as lightweight, high bending stiffness, and good damping. Therefore, engineers need
to know about viscoelastic sandwich shell instability conditions.

On the other hand, creep instability analysis is one of the important parameters in de-
signing viscoelastic shells. Creep instability is a critical condition of viscoelastic structures
in which the deflections diverge to infinity as time increases. The viscoelastic instability or
creep instability is related to the ratio of applied in-plane compressive load to the elastic
buckling load at time zero, and time-dependent viscoelastic material property, too.

Some papers have considered the buckling analysis of shells, while other papers have
investigated the thermal buckling analysis of viscoelastic shells. Ishakov (1999) analyzed
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the stability of viscoelastic flexible thin shallow hyperbolic paraboloid shells subjected to
transversal loads considering the initial imperfection and geometrical nonlinearity. Ferreira
and Barbosa (2000) presented the stability analysis of orthotropic composite shell structures
based on the finite element method. Pradeep et al. (2006) studied the stability and vibration
analysis of viscoelastic sandwich cylinders with viscoelastic cores under the thermal envi-
ronment utilizing the semianalytical finite element method. Ganesan and Sethuraman (2007)
considered the buckling and free vibration analysis of sandwich general shells of revolution
under the thermal environment employing the semianalytical finite element method. Mah-
moudkhani et al. (2016) considered the aero-thermo-elastic stability of sandwich cylindrical
shells with viscoelastic cores in supersonic airflow based on the von Karman–Donnell kine-
matic nonlinearity. Li and Liu (2022) investigated the thermal buckling and free vibration
analysis of viscoelastic functionally graded sandwich shells with tunable auxetic honeycomb
cores.

Also, several papers have studied the dynamic buckling analysis of viscoelastic shells.
Tylikowski (1989) studied the dynamic stability analysis of Voigt–Kelvin viscoelastic cylin-
drical circular shells under time-dependent membrane loads. Drozdov (1993) presented
the dynamic stability analysis of viscoelastic cylindrical shells subjected to periodic and
stochastic loadings. Hajmohammad et al. (2018) investigated the dynamic buckling analysis
of multiphase nanocomposite viscoelastic laminated conical shells under moisture, temper-
ature, and magnetic loads. Al-Furjan et al. (2020) considered the dynamic buckling analysis
of viscoelastic carbon nano cones subjected to magnetic and thermal loads based on the
higher-order nonlocal viscoelastic strain gradient theory. Biswal and Mohanty (2020) in-
vestigated the free vibration and stability analysis of doubly curved laminated composite
spherical sandwich shell panels with viscoelastic cores subjected to uniaxial and biaxial
harmonic excitations based on the Sander’s approximation.

Some other papers have considered the creep buckling analysis of viscoelastic shells.
Davidson and Browning (1964) studied the creep buckling analysis of axially compressed
cylindrical shells with viscoelastic cores. Vinogradov (1986) presented the creep-stability
analysis of viscoelastic cylindrical shells subjected to axial compressions. Peng et al. (2007)
considered the critical buckling load of viscoelastic laminated circular cylindrical shells
under axial compressions within the theory of classic buckling based on the Boltzmann
hereditary integral. Liu et al. (2022) studied the time-dependent buckling analysis of linear
viscoelastic spherical shells based on the small-strain and moderate-rotation shell theory.
Xu et al. (2022) investigated the creep buckling analysis of acrylic glass pressure cylindrical
shells experimentally and compared the results with the finite element simulation. Jafari and
Azhari (2022) considered the time-dependent instability analysis of Timoshenko viscoelas-
tic beams and moderately thick viscoelastic plates under compressive loads based on the
Boltzmann integral law.

