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Abstract
The main objective of this work is to create a new thermoelastic model for hyperbolic ther-
moelasticity in the context of double porosity structure based on nonlocal elasticity theory
and the dual-phase-lag model. Nonlocal elasticity theory is used to construct new consti-
tutive relations and equations. In a homogeneous, isotropic thermoelastic material, thermo-
mechanical interactions are studied using normal mode analysis. A time-dependent thermal
shock is applied on the boundary surface. This study also produces a few unique situations,
which are compared with previous results of other researchers. The normal and tangential
stresses, temperature, displacement components, change in void volume fractions, and equi-
librated stress vectors concerning distances and time intervals are all calculated numerically.
The physical quantities mentioned above are also visually displayed for various thermoe-
lastic models to compare and illustrate the theoretical results. A comparative analysis and
graphical presentation of the effects of nonlocal parameters and porosity on various physical
characteristics have been performed. The figures show that most of the physical variables
decrease with the increase in distance and show oscillatory behavior with the increase in
time. The behavior of the void volume fraction field of the first kind is opposite to the be-
havior of the void volume fraction field of the second kind with the increase in distance.
It is also noticed that the behavior of equilibrated stress of the first kind is opposite to the
behavior of the second kind.

Keywords Thermomechanical interactions · Nonlocal · Double porosity · Dual-phase-lag
model · Normal mode analysis

1 Introduction

The theory of elastic material with voids has been developed by Cowin and Nunziato (1983).
According to this idea, the voids in the medium are considered empty pores with some sur-
face area and volume but no mechanical or energetic significance. The bulk density of the
material is expressed as a product of two fields: (i) the density of the matrix material and
(ii) the void volume fractional field. This is the basic tenet of the linear theory of elas-
tic material with voids. When an elastic solid with voids deforms, two fields are involved:
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the strain field, which is related to the matrix material, and the change in the fractional
field of void volume, which is related to the voids in the medium. Iesan and Quintanilla
(2014) have developed a theory of thermoelastic solids with a double porosity structure
based on the Nunziato and Cowin (1979) theory of elastic materials with voids. Puri and
Cowin (1985) have derived the plane wave propagation in elastic material with voids and
discovered three types of plane waves propagating at different speeds. Khalili and Selvaduri
(2003) have proposed a comprehensive thermo-hydro-mechanical coupling model that takes
several critical processes into account, and this model gives a holistic understanding of the
thermo-hydro-mechanical behavior of materials, particularly for scenarios where tempera-
ture changes significantly affect the mechanical response and fluid flow within the system.
Kumar et al. (2018) have investigated the propagation of Rayleigh waves in a homoge-
neous isotropic thermoelastic half-space with void characteristics, the surface of which is
stress-free, thermally insulated, and isothermal. Iesan (1986) has proposed a linear theory
of thermoelastic materials with void parameters. He investigated certain general theorems
(uniqueness, reciprocal behavior, and variational), acceleration waves, and equilibrium dif-
ficulties in this theory. Abdou et al. (2020a) have investigated the effect of the magnetic field
on a two-dimensional thermoelastic medium based on the Lord–Shulman theory of the body,
which has a doubly porous structure. Singh et al. (2020) have developed a time-harmonic
plane wave propagation within an infinite thermoelastic solid medium with a double poros-
ity structure. Abdou et al. (2020b) have studied a general solution to the field equations of
a generalized thermoelastic medium with double porosity under the Lord–Shulman model
of thermoelasticity, the effect of the relaxation time on a two-dimensional thermoelastic
medium that has a doubly porous structure in the presence of diffusion and gravity. Othman
and Mansour (2023) studied the effect of relaxation time on a two-dimensional thermoelastic
medium which has a doubly porous structure in the presence of diffusion and gravity.

Many authors have focused their attention on the nonlocal thermoelasticity hypothesis
since it has played a vital role in resolving many previous issues in fracture mechanics.
Nonlocal continuum field theories are concerned with the physics of material bodies whose
behavior at a material point is influenced by the state of all points of the body. Following
the classical notions, material points of a body are considered to be continuous and are as-
signed some physically independent objects (variables) (e.g., mass, charge, electric field,
magnetic field). The state of the body, at a material point, is described by the relations of the
response objects that constitute another class (e.g., stress, internal energy, heat) as functions
of the independent objects. These relations are called constitutive equations. The nonlocal
theory generalizes the classical field theory in two respects: (i) the energy balance law is
considered valid globally (for the entire body), and (ii) the state of the body at a mate-
rial point is described by the response functionals. In nonlocal elasticity, Eringen (1977)
developed the problem of straight-edge dislocation. Eringen computed the stress retained
and elastic energy in this case. Eringen (1974) used the theory of nonlocal thermoelastic-
ity, which generated a set of constitutive equations for nonlocal thermoelastic substances.
Eringen (1998) discovered a theory that combines electromagnetism with superconductiv-
ity. Eringen and Edelen (1972) also proposed a theory of nonlocal elasticity that includes
two primary phases and gives an extensive framework for predicting the behavior of ma-
terials with nonlocal interactions at small scales. Kumar et al. (2021) investigated a linear
theory of nonlocal elastic materials with a double porosity structure. The effect of a nonlocal
model on a poro-thermoelastic solid with temperature-dependent properties with the help of
a three-phase-lag model (3PHL) of thermoelasticity was studied by Othman et al. (2023).

In the literature on thermal effects, a classical Fourier law and generalized versions of
Fourier law describe heat conduction. The classical thermoelasticity hypothesis, which is
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based on the classical Fourier law of heat conduction, suffers from physically unrealis-
tic phenomena because, in the parabolic-type heat conduction equation, the speed of the
thermal signal is infinite. To remove this physically impossible occurrence, classical ther-
moelasticity models have been generalized. The heat flow in a hyperbolic-type problem is
modeled with finite-speed thermal signals, and thermoelasticity theories admit such signals.
Hyperbolic-type thermoelasticity (nonclassical thermoelasticity) theories eliminated unreal-
istic phenomena. Thermoelasticity with thermal relaxation is an extension of the classical
theory of thermoelasticity that takes into account the time-dependent reaction of materials
to temperature variations reviewed in Chandrasekharaiah (1998).

Lord and Shulman (1967) developed a generalized theory of thermoelasticity based on
the Maxwell and the Cattaneo-Vernotte (CV) (generalized version of Fourier law) heat con-
duction equations. This modified thermoelasticity theory incorporated one relaxation time
and altered the parabolic-type heat conduction equation into a hyperbolic-type equation,
referred to as the LS model and widely employed in low-temperature and heat flux cases.
Green and Lindsay (1972) derived a theory known as the GL theory, which involves two
relaxation times.

The equation for Fourier’s law of heat conduction is q = −K∇T ....(i). The Cattaneo-
Vernotte (CV) equation, a modified form of Fourier’s law, provides the base for the most
fundamental linear hyperbolic heat conduction theory: q+τ

∂q

∂t
= −K∇T . The next general-

ized thermoelasticity theory is the dual-phase-lag model (DPL) introduced by Tzou (1995).
Tzou (1995) proposed the following generalization: q(P, t +τq) = −K∇T (P, t +τT )....(ii).
This relationship states that the heat flux vector at P at time t + τq corresponds to the tem-
perature gradient at a point P of the material at time t + τT . The delay time τT , also known
as the phase lag of the temperature gradient, is understood to be the result of microstructural
interactions, which are small-scale heat transport mechanisms that occur in microscale or
small-scale effects of heat transport in space, such as photoelectron interaction or phonon
scattering. The other delay time τq , also known as the phase lag of the heat flux, is under-
stood as the relaxation time resulting from the fast-transient effects of thermal inertia (or
small-scale impacts of heat transport in time). It is to be noted that the heat flux is the result
(effect) of a temperature gradient in a transient process, the relation (ii) allows either the
temperature gradient or the heat flux to become the effect and the remaining one the cause.
A temperature gradient produces the heat flux vector for materials where τq > τT . The re-
sponse between the temperature gradient and the heat flux is instantaneous if τq = τT (which
is not necessarily zero); in this scenario, the relation (ii) becomes the same as the classical
Fourier law (i). Furthermore, it should be emphasised that although the connection (ii) is mi-
croscopic in both space and time, the conventional Fourier rule is macroscopic in both. Tzou
(1995) describes the constitutive equation relating the heat flux vector and the temperature
gradient as having a single-phase-lag model, denoted as q(P, t + τq) = −K∇T (P, t), and a
dual-phase-lag model, denoted as relation (ii). According to his research (Tzou 1995), both
of these models can be used within the context of the extended irreversible thermodynamics
second law.

Green and Naghdi (1992, 1993) presented three models of generalized thermoelasticity
of homogeneous isotropic materials, known as type I, II, and III models. The Green-Naghdi
model is separated into two kinds based on the presence or absence of energy dissipation.
The Green-Naghdi model of type II has thermoelasticity without energy dissipation. The
Green-Naghdi model of type III couples thermoelasticity with energy dissipation. Said et al.
(2022b) developed the three-phase-lag (TPL) model and the Green-Naghdi theory of types
II and III with a memory-dependent derivative to study the effect of rotation on a nonlocal
porous thermoelastic medium. In the context of the linearized theory of coupled thermoe-
lasticity, Roy Choudhuri (2007) suggested a three-phase-lag model. This model takes into
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account a heat conduction rule that includes the temperature gradient as well as the thermal
displacement gradient as constitutive variables. This model is an extension of the Lord–
Shulman, Green-Naghdi, and Tzou thermoelastic models. Sarkar et al. (2022) developed the
Lord–Shulman theory for the propagation of the photo-thermal waves in a semiconducting
nonlocal elastic medium.