Following the work presented by Jafari and Azhari (2022) in which the viscoelastic in-
stability analysis of time-dependent Timoshenko beams and Mindlin plates was introduced,
in this paper the creep instability analysis of sandwich shell panels with viscoelastic cores
is considered. The stress-strain relations are written based on the Boltzmann integral law
with time-dependent shear modulus and constant bulk modulus. The displacement vector
is separated by a product of a geometrical function and a time function. Space discretiza-
tion is based on the simple HP-cloud mesh-free method. By solving an eigenvalue problem
in the Laplace–Carson domain the solution is completed. Consequently, the time behavior
of viscoelastic sandwich shell panels subjected to in-plane compressions is formulated for
the first time. Besides, the maximum compression is determined which can be applied to the
viscoelastic sandwich shell panels, without any creep instability. Many numerical results are
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Fig. 1 A moderately thick
three-layer sandwich shell panel

studied to obtain the effects of geometrical and material parameters on the time-dependent
instability analysis of moderately thick viscoelastic sandwich shell panels.

This paper is organized as follows: The formulations are extracted in Sect. 2. Numerical
results and conclusions are presented in Sects. 3 and 4, respectively.

2 Governing equations

2.1 Kinematic of the shell

By investigating a moderately thick three-layer sandwich shell panel of quadrilateral plan-
form with two elastic faces and the viscoelastic core having the radii R1 and R2, shell angles
β1 and β2, total thickness h, length a, and width b, as shown in Fig. 1, the first-order shear
deformation theory (FSDT) of displacement field can be expressed as (Reddy 2004):

⎧
⎨

⎩

u (x, y, ζ )

v (x, y, ζ )

w (x, y, ζ )

⎫
⎬

⎭
=
⎧
⎨

⎩

u0(x, y) + ζϕx(x, y)

v0(x, y) + ζϕy(x, y)

w0 (x, y)

⎫
⎬

⎭
, (1)

where u, v, and w represent the displacements in the longitudinal, tangential, and radial
directions, respectively. Also ϕx and ϕy represent the rotations of the midplane about the
y and x axes, respectively; ζ is measured from the midplane, and u0, v0, and w0 are the
displacements of the middle surface.
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The vector of in-plane ε0, nonlinear εNL, bending κ , and shear � strain–displacement
can be stated as:

ε0 (x, y) =

⎧
⎪⎨

⎪⎩

∂u0
∂x

+ w0
R1

∂v0
∂y

+ w0
R2

∂v0
∂x

+ ∂u0
∂y

⎫
⎪⎬

⎪⎭
,εNL (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
∂w0
∂x

)2

1
2

(
∂w0
∂y

)2

∂w0
∂x

∂w0
∂y

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,κ (x, y) =

⎧
⎪⎨

⎪⎩

∂ϕx

∂x
∂ϕy

∂y
∂ϕy

∂x
+ ∂ϕx

∂y

⎫
⎪⎬

⎪⎭
,

� (x, y) =
{

∂w0
∂x

+ ϕx − u0
R1

∂w0
∂y

+ ϕy − v0
R2

}

.

(2)

2.2 Constitutive relations

By considering the sandwich shell panel which is made of two symmetrical isotropic elastic
face layers with the thickness hf and the isotropic viscoelastic core layer with the thickness
hc , the stress–strain relations of the face layers, and the time-dependent core layer according
to the Boltzmann integral law, are given by:

σ f (x, y, ζ ) = Cf εf (x, y, ζ ) , Cf =
[

Cf

b 0
0 Cf

s

]

, (3)

σ c (x, y, ζ, t) = Cc (t)εc (x, y, ζ, t = 0) +
∫ t

0
Cc (t − τ) ε̇c (x, y, ζ, τ ) dτ,

ε̇c = ∂εc

∂t
, Cc(t) =

[
Cc

b(t) 0
0 Cc

s (t)

]

,

(4)

where t represents the time, σ f (x, y, ζ ) and εf (x, y, ζ ) are the stress and strain vectors
of face layers; σ c (x, y, ζ, t) and εc (x, y, ζ, t) are the stress and strain vectors of the time-
dependent core layer. Also, the bending Cf

b , Cc
b(t) and shear Cf

s , Cc
s (t) modulus tensors of

elastic faces and the viscoelastic core are obtained as:

Cf

b = Ef
(
1 − ν2

f

)

⎡

⎣
1 νf 0
νf 1 0

0 0
1−νf

2

⎤

⎦ , Cf
s = Ef

2(1 + νf )

[
1 0
0 1

]

, (5)

Cc
b (t) = Ec (t)

(
1 − ν2

c (t)
)

⎡

⎣
1 νc (t) 0

νc (t) 1 0
0 0 1−νc(t)

2

⎤

⎦ , Cc
s (t) = Ec (t)

2 (1 + νc (t))

[
1 0
0 1

]

,

(6)

where Ef and νf are the elasticity modulus and Poisson ratio of the face layers, and Ec(t)

and νc(t) are the time-dependent elasticity modulus and Poisson ratio of the core layer,
respectively.

Assuming the constant bulk modulus Kc and the time-dependent shear modulus Gc (t),
the bulk and shear moduli of the viscoelastic core can be expressed as (Eskandari et al. 2022)

Kc (t) = Kc,Gc (t) = G1 + G2e
− t

ts , (7)

where G1 and G2 are constants, and ts is the relaxation time of a viscoelastic material.
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The time-dependent shear modulus can be rewritten as follows:

Gc (t) = 3

2
Kc

(
c1 + c2e

− t
ts

)
= 3

2
Kcω (t) , ω (t) = c1 + c2e

− t
ts , (8)

in which c1 and c2 are constant coefficients, and ω (t) is the relaxation function of a vis-
coelastic material.

Using relations

Kc (t) = Ec(t)

3(1 − 2νc (t))
,Gc (t) = Ec (t)

2(1 + νc (t))
, (9)

the time-dependent elasticity modulus Ec(t) and Poisson ratio νc (t) can be stated as:

Ec (t) = 9Kcω (t)

2 + ω (t)
, νc (t) = 1 − ω (t)

2 + ω (t)
. (10)

2.3 Integrating over the shell thickness

By integrating over the thickness of the three-layer symmetrical viscoelastic sandwich shell,
the in-plane Dp(t), bending Db(t), and shear Ds(t) modulus tensors are obtained as:

Dp (t) = 2hf Cf

b + hcCc
b (t) ,Db (t) = 2

3
heCf

b + h3
c

12
Cc

b (t) ,

Ds (t) = k
(
2hf Cf

s + hcCc
s (t)

)
,

(11)

in which k is the shear correction factor related to the FSDT and

he = 1.5hch
2
f + 0.75h2

chf + h3
f . (12)

Thus, the time-dependent resultant vectors of in-plane force N(t), bending moment M(t),
and shear force Q(t) are obtained as follows:

N (x, y, t) = Dp (t)ε0 (0) +
∫ t

0
Dp (t − τ) ε̇0 (x, y, τ ) dτ, ε̇0 (x, y, t) = ∂ε0 (x, y, t)

∂t
,

M (x, y, t) = Db (t)κ (0) +
∫ t

0
Db (t − τ) κ̇ (x, y, τ ) dτ, κ̇ (x, y, t) = ∂κ (x, y, t)

∂t
, (13)

Q (x, y, t) = Ds (t)� (0) +
∫ t

0
Ds (t − τ) �̇ (x, y, τ ) dτ, �̇ (x, y, t) = ∂� (x, y, t)

∂t
.

In the above equations, ε0 (0) = ε0 (x, y, t = 0), κ (0) = κ (x, y, t = 0), � (0) =
�(x, y, t = 0).

2.4 Virtual work principle

Utilizing the virtual work principle, the equilibrium equation of a viscoelastic sandwich
shell panel subjected to in-plane compressive loads Nx and Ny can be expressed as

δU − δV = 0. (14)
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The variations of the strain U and potential V energies are given by:

δU =
(∫

V

εT
0 (0)Dp (t) δε0dA +

∫

A

∫ t

0
ε̇T

0 (τ )Dp (t − τ) dτδε0dA

)

+
(∫

A

κT (0)Db (t) δκdA +
∫

A

∫ t

0
κ̇T (τ )Db (t − τ) dτδκdA

)

(15)

+
(∫

A

�T (0)Ds (t) δ�dA +
∫

A

∫ t

0
�̇

T
(τ )Ds (t − τ) dτδ�dA

)

,

δV =
∫

A

(

Nx

∂w0

∂x

∂δw0

∂x
+ Ny

∂w0

∂y

∂δw0

∂y

)

dA. (16)