Khurana and Tomar (2016) explored wave propagation in nonlocal micro-stretch solids.
Kaur et al. (2021a) studied a novel model of forced vibrational analysis of nonlocal trans-
versely isotropic thermoelastic nanobeam resonators due to ramp-type heating and time-
varying exponentially decaying load with a multi-dual-phase-lag theory of thermoelasticity.
Biswas and Mahato (2022) investigated Rayleigh waves in a nonlocal orthotropic layer rest-
ing over a nonlocal orthotropic half-space employing an eigenvalue technique in the context
of a dual-phase-lag model. Kaur and Singh (2022a) studied vibrations in 2D functionally
graded nanobeams (FGN) with memory-dependent derivatives. Gupta and Mukhopadhyay
(2019) developed a study on the generalized thermoelasticity theory with the dual-phase-lag
model based on a nonlocal heat conduction law. Khalili (2003) investigated the coupling
effects in double porosity media with a deformable matrix. The eigenfunction expansion
approach was presented by Biswas and Mukhopadhyay (2017) as an analytical technique
for exploring thermal shock behavior in a magneto-thermoelastic orthotropic material. The
research looks at how the three-phase-lag model affects the medium’s response to ther-
mal shock. Kaur and Singh (2023b) presented the coupled photo-thermoelastic analysis in
semiconductor resonator with the nonlocal Memory dependent derivative (MDD) theory.
Kalkal et al. (2021) studied a three-phase-lag functionally graded thermoelastic model with
a twofold porosity structure and gravitational influence. Sherief and Saleh (2005) proposed
the theory of generalized thermoelastic diffusion with a single relaxation time. This prob-
lem involves the coupling of thermal, elastic, and diffusive phenomena in a material with
memory-dependent behavior. In the presence of void parameters, Biswas (2021) investigated
the thermal shock behavior in a homogeneous orthotropic medium with the three-phase-lag
model. Mondal et al. (2019) investigated waves in dual-phase-lag thermoelastic materials in
the presence of void parameters based on Eringen’s nonlocal elasticity theory. Kaur et al.
(2023b) focused on recent research on thermoelasticity theories as well as their associated
reformed models related to the micro-/nano-beams/nano-bars. A plane wave in nonlocal
thermoelastic solid material with voids was discovered by Tomar and Sarkar (2019). The
free energy and variational theorem of an elastic problem related to thermal shock were
explored by Hong-Gang (1982). The impact of mechanical boundary conditions on the ther-
mal shock resistance of ceramics used in ultra-high temperature applications was studied
by Cheng et al. (2015). Said et al. (2021) used the theory of multi-phase-lags with frac-
tional derivative heat transfer thermoelasticity to study the wave propagation on a nonlocal
fiber-reinforced thermoelastic medium. Said et al. (2022a) analyzed the effect of gravity and
initial stress on a nonlocal thermo-viscoelastic medium with two-temperature and fractional
derivative heat transfer.

In this research, we investigate the constitutive relations and field equations of an
isotropic thermoelastic material with double porosity structures. The theoretical structure
used in Eringen’s nonlocal theory of elasticity in spatial form enables us to account for
nonlocal effects in the material responses. An extensive investigation has been done in the
field of material science to investigate the thermal shock response in a nonlocal isotropic
medium that is influenced by the existence of double porosity structures. The dual-phase-
lag model of generalized thermoelasticity is employed to solve the problem. Normal mode
analysis is employed to generate a differential equation, which is then solved. To the au-
thors’ knowledge, the effect of the dual-phase-lag model on thermoelastic material with
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double porosity structure using nonlocal elasticity theory is not available in the literature to
date. The comparison of different physical quantities for different models like dual-phase-
lag (DPL), Lord–Shulman (LS), and classical coupled thermoelasticity (CT) are presented
graphically in this paper, which was not found in any earlier published works. The values
of physical variables, including displacements, stresses, void volume fraction field, temper-
ature, and equilibrated stresses, are calculated numerically for different values of time and
distance and presented graphically to compare and demonstrate the theoretical results. It is
noticed that for different thermoelastic models, as well as in the presence and absence of
nonlocal parameters and void parameters, different physical quantities such as displacement
components, stresses, void volume fraction fields, temperature, and equilibrated stresses
show oscillatory behavior with the increase in time. The equilibrated stress and void volume
fraction field corresponding to the first kind of void show the opposite behavior to behavior
of the equilibrated stress and void volume fraction field corresponding to the second kind
of void. It is also observed that for different thermoelastic models, as well as in the pres-
ence and absence of nonlocal parameters, different physical quantities, such as displacement
components and stresses, increase with increasing distance. The study of problems related to
civil engineering takes advantage of the double porosity structure extensively. In mathemat-
ics and physics, the normal mode technique is a useful tool for finding the exact solution for
specific physical structures, particularly those that exhibit harmonic activity. It is often used
to analyze waves, vibrations, and oscillations in a variety of physical systems, including
mechanical systems, electrical circuits, and quantum systems.

The structure of this work is as follows: Based on Eringen’s nonlocal elasticity theory, we
develop the relationship between double voids and nonlocal parameters in Sect. 2. We build
the fundamental equations and constitutive relations in Sect. 2.1. We also derive the dual-
phase-lag model within the context of nonlocal thermoelasticity. Section 2.1 also includes
a nomenclature table. With the use of stress equations of motion (in the absence of body
forces), equilibrated stress equations of motion (in the absence of extrinsic equilibrated body
forces), and fundamental relations, we obtain the governing equations in Sect. 2.1. In Sect. 3,
we develop the boundary conditions subjected to stress-free surface. In Sect. 4, we develop
solution methodology via normal mode analysis and derive a 10th-order differential equation
to find the eigenvalues. In Sect. 5, we find the solution using the regularity condition at
z → ∞ and also obtain the stress components. We deduce some limiting situations in Sect. 6.
The comparison and validation of the work are covered in Sect. 7. The most important
section, which includes a discussion of numerical and a graphical overview of the current
work, is presented in Sect. 8. The impact of nonlocal parameters and double voids on various
physical variables are visually displayed for several thermoelastic models in the numerical
discussion section. Some important applications of the current work are provided in Sect. 9.
The conclusion is given in Sect. 10.

2 Nonlocal formulation with double porosity

First, we establish the field equations and constitutive relations in a continuum thermoelastic
body containing double porosity with the surface area S and volume V . Let x = (x1, x2, x3)

be any typical point of the considered body in the reference state and x′ = (x ′
1, x

′
2, x

′
3) be any

surrounding point of x.
Suppose T = θ − T0, where θ is the absolute temperature, T0 is the initial temperature,

and T is the temperature above reference temperature such that | T
T0

| � 1. We assume that
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the set of basic variables at two neighboring point x and x′ is given as follows:

X = {eij (x),φ(x),φ,i(x),ψ(x),ψ,i(x), T (x)},
X′ = {eij (x′),φ(x′),φ,i(x′),ψ(x′),ψ,i(x′), T (x′)}, (1)

where eij = 1
2 (ui,j +uj,i); (i, j = 1,2,3) are the Lagrangian strain tensor within the context

of linear theory, ui are the displacement vector during deformation process, φ = v1(x, t) −
(v1)R and ψ = v2(x, t) − (v2)R are the change in void volume fraction from the reference
void volume corresponding to the first and second kind of voids, respectively. A comma (,)
in the subscript denotes the spatial derivative.

The strain energy function W for nonlocal thermoelastic materials with double voids can
be taken as (Eringen 1974; Biswas and Mahato 2022; Mahato and Biswas 2023):

2W = Cijkleij (x)ekl(x′) + mφ(x)φ(x′) + pψ(x)ψ(x′) + Aijφ,i(x)φ,i(x′) + γijψ,i(x)ψ,i(x′)

+ Bij [eij (x)φ(x′) + eij (x′)φ(x)] + Lij [eij (x)ψ(x′) + eij (x′)ψ(x)]
+ Dijk[eij (x)φ,k(x′) + eij (x′)φ,k(x)] + Eijk[eij (x)ψ,k(x′) + eij (x′)ψ,k(x)]
+ Di[φ(x)φ,i(x′) + φ(x′)φ,i(x)] + Ei[ψ(x)ψ,i(x′) + ψ(x′)ψ,i(x)]
+ bij [φ,i(x)ψ,j (x′) + φ,i(x′)ψ,j (x)] + α1[φ(x)ψ(x′) + φ(x′)ψ(x)]
+ bi[φ(x)ψ,i(x′) + φ(x′)ψ,i(x)] + di[φ,i(x)ψ(x′) + φ,i(x′)ψ(x)]
− βij [eij (x)T (x′) + eij (x′)T (x)] − aT (x)T (x′) − γ1[φ(x)T (x′) + φ(x′)T (x)]
− γ2[ψ(x)T (x′) + ψ(x′)T (x)] − ai[φ,i(x)T (x′) + φ,i(x′)T (x)]
− hi[ψ,i(x)T (x′) + ψ,i(x′)T (x)], (2)

where Cijkl , m, p, Aij , γij , Bij , Lij , Dijk , Eijk , Di , Ei , bij , α1, bi , di , a, γ1, γ2, ai and hi

are the constitutive coefficients and prescribed function of the positions x and x′.
Following Eringen (1974, 1977) and Mahato and Biswas (2023) the constitutive relations

can be obtained from the relation:


 =
∫

V

[
∂W

∂X
+

(
∂W

∂X′

)s]
dV (x′), (3)

where the superscript ‘s’ represents the symmetry of that quantity with respect to the inter-
change of x and x′.