2.5 Separation of variables

The displacement vector of a Mindlin time-dependent sandwich shell panel may be approx-
imated using the separation of variables method as follows (Jafari and Azhari 2022; Jafari
2022)

u (x, y, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u0 (x, y, t)

v0 (x, y, t)

w0 (x, y, t)

ϕx (x, y, t)

ϕy (x, y, t)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u0 (x, y)

v0 (x, y)

w0 (x, y)

ϕx (x, y)

ϕy (x, y)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

F (t) = uxyF (t) ,uxy =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u0 (x, y)

v0 (x, y)

w0 (x, y)

ϕx (x, y)

ϕy (x, y)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(17)
The time function F (t) may be approximated as

F (t) = es1t , (18)

where s1 is an unknown coefficient which must be calculated.
The variations of displacement vectors and the rates of displacement vectors can be given

by:

δε0 (x, y) = ε
xy

0 δF, δκ (x, y) = κxyδF, δ� (x, y) = �xyδF, (19)

ε̇0 (x, y, t) = ε
xy

0 Ḟ (t) , κ̇ (x, y, t) = κxyḞ (t) , �̇ (x, y, t) = �xyḞ (t) . (20)

2.6 Discretizing equations

The space displacement vector can be discretized by employing the simple HP-cloud method
(Jafari and Azhari 2017) as:

uxy = N (x, y)Uxy, Uxy = [UT
1 UT

2 .. . UT
N

]
, (21)

in which Ui is defined as follows:

Ui = 〈 u0i v0i w0i ϕxi ϕyi

〉T
, i = 1 : N. (22)

Substituting Eqs. (17)–(22) into Eqs. (15)–(16) yields

δU =
(∫

A

UxyT BT
pF (0)Dp (t)BpUxyδFdA
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+
∫

A

∫ t

0
UxyT BT

p Ḟ (τ )Dp (t − τ) dτBpUxyδFdA

)

+
(∫

A

UxyT BT
b F (0)Db (t)BbUxyδFdA

+
∫

A

∫ t

0
UxyT BT

b Ḟ (τ )Db (t − τ) dτBbUxyδFdA

)

(23)

+
(∫

A

UxyT BT
s F (0)Ds (t)BsUxyδFdA

+
∫

A

∫ t

0
UxyT BT

s Ḟ (τ )Ds (t − τ) dτBsUxyδFdA

)

= UxyT

∫

A

(

BT
p

(

F (0)Dp (t) +
∫ t

0
Ḟ (τ )Dp (t − τ) dτ

)

Bp

+ BT
b

(

F (0)Db (t) +
∫ t

0
Ḟ (τ )Db (t − τ) dτ

)

Bb

+ BT
s

(

F (0)Ds (t) +
∫ t

0
Ḟ (τ )Ds (t − τ) dτ

)

Bs

)

dAδFUxy,

δV =
∫

A

UxyT BT
GF (t)NpBGUxyδFdA = UxyT F (t)

(∫

A

BT
GNpBGdA

)

δFUxy, (24)

where Np is the matrix of in-plane compressive forces as follows:

Np =
[

Nx 0
0 Ny

]

= α1Ncr

[
k1 0
0 k2

]

, k1 = Nx

Ncr

, k2 = Ny

Ncr

, |α1| < 1, (25)

where Ncr is the buckling load of a viscoelastic sandwich shell panel at time zero, and α1 is
the arbitrary constant coefficient.

Other parameters in Eqs. (23)–(24) are defined as:

Bi
p =

⎡

⎣
Ni

,x 0 Ni/R1

Ni
,y Ni/R2

Ni
,y Ni

,x 0

0 0
0 0
0 0

⎤

⎦ , Bi
b =

⎡

⎣
0 0
0 0
0 0

0 Ni
,x 0

0 0 Ni
,y

0 Ni
,y Ni

,x

⎤

⎦ ,

Bi
s =

[ −Ni

R1
0

0 −Ni

R2

Ni
,x Ni 0

Ni
,y 0 Ni

]

, Bi
G =

[
0 0
0 0

Ni
,x 0 0

Ni
,y 0 0

]

.

(26)

Substituting Eqs. (23)–(24) into Eq. (14) gives

{

UxyT

(∫

A

(

BT
p

(

F (0)Dp (t) +
∫ t

0
Ḟ (τ )Dp (t − τ) dτ

)

Bp

+ BT
b

(

F (0)Db (t) +
∫ t

0
Ḟ (τ )Db (t − τ) dτ

)

Bb

+ BT
s

(

F (0)Ds (t) +
∫ t

0
Ḟ (τ )Ds (t − τ) dτ

)

Bs

)

dA

)

Uxy

(27)
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− UxyT

(∫

A

BT
GF (t)NpBGdA

)

Uxy

}

δF = 0.

Removing δF �= 0 from Eq. (27) yields

UxyT

(∫

A

(

BT
p

(

F (0)Dp (t) +
∫ t

0
Ḟ (τ )Dp (t − τ) dτ

)

Bp

+BT
b

(

F (0)Db (t) +
∫ t

0
Ḟ (τ )Db (t − τ) dτ

)

Bb

+ BT
s

(

F (0)Ds (t) +
∫ t

0
Ḟ (τ )Ds (t − τ) dτ

)

Bs

)

dA

)

Uxy

(28)

− UxyT

(∫

A

BT
GF (t)NpBGdA

)

Uxy = 0.

2.7 Transforming to the Laplace domain

Using the Laplace transform, we obtain

UxyT

((∫

A

BT
p sD∗

pF ∗BpdA +
∫

A

BT
b sD∗

bF
∗BbdA +

∫

A

BT
s sD∗

s F
∗BsdA

)

−
(∫

A

BT
GF ∗NpBGdA

))

Uxy = 0,

(29)

in which F ∗, D∗
p , D∗

b , and D∗
s are the Laplace transformation of F(t), Dp (t), Db (t), and

Ds (t), respectively. Equation (29) can be rewritten as

UxyT

(∫

A

BT
p DpBpdA +

∫

A

BT
b DbBbdA +

∫

A

BT
s DsBsdA

−
∫

A

BT
GNpBGdA

)

F ∗Uxy = 0,

Dp = sD∗
p, Db = sD∗

b, Ds = sD∗
s .

(30)

The Laplace–Carson transforms of in-plane, bending, and shear effective modulus tensors
can be defined as:

Dp = 2hf Cf

b + hcCc
b, Db = 2

3
heCf

b + h3
c

12
Cc

b, Ds = k
(

2hf Cf
s + hcCc

s

)
, (31)

in which (Jafari 2022)

Cc
b =

⎡

⎢
⎣

3Kcω
(2+ω)

(1+2ω)
3Kcω

(1−ω)

(1+2ω)
0

3Kcω
(1−ω)

(1+2ω)
3Kcω

(2+ω)

(1+2ω)
0

0 0 3Kcω

2

⎤

⎥
⎦ ,

Cc
s = k

[
3/2Kcω 0

0 3/2Kcω

]

, ω = (c1 + c2) s + c1λ

s + λ
.

(32)
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Defining

K =
∫

A

BT
p DpBpdA +

∫

A

BT
b DbBbdA +

∫

A

BT
s DsBsdA, (33)

KG =
∫

A

BT
GNpBGdA, (34)

Equation (30) can be rewritten as follows:

UxyT
(

K − KG

)
F ∗Uxy = 0. (35)

Therefore,
∣
∣
∣K − KG

∣
∣
∣= 0. (36)

Equation (35) holds for every s, especially for s = s1. Hence, one can write
∣
∣
∣Ks=s1 − KG

∣
∣
∣= 0. (37)

Finally, the power coefficient of the exponential time function s1 is calculated by finding the
minimum eigenvalue of Eq. (36).

To have a stable viscoelastic sandwich shell panel, we need s1 ≤ 0 (|α1| < 1). The critical
condition in which s1 > 0 is called viscoelastic or creep instability.

3 Numerical results

Matlab software is used to illustrate the proposed method. In the numerical results, the me-
chanical properties of the faces and the core are Ef = 70 GPa, νf = 0.34, Kc = 7 GPa,
c1 + c2 = 1. The shear correction factor is approximated as k = 5/6 for one-layer viscoelas-
tic shells, and k = 1 for three-layer sandwich viscoelastic shells (Birman and Bert 2002).
Regular distribution of N = 11 × 11 scattered nodes is selected for calculating the time
function coefficient based on the simple HP-cloud discretization.