Further, the set 
 = {
τij , σi,−ξ, τi,−ζ,−ρη

}
is an ordered set with the set X.

Using (1) and (3), we obtain the following:

τij =
∫

V

[
∂W

∂eij (x)
+

(
∂W

∂eij (x′)

)s]
dV (x′), (4)

σi =
∫

V

[
∂W

∂φ,i(x)
+

(
∂W

∂φ,i(x′)

)s]
dV (x′), (5)

−ξ =
∫

V

[
∂W

∂φ(x)
+

(
∂W

∂φ(x′)

)s]
dV (x′), (6)

τi =
∫

V

[
∂W

∂ψ,i(x)
+

(
∂W

∂ψ,i(x′)

)s]
dV (x′), (7)
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−ζ =
∫

V

[
∂W

∂ψ(x)
+

(
∂W

∂ψ(x′)

)s]
dV (x′), (8)

ρη =
∫

V

[
∂W

∂T (x)
+

(
∂W

∂T (x′)

)s]
dV (x′). (9)

Inserting (2) into (4)-(9), we obtain

τij =
∫

V

[Cijkl(x,x′)ekl(x′) + Bij (x,x′)φ(x′) + Lij (x,x′)ψ(x′)

+ Dijk(x,x′)φ,k(x′) + Eijk(x,x′)ψ,k(x′) − βij (x,x′)T (x′)]dV (x′),
(10)

σi =
∫

V

[Dkli(x,x′)ekl(x′) + Aij (x,x′)φ,j (x′) + bij (x,x′)ψ,j (x′)

+ Di(x,x′)φ(x′) + di(x,x′)ψ(x′)]dV (x′),
(11)

ξ = −
∫

V

[m(x,x′)φ(x′) + Bij (x,x′)eij (x′) + Di(x,x′)φ,i(x′) + α1(x,x′)ψ(x′)

+ bi(x,x′)ψ,i(x′) − γ1(x,x′)T (x′)]dV (x′),
(12)

τi =
∫

V

[Ekli(x,x′)ekl(x′) + γij (x,x′)ψ,j (x′) + bij (x,x′)φ,j (x′) + Ei(x,x′)ψ(x′)

+ bi(x,x′)φ(x′)]dV (x′),
(13)

ζ = −
∫

V

[l(x,x′)φ(x′) + Lij (x,x′)eij (x′) + Ei(x,x′)ψ,i(x′) + p(x,x′)ψ(x′)

+ di(x,x′)φ,i(x′) − γ2(x,x′)T (x′)]dV (x′),
(14)

ρη =
∫

V

[βij (x,x′)eij (x′) + a(x,x′)T (x′) + γ1(x,x′)φ(x′) + γ2(x,x′)ψ(x′)

+ ai(x,x′)φ,i(x′) + hi(x,x′)ψ,i(x′)]dV (x′),
(15)

For centrosymmetric, isotropic material, the constitutive coefficients are given by

Dijk = Eijk = Di = Ei = di = bi = ai = hi = 0,

Cijkl(x,x′) = λ(x,x′)δij δkl + 2μ(x,x′)δikδjl,

(Aij ,Bij , bij , γij ,Lij , βij )(x,x′) = (α,h, b1, γ, d,β)(x,x′)δij ,

where the quantities α, h, b1, γ , d , γ1, γ2 and a are constitutive coefficients. All the con-
stitutive coefficients are functions of | x − x′ | and attenuate with distance because, for most
of the materials, the cohesive zone is very small. Furthermore, within the cohesive zone, the
intermolecular forces decrease rapidly with distance from the reference point, i.e.,

lim
(|x−x′ |)→∞

λ(|x − x′|) → 0,

etc.
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Thus, constitutive relations (10)-(15) become

τij =
∫

V

[λ(|x − x′|)δij ekk(x′) + 2μ(|x − x′|)eij (x′) + h(|x − x′|)δijφ(x′)

+ d(|x − x′|)δijψ(x′) − β(|x − x′|)δij T (x′)]dV (x′),
(16)

σi =
∫

V

[α(|x − x′|)φ,i(x′) + b1(|x − x′|)ψ,i(x′)]dV (x′), (17)

ξ = −
∫

V

[m(|x − x′|)φ(x′) + h(|x − x′|)eii(x′) + α1(|x − x′|)ψ(x′)

− γ1(|x − x′|)T (x′)]dV (x′),
(18)

τi =
∫

V

[b1(|x − x′|)φ,i(x′) + γ (|x − x′|)ψ,i(x′)]dV (x′), (19)

ζ = −
∫

V

[l(|x − x′|)φ(x′) + d(|x − x′|)eii(x′) + p(|x − x′|)ψ(x′)

− γ2(|x − x′|)T (x′)]dV (x′),
(20)

ρη =
∫

V

[β(|x − x′|)eii(x′) + a(|x − x′|)T (x′) + γ1(|x − x′|)φ(x′)

+ γ2(|x − x′|)ψ(x′)]dV (x′).
(21)

The constitutive coefficients are assumed to attenuate to the same degree and reach their
peaks at x = x′. Therefore, we can take the following relation between nonlocal coefficients
(with unprimed notations) and local elastic coefficients (with primed notations) as:

(λ,μ,h, d,α, γ,m,p,α1, b1, a, γ1, γ2)(x,x′) = (λ′,μ′, h′, d ′, α′, γ ′,m′,p′, α′
1, b

′
1,

a′, γ ′
1, γ

′
2, )G(|x − x′|, χ),

(22)

where G(|x − x′|, χ) is a nonlocal kernel expressing the effect of remote point x′ to the
point x. Here, χ = ε

l
, where ε (= e0acl) is the nonlocal parameter, e0 is the material con-

stant, l is the external characteristic length, and acl is the internal characteristic length of the
material.

G(|x − x′|, χ) has the following properties:
(i)

∫
V

G(|x − x′|, χ)]dV (x′) = 1.
(ii) The function G attains its peak at (|x − x′| = 0) and generally decays with increasing

(|x − x′|).
(iii) Following Eringen (1974, 1977), we have

(1 − ε2∇2)G(|x − x′|, χ) = δ(|x − x′|), (23)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .
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2.1 Basic equations and constitutive relations

Operating (1 − ε2∇2) on the equations (16)-(21) and employing (22) and (23), we get the
constitutive relations for a uniform nonlocal isotropic thermoelastic material possessing dou-
ble porosity structure as follows:

(1 − ε2∇2)τij = τL
ij = λ′δij ekk(x) + 2μ′eij (x) + h′δijφ(x) + d ′δijψ(x) − β ′δijT (x), (24)

(1 − ε2∇2)σi = σL
i = α′φ,i(x) + b′

1ψ,i(x), (25)

(1 − ε2∇2)ξ = ξL = −m′φ(x) − h′eii(x) − α′
1ψ(x) + γ ′

1T (x), (26)

(1 − ε2∇2)τi = τL
i = b′

1φ,i(x) + γ ′ψ,i(x), (27)

(1 − ε2∇2)ζ = ζL = −α′
1φ(x) − d ′eii(x) − p′ψ(x) + γ ′

2T (x), (28)

(1 − ε2∇2)ρη = (ρη)L = β ′eii(x) + γ ′
1φ(x) + γ ′

2ψ(x) + a′T (x). (29)

Where the Dirac delta function has the following property:
∫

f (x)δ(x − a)dx = f (a).

We propose an Eringen-type Fourier law for the nonlocal generalization of the dual-phase-
lag model as

(1 − ε2∇2)

(
1 + τq

∂

∂t

)
qi =

(
1 + τq

∂

∂t

)
qL

i = −K

(
1 + τT

∂

∂t

)
T,i(x), (30)

(1 − ε2∇2)ρη = (ρη)L = β ′eii(x) + γ ′
1φ(x) + γ ′

2ψ(x) + a′T (x). (31)

The energy equation is

qi,i = −ρT0η̇. (32)

Operating (1 − ε2∇2) on the equation (32) and using (30) and (31), we get

K

(
1 + τT

∂

∂t

)
T,ii(x)

=
(

1 + τq

∂

∂t

)(
β ′T0ėii (x) + γ ′

1T0φ̇(x) + γ ′
2T0ψ̇(x) + ρCvṪ (x)

)
,

(33)

where aT0 = ρCv .
Following Iesan and Quintanilla (2014), we have stress equations of motion:

τL
ij,j = ρüi, (34)

and equilibrated stress equations of motion:

σL
i,i + ξL = χ1φ̈, (35)

τL
i,i + ζL = χ2ψ̈. (36)
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Table 1 Nomenclature

Symbols Descriptions Symbols Descriptions

τij Nonlocal components of the stress
tensor

τq , τT Phase-lags corresponding to heat flux
vector and temperature gradient,
respectively

τL
ij

Local components of the stress tensor qi Nonlocal components of heat flux
vectors

λ, μ Lame’s constants Cv Specific heat at constant strain

h, d The coupling of void volume
fractions of each type of voids with
the normal stress

eL
ij

Local components of strain tensors

α, γ Couple the gradient of void volume
fractions

K Thermal conductivity

β, γ1, γ2 Thermal parameters δij Kronecker delta

v1, v2 Void volume fractions ρ Mass density

φ, ψ Change in void volume fraction from
the reference void volume fraction

T0 Reference temperature

η Specific entropy per unit volume αt Coefficients of linear thermal
expansion

σi , τi Nonlocal equilibrated stresses
vectors

ξ , ζ Nonlocal intrinsic equilibrated body
force densities

b1 Acts as a cross-coupling between the
gradient of both void volume
fractions and equilibrated stresses

α1 Acts as a cross-coupling between
void volume fractions and the
intrinsic equilibrated body force
densities

γ1, γ2 The thermo-void coefficients of first
and second kinds of voids,
respectively

qL
i

Local components of the heat flux
vector

σL
i

, τL
i

Local equilibrated stress vectors m, p Void parameters

χ1, χ2 The equilibrated inertia per unit mass
per unit volume corresponding to the
first and second kinds of voids

u, w Displacement components

ξL, ζL Local intrinsic equilibrated body
force densities

eij Nonlocal components of strain
tensors

Using Eqns. (24)-(28) in equations (34)-(36) and omitting prime (′) from the constitutive
coefficients, the governing equations for a homogeneous isotropic nonlocal thermoelastic
material with a double porosity structure can be written as follows:

(λ + 2μ)u,xx + μu,zz + (λ + μ)w,xz + hφ,x + dψ,x − βT,x = (1 − ε2∇2)ρü, (37)

(λ + μ)u,xz + μw,xx + (λ + 2μ)w,zz + hφ,z + dψ,z − βT,z = (1 − ε2∇2)ρẅ, (38)

α(φ,xx +φ,zz)+b1(ψ,xx +ψ,zz)−h(u,x +w,z)−mφ −α1ψ +γ1T = (1−ε2∇2)χ1φ̈, (39)

b1(φ,xx +φ,zz)+γ (ψ,xx +ψ,zz)−d(u,x +w,z)−α1φ −pψ +γ2T = (1−ε2∇2)χ2ψ̈, (40)

K

(
1 + τT

∂

∂t

)
∇2T =

(
1 + τq

∂

∂t

)(
βT0ė + γ1T0φ̇ + γ2T0ψ̇ + ρCvṪ

)
. (41)

The physical significance of various coefficients is given as follows:
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The coupling between the normal stress and the void volume fractions of each type of
void is represented by the coefficients h and d . The gradient of the void volume fractions φ

and ψ is coupled by the parameters α and γ to the associated equilibrated stress vectors σi

and τi , which correspond to the first and second kinds of voids, respectively. The gradients of
the equilibrated stresses and the void volume fractions are cross-coupled by the parameters
b1. Furthermore, the parameter l acts as a cross-coupling between void volume fractions and
the intrinsic equilibrated body force densities; γ1 and γ2 are the thermo-void coefficients
of the first and second kinds of voids, respectively. The parameters m and p couple the
void volume fractions φ and ψ with the intrinsic equilibrated body force densities ξ and ζ ,
respectively (Table 1).

3 Boundary conditions

We examine the scenario in which there is no traction on the surface and a time-dependent
thermal shock applied to the half-space. To find the parameters An(n = 1,2,3,4,5), we
consider the following boundary conditions at z = 0:

(a) Thermal boundary condition that the surface of the half-space is subjected to a time-
dependent thermal shock:

T (x,0, t) = F(t)H(ϑ − |x|), (42)

where H is the Heaviside function.
(b) Mechanical boundary condition that the surface to the half-space is traction free:

(i)

τzz(x,0, t) = 0

⇒ (1 − ε2∇2)τzz(x,0, t) = 0

which gives

τL
zz(x,0, t) = 0. (43)

(ii)
τxz(x,0, t) = 0

⇒ (1 − ε2∇2)τxz(x,0, t) = 0

which gives

τL
xz(x,0, t) = 0. (44)

(c) Conditions on equilibrated stress components:
(i)

σz(x,0, t) = 0

⇒ (1 − ε2∇2)σz(x,0, t) = 0

which gives

σL
z (x,0, t) = 0. (45)
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(ii)
τz(x,0, t) = 0

⇒ (1 − ε2∇2)τz(x,0, t) = 0

which gives

τL
z (x,0, t) = 0. (46)

4 Solution methodology

The normal mode technique is an effective tool for determining the precise solution for
particular physical structures, especially those that show harmonic activity, in the field of
mathematics and physics. It is widely used in the study of oscillations, vibrations, and waves
in a range of physical systems, such as quantum, mechanical, and electrical circuits. The
physical variables that are significant as a superposition of normal modes are included in
the normal mode technique. To solve equations (37)-(41), we employ normal mode analysis
and consider the solution as given below:

(u,w,φ,ψ,T )(x, z, t) = (ū, w̄, φ̄, ψ̄, T̄ )(z) exp[ik(x − ct)], (47)

where ū, w̄, φ̄, ψ̄ and T̄ are the amplitudes of the physical quantities, k is the wave number,
c is the phase velocity in the direction of x-axis. With the help of equation (47), equations
(37)-(41), we reduce to the following forms:

(D2 + a1)ū + a2Dw̄ + a3φ̄ + a4ψ̄ + a5T̄ = 0, (48)

a7Dū + (D2 + a6)w̄ + a8Dφ̄ + a9Dψ̄ + a10DT̄ = 0, (49)

a15ū + a12Dw̄ + (D2 + a11)φ̄ + (a13D
2 + a14)ψ̄ + a16T̄ = 0, (50)

a19ū + a20Dw̄ + (a17D
2 + a18)φ̄ + (D2 + a21)ψ̄ + a22T̄ = 0, (51)

a24ū + a23Dw̄ + a26φ̄ + a27ψ̄ + (D2 + a25)T̄ = 0, (52)

where

a1 = ρk2c2(1 + ε2k2) − k2(λ + 2μ)

μ − ρε2k2c2
, a2 = ik(λ + μ)

μ − ρε2k2c2
, a3 = ikh

μ − ρε2k2c2
,

a4 = ikd

μ − ρε2k2c2
, a5 = −ikβ

μ − ρε2k2c2
, a6 = ρk2c2(1 + ε2k2) − μk2

λ + 2μ − ρε2k2c2
,

a7 = ik(λ + μ)

λ + 2μ − ρε2k2c2
, a8 = h

λ + 2μ − ρε2k2c2
, a9 = d

λ + 2μ − ρε2k2c2
,

a10 = −β

λ + 2μ − ρε2k2c2
, a11 = χ1k

2c2(1 + ε2k2) − αk2 − m

α − χ1ε2k2c2
,

a12 = −h

α − χ1ε2k2c2
, a13 = b1

α − χ1ε2k2c2
, a14 = −(b1k

2 + α1)

α − χ1ε2k2c2
, a15 = −ikh

α − χ1ε2k2c2
,
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a16 = γ1

α − χ1ε2k2c2
, a17 = b1

γ − χ2ε2k2c2
, a18 = −(b1k

2 + α1)

γ − χ2ε2k2c2
, a19 = −ikd

γ − χ2ε2k2c2
,

a20 = −d

γ − χ2ε2k2c2
, a21 = χ2k

2c2(1 + ε2k2) − αk2 − m

γ − χ2ε2k2c2
, a22 = γ2

γ − χ2ε2k2c2
,

a23 = ikcT0βτ1

Kτ2
, a24 = −k2cT0βτ1

Kτ2
, a25 = ikcρCvτ1

Kτ2
− k2,

a26 = ikcT0γ1τ1

Kτ2
, a27 = ikcT0γ2τ1

Kτ2
.

The condition for the existence of a nontrivial solution of the system of homogeneous
equations (48)-(52) provide the following tenth-order differential equation:

[D10 + N1D
8 + N2D

6 + N3D
4 + N4D

2 + N5](ū, w̄, φ̄, ψ̄, T̄ )(z) = 0, (53)

where D ≡ d
dz

and Nn(n = 1,2,3,4,5) are provided in Appendix A.

5 Solution of the differential equation

Assuming the regularity condition at infinity, the solution of Eqn. (53) is obtained as

(ū, w̄, φ̄, ψ̄, T̄ )(z) =
5∑

n=1

(An,Bn,Cn,Dn,En) exp[−λnz]. (54)

Inserting Eqn. (54) into the Eqns. (48)-(52), we obtain the following relations:
Bn = xnAn, Cn = ynAn, Dn = znAn, En = enAn

From Eqn. (47), the displacement components, void volume fractions, and temperature
are obtained as:

u =
5∑

n=1

An exp[−λnz + ik(x − ct)], (55)

w =
5∑

n=1

Bn exp[−λnz + ik(x − ct)], (56)

φ =
5∑

n=1

Cn exp[−λnz + ik(x − ct)], (57)

ψ =
5∑

n=1

Dn exp[−λnz + ik(x − ct)], (58)

T =
5∑

n=1

En exp[−λnz + ik(x − ct)]. (59)
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The stress components are obtained as:

(1 − ε2∇2)τxx = τL
xx = (λ + 2μ)

∂u

∂x
+ λ

∂w

∂z
+ hφ + dψ − βT

=
5∑

n=1

[ik(λ + 2μ) − λλnxn + hyn + dzn − βen]An exp[−λnz + ik(x − ct)],
(60)

(1 − ε2∇2)τzz = τL
zz = (λ + 2μ)

∂w

∂z
+ λ

∂u

∂x
+ hφ + dψ − βT

=
5∑

n=1

[ikλ − (λ + 2μ)λnxn + hyn + dzn − βen]An exp[−λnz + ik(x − ct)],
(61)

(1 − ε2∇2)τxz = τL
xz = μ

(
∂u

∂z
+ ∂w

∂x

)
=

5∑
n=1

[μ (ikxn − λn)]An exp[−λnz + ik(x − ct)],
(62)

where

xn = −Fn

Gn

, yn = xn(PnRn − knUn) + (PnQn − JnUn)

LnUn − PnTn

, zn = −(Jn + xnkn + ynLn)

Pn

,

Fn = λn[a10(λ
2
n + a1) − a5a7],Gn = (a5 − a2a10)λ

2
n + a5a6, Jn = a16(λ

2
n + a1) − a5a15,

Kn = (a5a12 − a2a16)λn,Ln = a3a16 − a5(λ
2
n + a11),Pn = a4a16 − a5(a13λ

2
n + a14),

Qn = a22(λ
2
n + a1) − a5a19,Rn = (a5a20 − a2a22)λn, Tn = a3a22 − a5(a17λ

2
n + a18),

Un = a4a22 − a5(λ
2
n + a21) (n = 1,2,3,4,5).