3.1 Convergence study and verification

Table 1 shows a convergence study of stability analysis of simply supported elastic circular
shell panels subjected to uniaxial in-plane load Nx . The local buckling coefficient is defined
as k̂ = b2Ncr

π2D
in which D = Eh3

12(1−ν2)
is the bending rigidity, and Ncr is the critical buckling

load, a
b

= 1, h
a

= 0.1.
The results of Table 1 confirm the convergence related to the simple HP-cloud discretiza-

tion method.
Table 2 compares the elastic buckling coefficients of simply supported spherical shells

subjected to uniaxial and biaxial compressive loads according to the first-order shear defor-
mation theory (FSDT) and higher-order shear deformation theory (HSDT). The proposed
method results are obtained based on the α1 = 1 and the material property at time zero,
E(t = 0) and ν(t = 0). Other parameters used are a

b
= 1, h

a
= 0.1.

Table 3 compares the time function coefficient of simply supported viscoelastic plates
having α1 = 0, c1 = 0.2, a

b
= 1, h

a
= 0.1. To model the viscoelastic plate, viscoelastic shells

with very large radii are considered.
As Tables 2–3 indicate, the results of the proposed method have good accuracy.
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Table 1 Convergence study

Distribution of nodes k̂ = b2Ncr

π2D

R = 1000, α = 0.001 R = 20, α = 0.05

Circular shell analysis N = 9 × 9 3.720 3.744

N = 11 × 11 3.739 3.763

N = 13 × 13 3.755 3.779

N = 15 × 15 3.768 3.792

N = 17 × 17 3.781 3.805

Plate analysis (Venkateswara et al. 1975) 3.7865 –

(Hinton 1978) 3.737 –

Table 2 Compared buckling coefficients
(
k̂
)

Geometrical properties k̂ = b2Ncr

π2D

Uniaxial compression Biaxial compression

Present By Biswal et al. (2018) Present By Biswal et al. (2018)

(FSDT) (HSDT) (FSDT) (HSDT)

a
R1

= 0, b
R2

= 0 3.7504 3.75 1.8775 1.8706
a

R1
= 0.2, b

R2
= 0 3.8500 3.85 1.9293 1.917

a
R1

= 0.2, b
R2

= 0.2 4.1976 4.165 2.1017 2.1017

Table 3 Compared time function coefficients (s1)

Geometrical properties s1

R2/b = 1000 R2/b = 10,000 R2/b = 100,000 By Eskandari et al. (2022)

Circular shell, a
R1

= 0 −0.2 −0.2 −0.2 −0.2

Spherical shell, R1 = R2 −0.2 −0.2 −0.2 −0.2

3.2 Time function coefficients of viscoelastic shell panels

Tables 4–6 show the time function coefficients of viscoelastic spherical shell panels with
different material and geometrical properties subjected to uniaxial and biaxial compressions.

As Tables 4–6 indicate, by increasing the compressive force ratio α1, the time function
coefficient s1 is increased, while by increasing the constant part of relaxation function c1, s1

is decreased.
It is noted that in cases s1 > 0, positive numbers in Tables 4–6, the displacement expo-

nentially grows, and creep instability occurs. So, it is necessary to limit the value of α1 to
prevent the viscoelastic instability. In other words, because of the time-dependent properties
of viscoelastic materials, the maximum compression ratio α1 must be checked by structural
engineers. To have the stable condition, one needs s1 ≤ 0.
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Table 4 Time function coefficients (s1) of simply supported viscoelastic shells under different uniaxial com-
pression ratios