Substituting from the expressions of considered variables into the above boundary con-
ditions (42)-(46), we can obtain the following equations:

e1A1 + e2A2 + e3A3 + e4A4 + e5A5 = G, (63)

g1A1 + g2A2 + g3A3 + g4A4 + g5A5 = 0, (64)

f1A1 + f2A2 + f3A3 + f4A4 + f5A5 = 0, (65)

l1A1 + l2A2 + l3A3 + l4A4 + l5A5 = 0, (66)

m1A1 + m2A2 + m3A3 + m4A4 + m5A5 = 0, (67)

where

G = F(t)H(ϑ − |x|) exp[−ik(x − ct)], en = a23xnλn − a24 − a26yn − a27zn

λ2
n + a25

,

gn = ikλ − λnxn(λ + 2μ) + hyn + dzn − βen, fn = μ(ikxn − λn), ln = λn(αyn + b1zn),

mn = λn(b1yn + γ zn); (n = 1,2,3,4,5)
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Eqns. (63)-(67) can be solved by Cramer’s rule for the unknowns A1, A2, A3, A4, A5.
Solving, we obtain A1 = �1

�
, A2 = �2

�
, A3 = �3

�
, A4 = �4

�
, A5 = �5

�

where �, �n(n = 1,2,3,4,5) are given in the Appendix B.

6 Limiting cases

By considering different particular values of the parameters, we can derive some results as
follows:

(a) Lord–Shulman (LS) model:

If we take τq = τ and τT = 0, then the present study reduces to the case of Lord–Shulman
(LS) model. Now Eqns. (37)-(41) take the following form:

(λ + 2μ)u,xx + μu,zz + (λ + μ)w,xz + hφ,x + dψ,x − βT,x = (1 − ε2∇2)ρü,

(λ + μ)u,xz + μw,xx + (λ + 2μ)w,zz + hφ,z + dψ,z − βT,z = (1 − ε2∇2)ρẅ,

α(φ,xx + φ,zz) + b1(ψ,xx + ψ,zz) − h(u,x + w,z) − mφ − α1ψ + γ1T = (1 − ε2∇2)χ1φ̈,

b1(φ,xx + φ,zz) + γ (ψ,xx + ψ,zz) − d(u,x + w,z) − α1φ − pψ + γ2T = (1 − ε2∇2)χ2ψ̈,

K∇2T =
(

1 + τ
∂

∂t

)(
βT0ė + γ1T0φ̇ + γ2T0ψ̇ + ρCvṪ

)
.

(b) Coupled thermoelasticity (CT):

The current analysis reduces to the scenario of the conventional coupled thermoelasticity
(CT) theory if we assume that τq = τT = 0. The fundamental equations in this case reduce
to the following form:

(λ + 2μ)u,xx + μu,zz + (λ + μ)w,xz + hφ,x + dψ,x − βT,x = (1 − ε2∇2)ρü,

(λ + μ)u,xz + μw,xx + (λ + 2μ)w,zz + hφ,z + dψ,z − βT,z = (1 − ε2∇2)ρẅ,

α(φ,xx + φ,zz) + b1(ψ,xx + ψ,zz) − h(u,x + w,z) − mφ − α1ψ + γ1T = (1 − ε2∇2)χ1φ̈,

b1(φ,xx + φ,zz) + γ (ψ,xx + ψ,zz) − d(u,x + w,z) − α1φ − pψ + γ2T = (1 − ε2∇2)χ2ψ̈,

K∇2T = βT0ė + γ1T0φ̇ + γ2T0ψ̇ + ρCvṪ .

7 Comparison and validation of the work

In this section, we discuss some special and particular cases by considering different partic-
ular values of the parameters and comparing them with the existing literature as follows:

(a) Nonlocal elastic medium with double porosity:
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When the thermal coefficient is absent, that is, when β = γ1 = γ2 = K = 0. The present
problem can be reduced to nonlocal elastic materials that have two voids. The current result
then agrees with Kumar et al. (2021). Thus, we have the following fundamental equations:

(λ + 2μ)u,xx + μu,zz + (λ + μ)w,xz + hφ,x + dψ,x = (1 − ε2∇2)ρü,

(λ + μ)u,xz + μw,xx + (λ + 2μ)w,zz + hφ,z + dψ,z = (1 − ε2∇2)ρẅ,

α(φ,xx + φ,zz) + b1(ψ,xx + ψ,zz) − h(u,x + w,z) − mφ − α1ψ = (1 − ε2∇2)χ1φ̈,

b1(φ,xx + φ,zz) + γ (ψ,xx + ψ,zz) − d(u,x + w,z) − α1lφ − pψ = (1 − ε2∇2)χ2ψ̈.

(b) Local thermoelastic medium with double porosity:

If we take ε = 0, then the present study reduces to the local thermoelastic materials with
double porosity, and the present result agrees with Iesan and Quintanilla (2014). In this case,
the basic equations reduce to the following form:

(λ + 2μ)u,xx + μu,zz + (λ + μ)w,xz + hφ,x + dψ,x − βT,x = ρü,

(λ + μ)u,xz + μw,xx + (λ + 2μ)w,zz + hφ,z + dψ,z − βT,z = ρẅ,

α(φ,xx + φ,zz) + b1(ψ,xx + ψ,zz) − h(u,x + w,z) − mφ − α1ψ + γ1T = χ1φ̈,

b1(φ,xx + φ,zz) + γ (ψ,xx + ψ,zz) − d(u,x + w,z) − α1φ − pψ + γ2T = χ2ψ̈,

K

(
1 + τT

∂

∂t

)
∇2T =

(
1 + τq

∂

∂t

)(
βT0ė + γ1T0φ̇ + γ2T0ψ̇ + ρCvṪ

)
.

(c) Nonlocal thermoelastic medium without double porosity:

The present study reduces to a nonlocal thermoelastic medium without voids by neglect-
ing the constitutive constants corresponding to the first and second kinds of voids by setting
the quantities h, d , α, b1, γ , γ1, γ2, l, m, p, χ1, χ2 to zero, which agrees with Gupta and
Mukhopadhyay (2019). The fundamental equations now assume the form:

(λ + 2μ)u,xx + μu,zz + (λ + μ)w,xz − βT,x = (1 − ε2∇2)ρü,

(λ + μ)u,xz + μw,xx + (λ + 2μ)w,zz − βT,z = (1 − ε2∇2)ρẅ,

K

(
1 + τT

∂

∂t

)
∇2T =

(
1 + τq

∂

∂t

)(
βT0ė + ρCvṪ

)
.

(d) Local thermoelastic medium without porosity:

If we take ε = 0 and neglect the constitutive constants corresponding to first and sec-
ond kinds of voids by setting the quantities h, d , α, b1, γ , γ1, γ2, l, m, p, χ1, χ2 to zero,
the present study reduces to nonlocal thermoelastic materials without voids and agrees with
Biswas and Mukhopadhyay (2017) (replacing the three-phase-lag model by the dual-phase-
lag model and taking isotropic materials instead of orthotropic materials) with suitable mod-
ifications. We derive the fundamental equations as follows:

(λ + 2μ)u,xx + μu,zz + (λ + μ)w,xz − βT,x = ρü,
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(λ + μ)u,xz + μw,xx + (λ + 2μ)w,zz − βT,z = ρẅ,

K

(
1 + τT

∂

∂t

)
∇2T =

(
1 + τq

∂

∂t

)(
βT0ė + ρCvṪ

)
.

(e) Local thermoelastic medium with single porosity:

If we set ε = 0 and neglect the constitutive constants corresponding to second kind of
voids by setting the quantities d , b1, γ , γ2, l, p, χ2 to zero, the present study reduces to the
local thermoelastic materials with single voids and agrees with Biswas (2021) (replacing
three-phase-lag model by dual-phase-lag model and taking isotropic materials instead of
orthotropic materials) and Iesan (1986). The basic equations now become:

(λ + 2μ)u,xx + μu,zz + (λ + μ)w,xz + hφ,x − βT,x = ρü,

(λ + μ)u,xz + μw,xx + (λ + 2μ)w,zz + hφ,z − βT,z = ρẅ,

α(φ,xx + φ,zz) − h(u,x + w,z) − mφ + γ1T = χ1φ̈,

K

(
1 + τT

∂

∂t

)
∇2T =

(
1 + τq

∂

∂t

)(
βT0ė + γ1T0φ̇ + ρCvṪ

)
.

(f) Nonlocal thermoelastic medium with single porosity:

The present investigation reduces to nonlocal thermoelastic materials with single voids,
which agrees with Mondal et al. (2019), if we set the constitutive constants d , b1, γ , γ2, l, p,
χ2 to zero. In addition to the aforementioned requirement, the current conclusion coincides
with Tomar and Sarkar (2019) if we assume τq = τ and τT = 0. The basic equations are
reduced to

(λ + 2μ)u,xx + μu,zz + (λ + μ)w,xz + hφ,x − βT,x = (1 − ε2∇2)ρü,

(λ + μ)u,xz + μw,xx + (λ + 2μ)w,zz + hφ,z − βT,z = (1 − ε2∇2)ρẅ,

α(φ,xx + φ,zz) − h(u,x + w,z) − mφ + γ1T = (1 − ε2∇2)χ1φ̈,

K

(
1 + τT

∂

∂t

)
∇2T =

(
1 + τq

∂

∂t

)(
βT0ė + γ1T0φ̇ + ρCvṪ

)
.

8 Numerical results and discussion

We know that the thermal shock is time dependent, so we consider F(t) = θ0 exp(−bt),
where θ0 is constant. For numerical computations, we consider the data values of copper
material, which is given in Table 2
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Table 2 Numerical values of various constants

Symbols Values Symbols Values Supporting refs.

λ 7.76 × 1010 Nm−2 μ 3.86 × 1010 Nm−2 Sherief and Saleh (2005),
Mahato and Biswas
(2023)

Cv 3.831 × 103 m2 s−2 K−1 K 3.86 × 103 Ns−1 K−1

ρ 8.954 × 103 kg m−3 s T0 293 K

αt 1.78 × 10−5 K−1 ε 0.009 m

h 0.9 × 1010 Nm−2 d 0.1 × 1010 Nm−2

b1 0.12 × 10−5 N γ 1.1 × 10−5 N

γ1 0.16 × 105 Nm−2 γ2 0.219 × 105 Nm−2

p 2.4 × 1010 Nm−2 l 2.5 × 1010 Nm−2

m 2.3 × 1010 Nm−2 χ1 0.1456 × 10−12 Nm−2 s2

χ2 0.1546 × 10−12 Nm−2 s2 θ0 100

b 0.1 m k 1.2 m−1

τq 0.05 s τT 0.015 s

x 0 m ϑ 1

8.1 Effect of different thermoelastic models on different physical quantities with
respect to time

Figure 1 shows the variation of horizontal displacement component u with respect to time
t for three different models of thermoelasticity, including DPL(Dual-phase-lag), LS (Lord–
Shulman), and CT (coupled thermoelasticity) models. As time t increases, it is found that
the horizontal displacement component u exhibits wave-type propagation. In the range of
3.34 s < t < 7 s, the value of the horizontal displacement component u for the LS model is
located between the values for the CT and DPL models. For the CT model, the value of u is
at maximum.

Figure 2 depicts the comparison of T with different values of t for different thermoe-
lastic models DPL, LS, and CT. For these three models, the value of w decreases as time
t increases. For the CT model, T is at its highest value, and for the DPL model, it is at its
smallest value. The value of T for the LS model lies between the value of w for CT and the
DPL model.

Figure 3 illustrates the variations of tangential stress component τxz with the various
values of t for different thermoelastic models. It is noticed that tangential stress component
τxz is showing wave-type nature with the increase in time t . The tangential stress component
τxz for the DPL model has a value that falls between the value for the CT and LS models
with respect to tangential stress. The value of tangential stress component τxz attains its
maximum for CT models and minimum for LS models.

Figure 4 shows a comparison of void volume fraction fields ψ with respect to different
values of t in the presence of different thermoelastic models DPL, LS, and CT. In Fig. 4, ψ

shows wave-type propagation with the increase in t . In particular, for the regions 1 s < t <

2.01 s, 3.21 s < t < 4.52 s, and 5.61 s < t < 6.85 s, the value of the void volume fraction
fields ψ for the CT model is less than for the LS model. The value of void volume fraction
fields ψ for the CT model is higher than for the LS model for the regions 2.01 s < t < 3.21 s
and 4.52 s < t < 5.61 s. It can be analyzed from Figs. 3 and 4 that φ has reverse behavior to
that of ψ .

Figure 5 represents the variation of equilibrated stress component σz with the different
values of t . Wave-type nature can be observed from Fig. 5 of equilibrated stress component
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Fig. 1 Comparison of horizontal
displacement component u with
respect to time (t ) for different
thermoelastic models

Fig. 2 Comparison of T with
respect to time (t ) for different
thermoelastic models

Fig. 3 Comparison of tangential
stress component (τxz) with
respect to time (t ) for different
thermoelastic models
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Fig. 4 Comparison of ψ with
respect to time (t ) for different
thermoelastic models

Fig. 5 Comparison of σz with
respect to time (t ) for different
thermoelastic models

Fig. 6 Comparison of τz with
respect to time (t ) for different
thermoelastic models
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σz with the different values of t for the different thermoelastic models, namely, DPL, LS,
and CT. The value of equilibrated stress component σz for the DPL model lies between the
value of equilibrated stress component σz for LS and CT models. For the LS model, the
equilibrated stress component σz has a maximum value, while for the DPL and CT models,
it is nearly equal.

Figure 6 illustrates the comparison of equilibrated stress component τz with the different
values of t . Equilibrated stress component τz shows wave-type behavior with the increase in
t for the different thermoelastic models DPL, LS, and CT. The value of equilibrated stress
component τz for the DPL model lies between the value of equilibrated stress component τz

for LS and CT thermoelastic models. It is also noticed from Figs. 5 and 6 that τz behavior is
opposite to that of τz.

8.2 Effect of nonlocal parameter on different physical quantities with respect to
time

Figures 7-13 represent the graphs for displacement u, temperature (T), stress τzz, change in
void volume fractions φ, ψ and equilibrated stress vectors σz, τz versus time (t ) for nonlocal
as well as local parameters, when x and z are fixed as 0 and 0.1.

Figure 7 depicts the variation of the horizontal displacement component u with respect to
the value of t for nonlocal as well as local thermoelastic medium. The value of the horizontal
displacement component u for the nonlocal thermoelastic medium is marginally greater than
the value of the horizontal displacement component u for the local thermoelastic medium,
and an oscillating behavior of the horizontal displacement component u is evident.

Figure 8 shows the comparison of T with respect to the values of t for the different
thermoelastic models DPL, LS, and CT. T shows wave-like behavior with the increase in t .
Figure 8 shows that the value of T for a nonlocal thermoelastic media and the value of T

for a local thermoelastic medium nearly coincide.
Figure 9 presents the variation of normal stress component τzz with different values of

t for nonlocal and local thermoelastic medium. It is noticed that normal stress component
τzz shows the wave-type propagation with the increase in t and attains its maximum at
t = 1.74 s. Both the local and nonlocal thermoelastic media have nearly the same value
for the normal stress component τzz. From this figure, very minor differences between the
nonlocal and local thermoelastic material may be observed.

In both the presence and absence of nonlocal parameters, Fig. 10 shows how the void
volume fraction field φ varies with different values of t . It is seen that when t increases,
the void volume fraction field φ exhibits wave-like propagation. The value of void volume
fraction field φ for nonlocal thermoelastic medium is higher than the value of void volume
fraction field φ for local thermoelastic medium.

Figure 11 depicts the variation of void volume fraction field ψ with the various values
of t . It is observed from Fig. 11 that the void volume fraction field ψ shows wave-like
behavior with the increase in t . The value of void volume fraction field ψ for nonlocal
thermoelastic medium is higher than the value of ψ for local thermoelastic medium. It can
also be observed from Figs. 10 and 11 that void volume fraction field φ has exactly the
opposite behavior to that of void volume fraction field ψ .

The change in the equilibrated stress component σz with varying values of t , both in the
presence and absence of nonlocal factors, is shown in Fig. 12. Figure 12 indicates that when
t increases, σz behaves more like a wave. The value of equilibrated stress component σz in
the presence of a nonlocal parameter is higher than in the absence of nonlocal parameter
for the regions 1.082 s < t < 2.302 s, 3.423 s < t < 4.512 s and 5.62 s < t < 6.871 s. The
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Fig. 7 Comparison of horizontal
displacement component u with
respect to time (t ) for nonlocal
and local parameters

Fig. 8 Comparison of T with
respect to time (t ) for nonlocal
and local parameters

Fig. 9 Comparison of normal
stress component (τzz) with
respect to time (t ) for nonlocal
and local parameters
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Fig. 10 Comparison of φ with
respect to time (t ) for nonlocal
and local parameters

Fig. 11 Comparison of ψ with
respect to time (t ) for nonlocal
and local parameters

Fig. 12 Comparison of σz with
respect to time (t ) for nonlocal
and local parameters
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Fig. 13 Comparison of τz with
respect to time (t ) for nonlocal
and local parameters

value of equilibrated stress component σz in the presence of nonlocal parameter is less than
in the absence of nonlocal parameter for the regions 2.302 s < t < 3.423 s and 4.512 s <

t < 5.62 s.
Figure 13 represents the variation of equilibrated stress component τz with the different

values of t , and τz shows wave-like behavior with the increase in t in the presence and
absence of nonlocal parameter. For the regions 1.089 s < t < 2.28 s, 3.437 s < t < 4.502 s,
and 5.617 s < t < 6.875 s, the value of the equilibrated stress component τz in the presence
of a nonlocal parameter is less than in the absence of a nonlocal parameter. The value of
equilibrated stress component τz in the presence of nonlocal parameter is higher than in
the absence of nonlocal parameter for the regions 2.286 s < t < 3.437 s and 4.502 s < t <

5.67 s. It can also be noticed from Figs. 12 and 13 that σz has exactly opposite behavior to
that of τz.

Figures 14-16 represent the graphs for displacement w, temperature above the reference
temperature T, stress τzz versus time (t ) for fixed values of x = 0 m and z = 0.1 m with
voids and without voids, respectively.