a
b

= 1, b
R2

= 0.1, ts = 1 s s1

α1 = 0 α1 = 0.1 α1 = 0.2 α1 = 0.3 α1 = 0.4 α1 = 0.5

h
a = 0.1, a

R1
= 0.1 c1 = 0.1 −0.10 −0.07 −0.03 +0.01 +0.05 +0.11

c1 = 0.2 −0.20 −0.17 −0.14 −0.11 −0.06 −0.01

c1 = 0.3 −0.30 −0.32 −0.25 −0.22 −0.18 −0.14

c1 = 0.4 −0.40 −0.38 −0.36 −0.33 −0.30 −0.26

h
a = 0.1, a

R1
= 0.02 c1 = 0.1 −0.10 −0.07 −0.04 0.000 +0.05 +0.10

c1 = 0.2 −0.20 −0.17 −0.14 −0.11 −0.07 −0.02

c1 = 0.3 −0.30 −0.32 −0.25 −0.22 −0.18 −0.14

c1 = 0.4 −0.40 −0.38 −0.36 −0.33 −0.30 −0.26

h
a = 0.1, a

R1
= 0 c1 = 0.1 −0.10 −0.07 −0.04 0.00 +0.050 +0.10

c1 = 0.2 −0.20 −0.17 −0.14 −0.11 −0.07 −0.02

c1 = 0.3 −0.30 −0.32 −0.25 −0.22 −0.18 −0.14

c1 = 0.4 −0.40 −0.38 −0.36 −0.33 −0.30 −0.26

h
a = 0.15, a

R1
= 0.1 c1 = 0.1 −0.10 −0.06 −0.02 +0.02 +0.09 +0.16

c1 = 0.2 −0.20 −0.17 −0.13 −0.09 −0.04 +0.00

c1 = 0.3 −0.30 −0.27 −0.24 −0.20 −0.16 −0.10

c1 = 0.4 −0.40 −0.38 −0.35 −0.32 −0.28 −0.23

Table 5 Time function coefficients (s1) of simply supported viscoelastic shells under different biaxial com-
pression ratios

k1 = k2 = 1, a
R1

= 0.1, a
b

= 1,
h
a = 0.1, ts = 1 s

s1

α1 = 0 α1 = 0.1 α1 = 0.2 α1 = 0.3 α1 = 0.4 α1 = 0.5

c1 = 0.1 −0.10 −0.08 −0.06 −0.03 −0.01 +0.02

c1 = 0.2 −0.20 −0.18 −0.16 −0.14 −0.12 −0.09

c1 = 0.3 −0.30 −0.31 −0.27 −0.25 −0.23 −0.20

c1 = 0.4 −0.40 −0.39 −0.37 −0.36 −0.34 −0.32

Table 6 Time function coefficients (s1) of clamped viscoelastic shells under different uniaxial compression
ratios

a
R1

= 0.1, a
b

= 1, h
a = 0.1, ts = 1 s s1

α1 = 0 α1 = 0.1 α1 = 0.2 α1 = 0.3 α1 = 0.4 α1 = 0.5

c1 = 0.1 −0.10 −0.05 0.00 +0.07 +0.15 +0.26

c1 = 0.2 −0.20 −0.16 −0.11 −0.05 +0.03 +0.12

c1 = 0.3 −0.30 −0.26 −0.22 −0.17 −0.10 −0.02

c1 = 0.4 −0.40 −0.37 −0.33 −0.29 −0.23 −0.16

Besides, Tables 4–6 show that changing the geometrical properties, such as thickness-to-
side ratio h

a
, boundary conditions, and side-to-radius ratio a

R1
, has little effect on the time

function coefficient of moderately thick viscoelastic shells.
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Fig. 2 F (t) versus t/ts under different uniaxial compression ratios

Fig. 3 F (t) versus t/ts with different material properties

Figure 2 compares two time-behaviors F (t) = es1t , namely stable creep s1 ≤ 0 and un-
stable creep s1 > 0, of the simply supported viscoelastic spherical shell panel under differ-
ent uniaxial in-plane compression ratios: α1 = Nx/NCr , c1 = 0.1, a

b
= 1, b

R2
= a

R1
= 0.1,

hc

a
= 0.1,

hf

a
= 0.

Figure 2(a) illustrates stable conditions α1 = 0, 0.1, 0.2 in which displacements are
decreased and converge to zero as time increases, while Fig. 2(b) illustrates creep unstable
conditions α1 = 0.3, 0.4, 0.5 in which displacements exponentially grow and diverge as
time increases. So, it is necessary to limit the uniaxial compression considering the creep
instability analysis.