Figure 14 represents the variation of vertical displacement component w with the dif-
ferent values of t in the presence and absence of void parameters. It is found from Fig. 14
that w shows wave-like behavior with the increase in t . The value of vertical displacement
component w in the presence of void parameters is higher than in their absence for the re-
gions 1.12 s < t < 2.36 s, 3.49 s < t < 4.54 s and 5.65 s < t < 6.85 s, respectively. For the
regions of 2.36 s < t < 3.49 s and 4.54 s < t < 5.65 s, respectively, the value of the vertical
displacement component w in the presence of void parameters is less than in their absence.
At some particular values of t , values of vertical displacement component w coincide in the
presence and absence of void parameters.

The variation T with different values of t in the presence and absence of void parameters
is shown in Fig. 15. Figure 15 reveals that when t increases, T exhibits wave-like behavior.
The value of T in the presence of void parameters is higher than in their absence for the
regions 1.12 s < t < 2.38 s, 3.5 s < t < 4.58 s and 5.69 s < t < 6.93 s. The value of T in
the presence of void parameters is less than in their absence for the regions 2.38 s < t < 3.5 s
and 4.5 s < t < 5.59 s.

Figure 16 represents the variation normal stress component τzz with the different values
of t in the presence and absence of void parameters. It is found from Fig. 16 that the normal



Mechanics of Time-Dependent Materials

Fig. 14 Comparison of w with
respect to time (t ) in the presence
and absence of void parameters

Fig. 15 Comparison of T with
respect to time (t ) in the presence
and absence of void parameters

Fig. 16 Comparison of normal
stress component (τzz) with
respect to time (t ) in the presence
and absence of void parameters
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stress component τzz shows wave-like behavior with the increase in t . For the regions of
1.11 s < t < 2.28 s, 3.46 s < t < 4.5 s, and 5.65 s < t < 6.89 s, respectively, the value of
the normal stress component τzz in the presence of void parameters is less than in their
absence. The value of normal stress component τzz in the presence of void parameters is
higher than in their absence for the regions 2.28 s < t < 3.46 s and 4.5 s < t < 5.65 s. From
Figs. 15 and 16, it is noticed that T and normal stress component τzz have opposite behavior.

8.3 Effect of different thermoelastic models on different physical quantities with
respect to distance

Figures 17-22 represent the graphs for u, w, τzz, φ, ψ , σz and τz versus distance (z) when x

and t are fixed at 0 and 1 for different thermoelastic models like DPL, LS, and CT.
Figure 17 depicts the comparison of w for different values of distance z. It is evident that

when the distance z increases, the considered parameter u decreases smoothly for a fixed
value of t . The value of w for the CT model lies between the value of w for the DPL and LS
models. It is observed that the decreasing rate of w is higher for the CT model compared to
the LS and DPL models.

Figure 18 shows the graph of τxz for different values of distance z. It is possible to
investigate that, for DPL and CT models, the value of τxz is rapidly dropping with an increase
in distance z, given a fixed value of t . For the LS model, τxz decreases smoothly as distance
z increases. From Fig. 18, it is observed that the decreasing rate of τxz is higher for CT and
DPL models compared to the LS model. The value of τxz is maximum for the CT model and
is minimum for the LS model.

The comparison of the void volume fraction (φ) for various distance (z) values is dis-
played in Fig. 19. This graphic shows an oscillating behavior of φ for the CT and LS models.
The maximum of φ is reached for the LS model. In the context of the DPL model, the value
of φ increases for 0.1 m < z < 0.39 m and then drops for the remaining values of z.

Figure 20 depicts the comparison of void volume fraction (ψ ) for different values of
distance (z). An oscillatory behavior of ψ can be investigated for the LS model. ψ attains
its maximum for the LS model. The value of ψ is decreasing for certain values of z and then
increasing for the remaining values of z for DPL and CT models. Figures 19 and 20 show
that for the three thermoelastic models, namely, DPL, LS, and CT, φ behaves in the opposite
way as ψ .

σz and τz show wave-like behavior in Figs. 21-22, and the values of the considered pa-
rameters σz and τz for LS model are higher than for DPL and CT models. In Fig. 21, the
value of σz decreases up to z = 0.28 m, increases for 0.28 m < z < 0.58 m, and then de-
creases again for the DPL and CT models. The value of τz is increasing up to z = 0.25 m,
decreasing for 0.25 m < z < 0.59 m, and then again increasing for DPL and CT models in
Fig. 22. From Figs. 21 and 22, it is noticed that σz shows the opposite behavior to that of τz

for the different thermoelastic models.
Figure 23 reveals the comparison of horizontal displacement component u with respect

to the different values of z in the presence and absence of nonlocal parameters. It is seen
that when the distance z increases, the value of the horizontal displacement component u de-
creases significantly. When there are nonlocal parameters present, the value of the horizontal
displacement component u is higher than when nonlocal parameters are absent. Significant
impact of nonlocal parameters can be observed from this figure. The remarkable difference
between the value of horizontal displacement component u in the presence of nonlocal pa-
rameters and the absence of nonlocal parameters can be revealed.
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Fig. 17 Comparison of vertical
displacement component w with
respect to distance (z) for
different thermoelastic models

Fig. 18 Comparison of
tangential stress (τxz) with
respect to distance (z) for
different thermoelastic models

Fig. 19 Comparison of φ with
respect to distance (z) for
different thermoelastic models
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Fig. 20 Comparison of ψ with
respect to distance (z) for
different thermoelastic models

Fig. 21 Comparison of σz with
respect to distance (z) for
different thermoelastic models

Fig. 22 Comparison of τz with
respect to distance (z) for
different thermoelastic models
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Fig. 23 Comparison of
horizontal displacement
component u with respect to
distance (z) for nonlocal and
local parameters

8.4 Effect of nonlocal and void parameters on different physical quantities with
respect to distance

Figure 24 shows the variation of normal stress component τzz with respect to the different
values of z in the presence and absence of nonlocal parameters. It is noted that when the
distance z increases, the value of the normal stress component τzz decreases significantly.
The value of normal stress component τzz in the absence of nonlocal parameters is higher
than in the presence of nonlocal parameters. Initially, differences between them are small
and differences are increasing with the increasing distance. The significant impact of void
parameters can be observed in this figure. It is possible to observe the significant difference
in the value of the normal stress component τzz in the presence void parameters and in their
absence.

Figure 25 reveals the comparison of the vertical displacement component w with respect
to the different values of z in the presence and absence of void parameters. It is noted that
as the distance z increases, the value of the vertical displacement component w gradually
decreases. The value of w in the presence of void parameters is lower than in the absence
of void parameters. This figure illustrates the significant impact of void parameters. The
remarkable difference between the value of the vertical displacement component w in the
presence of void parameters and in their absence can be revealed.

Figure 26 reveals the comparison of tangential stress component τxz with respect to the
different values of z in the presence and absence of void parameters. It is noted that as the
distance z increases, the value of the tangential stress component τxz consistently decreases.
When void parameters are present, the value of w is less than the tangential stress compo-
nent τxz when void parameters are absent. The significant impact of void parameters can
be observed in this figure. The remarkable difference between the value of tangential stress
component τxz in the presence of void parameters and in their absence can be revealed.

Figures 27–32 provide 3D surface curves for the physical quantities, including Re(T ),
normal stress component Re(τzz) change in void volume fraction fields Re(φ) and Re(ψ),
equilibrated stress component Re(σz), to study the impact of nonlocality and double voids
in a nonlocal isotropic thermoelastic medium in the context of the dual-phase-lag (DPL)
model. These data are crucial for understanding how these physical quantities relate to the
vertical component of distance (z). All physical variables satisfy the boundary requirements.



Mechanics of Time-Dependent Materials

Fig. 24 Comparison of normal
stress component (τzz) with
respect to distance (z) for
nonlocal and local parameters

Fig. 25 Comparison of vertical
displacement component w with
respect to distance (z) in the
presence and absence of void
parameters

Fig. 26 Comparison of tangential
stress (τxz) with respect to
distance (z) in the presence and
absence of void parameters
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Fig. 27 Surface of Re(T ) for
x ∈ [0.1,0.9] and t ∈ [1,9]

Fig. 28 Surface of Re(τzz) for
x ∈ [0.1,0.9] and t ∈ [1,9]

Fig. 29 Surface of Re(ψ) for
x ∈ [0.1,0.9] and t ∈ [1,9]
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Fig. 30 Surface of Re(T ) for
x ∈ [1,9] and z ∈ [0.1,0.9]

Fig. 31 Surface of Re(φ) for
x ∈ [1,9] and z ∈ [0.1,0.9]

Fig. 32 Surface of Re(σz) for
x ∈ [1,9] and z ∈ [0.1,0.9]
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Assumptions and limitations of the adopted model

The values of τq and τT for a few metals have been found by Tzou (1995). The ratio
τ ∗ (where τ ∗ = τT

τq
) is estimated by Tzou to be approximately 163 for copper, 120 for

gold and silver, and 72 for lead (Ref. Chandrasekharaiah 1998). Hence, in these cases, Eq.
K

(
1 + τT

∂
∂t

)∇2T = ρCV

(
1 + τq

∂
∂t

)
∂T
∂t

is not appropriate for investigating wave-like ther-
mal signals. For such investigations, one needs to employ a temperature equation in which
both the phase-lags τq and τT are incorporated and which is hyperbolic.

9 Some applications of the present work

Voids: The porous media theory has important applications in the field of applied science
and engineering. It has a wide range of applications in mechanics (acoustics, geomechan-
ics, soil mechanics, and rock mechanics), engineering (petroleum engineering, construction
engineering), geosciences (hydrogeology, petroleum geology, and geophysics), biology and
biophysics, material science, and filtration. Porous materials have a significant impact on
two fields of application: (a) energy conversion and (b) energy storage, where porous ma-
terials play an important role in advancing various technologies such as fuel cells, superca-
pacitors, and batteries, contributing to more efficient energy utilization and storage.

Nonlocality: Eringen’s nonlocal theories have the following characteristics:

(i) Nonlocal solutions eliminate singularities predicted by the classical (local) theory of
elasticity.

(ii) Maximum stress can be used to calculate the cohesive stress that holds atomic bonds
together.

(iii) Classical elasticity is obtained when the nonlocal moduli become dirac delta functions.

(d) The cohesive stress calculated agrees with the lattice dynamical results and experi-
mental observations.

10 Conclusion

The present work provides a detailed analysis of thermomechanical interactions in a dou-
ble porous isotropic thermoelastic medium based on nonlocal elasticity theory under the
purview of the dual-phase-lag model. Normal mode analysis is employed to solve the prob-
lem. Since it provides precise values for physical quantities, this method is frequently em-
ployed in many branches of mechanics. The comparison of different physical variables for
various thermoelastic models and the effects of nonlocal parameters and porosity on differ-
ent physical quantities are presented graphically.

Based on theoretical analysis, numerical computation, and graphical observation of the
present work, the following conclusions may be inferred:

(a) Effect of nonlocality on different physical quantities:
The graphs of u and τzz are decreasing significantly with the increase in distance for both
nonlocal as well as local thermoelastic medium. In a nonlocal thermoelastic media, u

has a slightly greater value compared to a local thermoelastic medium. The value τzz for
nonlocal thermoelastisc medium is smaller than the value of τzz for local thermoelastic
medium. u, T , τzz, φ, ψ , σz and τz show wave-type propagation with the increase in
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time for nonlocal as well as local thermoelastic medium. φ, ψ , σz, and τz show wave-
like behavior with the increase in distance for both local and nonlocal thermoelastic
medium. φ has the opposite behavior to that of ψ with respect to time in the presence
and absence of nonlocal parameters. σz has the opposite behavior to that of τz with
respect to time in both the presence and absence of nonlocal parameters.

(b) Effect of void parameters on different physical quantities:
The graphs of w and τxz in the presence and absence of void parameters are decreasing
significantly with the increase in distance. In the absence of void parameters, w has a
greater value than when void parameters are present. In the absence of void parameters,
τxz has a greater value than in the presence of void parameters. w, T , and τzz show
wave-type propagation with the increase in time in the presence of voids as well as in
the absence of void parameters. T has the opposite behavior to that of τzz with respect
to time in the presence and absence of void parameters.

(c) Effect of different thermoelastic models on different physical quantities:
The values of w and τxz are decreasing significantly with the increase in distance for
the thermoelastic models DPL and CT compared to the LS model. The values of w

and τxz are maximum for the CT model and minimum for the LS model. The values
of w and τxz for the DPL model lie between the values of w and τxz for CT and LS
models. u, T , τxz, ψ , σz and τz show wave-type propagation with the increase in time
for different thermoelastic models like DPL, LS, and CT. In the context of the LS model,
the parameters φ, ψ , σz, and τz exhibit wave-like behavior as distance increases. For
various models, φ behaves in the opposite way to ψ , and σz behaves in the opposite way
to τz.

Appendix A

N1 = p30 + p56

p17
,N2 = p31 + p57 + p71 + s10 + s24
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N4 = p33 + p59 + p73 + s12 + s26
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p17
,

s1 = a12a17 − a20, s2 = a12p5 − p9 − a16p11 − a11a20, s3 = a12p6 − a11p9 + a16p12,

s4 = a15a17 − a19, s5 = a15p5 − p35 − a11a19 − a16p43, s6 = a15p6 − a11p35 + a16p37,

s7 = a15a20 − a12a19, s8 = a12a17a24 − a15a23 + p60, s9 = a15p12 − a12p37 + a11p60,

s10 = a4s4 − a4a7s1, s11 = a4s5 + a4a6s4 − a4a7s2 − a4a8s7 + a4a10s8,

s12 = a4s6 + a4a6s5 − a4a7s3 − a4a8p68 + a4a10s10, s13 = a4a6s6, s14 = −a23 − a13p11,

s15 = a12p7 + p10 − a11a23 + a13p12 − a14p11, s16 = a12p8 + a11p10 + a14p12,

s17 = a13p42 + a24, s18 = a15p7 − p36 + a11a24 + a13p37 + a14p42,

s19 = a15p8 − a11p36 + a14p37, s20 = a12a24 − a15a23 + a13p60,

s21 = a15p10 − a12p36 + a14p60, s22 = p60 − a15p11 − a12p42,

s23 = a15p12 − a12p37 + a11p60, s24 = a5a7s14 − a5s17,

s25 = a5a7s15 − a5s18 − a6s17 + a5a8s20 − a5a9s22,

s26 = a5a7s16 − a5s19 − a5a6s18 + a5a8s21 − a5a9s23, s27 = −a5a6s19,
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p1 = a1 + a6,p2 = a1a6,p3 = a21 + a25,p4 = a21a25 − a22a27,p5 = a17a25 + a18,

p6 = a18a25 − a22a26,p7 = a17a27 − a26,p8 = a18a27 − a26a21,p9 = a20a25 − a22a23,

p10 = a20a27 − a21a23,p11 = a23a17,p12 = a20a26 − a23a18,p13 = a1a8,p14 = a1a9,

p15 = a1a10,p16 = −a23a17,p17 = 1 − a13a17,p18 = p3 + a11 − p5a13 − a14a17,

p19 = p4 + p3a11 − p6a13 − p5a14 + p7a16,p20 = a11p4 − a14p6 + a16p8,

p21 = a12 − a20p13,p22 = a12p3 − p9p13 − a14a20 − a16a23,p23 = a12p4 − a14p9 + a16p10,

p24 = a12a17 − a20,p25 = a12p5 − a11a20 + a16p16 − p9,p26 = a12p6 − a11p9 + a16p12,

p27 = a23 + a13p16,p28 = a12p7 − p10 + a11a23 + a13p12 + a14p16,

p29 = a12p8 − a11p10 + a14p12,p30 = p18 + p1p17 − a8p21 + a9p24 − a10p27,

p31 = p2p17 + p19 + p1p18 − a8p22 − p13p21 + a9p25 + p14p24 − a10p28 − p15p27,

p32 = p20 + p1p19 + p2p18 − a8p23 − p13p22 + a9p26 + p14p25 − a10p29 − p15p28,

p33 = p1p20 + p2p19 − p13p23 + p14p26 − p15p29,p34 = p2p20,p35 = a19a25 − a22a24,

p36 = a19a27 − a21a24,p37 = a19a26 − a18a24,p38 = −a2a7,p39 = a2a8,p40 = −a2a9,

p41 = a2a10,p42 = −a17a24,p43 = a17a24,p44 = 1 − a13a17,

p45 = a11 + p3 − a13p5 − a14a17,p46 = a11p3 − a13p6 − a14p5 + a16p7,

p47 = a11p4 − a14p6 + a16p8,p48 = a15 − a13a19,

p49 = a15p3 − a13p35 − a14a19 − a16a24,p50 = a15p4 − a14p35 + a16p36,

p51 = a15a17 − a19,p52 = a15p5 − p35 − a11a19 + a16p42,p53 = a15p6 − a11p35 + a16p37,

p54 = a15p7 − p36 + a11a24 + a13p37 − a14p43,p55 = a15p8 − a11p36 + a14p37,

p56 = p38p44,p57 = p38p45 + p39p48 + p40p51 − a13p41p43 + a24p41,

p58 = p38p46 + p39p49 + p40p52 + p41p54,p59 = p38p47 + p39p50 + p40p53 + p41p55,

p60 = a19a23 − a20a24,p61 = a12 − a13a20,p62 = a12p3 − a13p9 − a14a20 − a16a23,

p63 = a12p4 − a14p9 + a16p9,p64 = a15 − a13a19,p65 = a15p3 − a13p35 − a14a19 − a16a24,

p66 = a15p4 − a14p35 + a16p36,p67 = a15a20 − a12a19,p68 = a15p9 − a12p35 + a16p60,

p69 = a12a24 + a13p60 − a15a23,p70 = a15p10 − a12p36 + a14p60,p71 = a3a7p61 − a3p64,

p72 = a3a7p62 − a3p65 − a3a6p64 + a3a9p67 − a3a10p69,

p73 = a3a7p63 − a3p66 − a3a6p65 + a3a9p68 − a3a10p70,p74 = −a3a6p66.
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0 l2 l3 l4 l5
0 m2 m3 m4 m5

∣∣∣∣∣∣∣∣∣∣
,
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�2 =

∣∣∣∣∣∣∣∣∣∣

e1 G e3 e4 e5

g1 0 g3 g4 g5

f1 0 f3 f4 f5

l1 0 l3 l4 l5
m1 0 m3 m4 m5

∣∣∣∣∣∣∣∣∣∣
,�3 =

∣∣∣∣∣∣∣∣∣∣

e1 e2 G e4 e5

g1 g2 0 g4 g5

f1 f2 0 f4 f5

l1 l2 0 l4 l5
m1 m2 0 m4 m5

∣∣∣∣∣∣∣∣∣∣
,

�4 =

∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 G e5

g1 g2 g3 0 g5

f1 f2 f3 0 f5

l1 l2 l3 0 l5
m1 m2 m3 0 m5

∣∣∣∣∣∣∣∣∣∣
,�5 =

∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 e4 G

g1 g2 g3 g4 0
f1 f2 f3 f4 0
l1 l2 l3 l4 0
m1 m2 m3 m4 0

∣∣∣∣∣∣∣∣∣∣
.
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