Time behaviors of simply supported viscoelastic sandwich shells F (t) = es1t , with dif-
ferent material properties, are shown in Fig. 3, for α1 = 0.1, a

b
= 1, b

R2
= a

R1
= 0.1, hc

a
= 0.1,

hf

a
= 0.
As the results of Fig. 3 indicate, by increasing c1, the displacements converge to zero

faster.
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Table 7 Time function coefficients (s1) of viscoelastic shells under different relaxation times

Material properties s1

ts = 0.1 s ts = 1 s ts = 10 s

c1 = 0.1 −0.7 −0.07 −0.007

c1 = 0.2 −1.73 −0.17 −0.017

c1 = 0.3 −2.76 −0.28 −0.028

c1 = 0.4 −3.78 −0.38 −0.038

Table 8 Time function coefficients (s1) of viscoelastic shells under different tension and compression ratios

s1

α1 = −0.8 α1 = −0.5 α1 = −0.3 α1 = 0 α1 = 0.3 α1 = 0.5 α1 = 0.8

−0.72 −0.58 −0.47 −0.2 −0.05 +0.12 +0.21

Table 9 Time function coefficients (s1) of viscoelastic sandwich shells under different uniaxial compression
ratios

Geometrical properties s1

α1 = 0 α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.8

hc = 0.06, hf = 0.02 −0.899 −0.896 −0.803 −0.677 −0.652

hc = 0.07, hf = 0.015 −0.817 −0.811 −0.680 0.585 −0.460

hc = 0.08, hf = 0.01 −0.738 −0.728 −0.490 −0.409 −0.360

hc = 0.09, hf = 0.005 −0.377 −0.364 −0.342 −0.305 −0.213

hc = 0.10, hf = 0 −0.20 −0.16 −0.05 +0.12 +0.21

Table 7 shows the time function coefficients of simply supported viscoelastic spherical
shell panels with different relaxation times ts , subjected to uniaxial compressions, α1 = 0.1,
a
b

= 1, b
R2

= 0.1.
Table 7 shows that the time function coefficients are linearly dependent on the relaxation

times.
Table 8 illustrates the time function coefficients of simply supported viscoelastic spher-

ical shells subjected to different uniaxial tensions α1 < 0 and compressions α1 > 0, for
c1 = 0.2, a

b
= 1, b

R2
= 0.1.

As Table 8 indicates, by increasing α1, the time function coefficient is increased.

3.3 Time function coefficients of viscoelastic sandwich shell panels

Table 9 shows the time function coefficients of simply supported viscoelastic three-layer
sandwich spherical shell panels with different material and geometrical properties under
uniaxial compression ratios of a

R1
= 0.1, a

b
= 1, c1 = 0.2.

Table 9 shows that by increasing the thickness of the viscoelastic core layer, s1 is in-
creased, which confirms the damping effect of viscoelastic materials.
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4 Conclusions

The creep instability analysis of time-dependent sandwich shell panels having elastic faces
and viscoelastic cores was investigated in this paper. The creep instability of viscoelastic
sandwich shell panels is related to the ratio of applied in-plane compressive load to the
elastic buckling load at time zero, and the time-dependent viscoelastic material property,
too.

The effect of material and geometrical parameters on the time behavior of viscoelastic
sandwich shell panels subjected to in-plane compression was considered. Also, the maxi-
mum compressive load, which can be applied to the time-dependent sandwich shell panels
without any creep instability, was determined.

Numerical results show that:

1. When s1 > 0 (s1 is the coefficient related to the time behavior of viscoelastic shells),
the displacements exponentially grow, w0 (x, y, t) = w0 (x, y) es1t , and creep instability
occurs. So, it is necessary to limit the maximum value of α1 (α1 is the compressive force
ratio) to prevent viscoelastic instability and to have a stable condition.

2. In addition, by increasing the thickness of the viscoelastic core layer, s1 is increased.
3. Also, by increasing c1 (c1 is the constant part of the relaxation function), the displace-

ments converge to zero faster.
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