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Abstract
In this work, we present a two-dimensional problem of thermoelastic and thermo-
viscoelastic materials which consists of three thick layers with a finite thickness and infinite
extent. These layers are placed in a perfect contact one on top of another. The outer surfaces
of the layers are assumed to be thermally isolated and rigidly fixed. There is a disturbed
variable heat source filling the middle layer. Continuity conditions between the layers en-
sure the continuity of the temperature, normal heat flux, displacement, and normal stresses
across layers. Laplace and exponential Fourier transforms are used to solve the problem.
Inverse transforms are computed numerically to obtain the solution in the physical domain.
Graphical results are presented and discussed for all variable fields.

Keywords Hereditary thermoelasticity · Internal heat source · Mittag-Leffler relaxation
function · Numerical results · Two-dimensional application

1 Introduction

For the last few decades, fractional calculus (FC) has drawn increasing attention in various
scientific disciplines involving attenuation and dispersion in complex viscoelastic media,
nanoprecipitate growth in solids, heat transfer, diffusion and wave propagation, electrical
spectroscopy impedance, chaos and fractals, biology, environmental science, signal and im-
age processing, robotics, system identification, traffic systems, genetic algorithms, percola-
tion, modeling and identification, telecommunications, chemistry, physics, control systems,
as well as economy and finance (Hilfer 2000; Gutierrez et al. 2010). Any researcher citing
review/survey papers on the applications of FC has the risk of forgetting some because the
list is long, as proved by the increasing number of articles, congresses, and treaties involving
FC. Many experimental and laboratory results have shown that new fractional-order models
are more adequate than previously used integer-order models (Sun et al. 2018; Machado
et al. 2011).
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Previous FC models have historical challenges in capturing real-world description of
properties of various real materials, in particular the description of memory and heredi-
tary properties of various materials and processes. The advantages of using FC have pro-
duced a successful revolution to modify many existing models of physical processes, e.g.,
the description of rheological properties of rocks, as well as mechanical modeling of en-
gineering materials such as polymers over extended ranges of time and frequency (Caputo
and Mainardi 1971; Mainardi 2022). Fractional-order models often work well, particularly
in heat transfer and electrochemistry, for example, the half-order fractional integral is the
natural integral operator connecting the applied gradients (thermal or material) with the dif-
fusion of ions of heat (Gorenflo et al. 2007), which motivated researchers to introduce more
mathematical models in both thermo-elasticity and hereditary thermo-elasticity (thermo-
viscoelasticity) theory.

In the theory of thermo-elasticity, a quasistatic uncoupled theory based on the fractional
heat conduction equation with the Caputo time-fractional derivative was put forward by
Povstenko (2004, 2010). Sherief et al. (2010) introduced a new model of thermoelastic-
ity using fractional calculus, proved a uniqueness theorem, and derived a reciprocity rela-
tion together with a variational principle. During the last years, a new trend of using FC in
thermo-elastic applications has been observed. Ezzat and Fayik (2011) constructed a model
in generalized thermos-elastic diffusion by using fractional time-derivatives. Ezzat et al.
(2012b) introduced a new model of fractional thermo-elasticity associated with three-phase
lag. During the last years, a trend has been observed in thermo-elasticity application research
employing tools from FC (Yu et al. 2014; Sur and Kanoria 2014; Hamza et al. 2015; Ezzat
et al. 2012a; Povstenko 2015; Abouelregal and Zenkour 2013; Awad 2012, 2019). On the
other hand, linear viscoelasticity is certainly the field of the most extensive applications of
fractional calculus since the appearance of FC in 1974. Caputo (1969) and Mainardi (1997)
employed the tools of FC to describe the behavior of viscoelastic materials. Their model
was successful in producing results in accordance with physical observations. Adolfsson
et al. (2005) constructed a newer fractional-order model of viscoelasticity. In the frame-
work of the thermo-viscoelasticity, Sherief et al. (2011) derived a new mathematical model
of thermo-viscoelasticity associated with one relaxation time in integer-order derivatives’
domain, proved a uniqueness theorem, as well as a reciprocity relation. Ezzat et al. (2013)
derived a new model of thermo-viscoelasticity associated with singular Caputo relaxation
kernel using the methodology of FC. The previous models in thermo-viscoelasticity are
widely used by many authors in their applications (Ezzat et al. 2015; Zenkour and Abouel-
regal 2015; Ezzat and El-Bary 2014, 2016; Awad et al. 2022). Elhagary (2010) solved a
two-dimensional problem for the generalized thermoelasticity theory with one relaxation
time in the absence of the internal heat source. The authors of (Sherief et al. 2022) estab-
lished a new theory of generalized fractional hereditary thermo-elasticity associated with
Mittag-Leffler relaxation function and solved a two-dimensional thick plate problem under
axisymmetric boundary conditions.

The main objective of our work is to construct a new generalized fractional thermo-
viscoelasticity theory associated with a nonsingular relaxation kernel “Mittag-Leffler relax-
ation function”. Atangana and Baleanu (2016) wrote: “The non-singular kernel in integral
operator will be helpful to discuss real world problems and it also will have a great advantage
when using the Laplace transform to solve some physical problems with initial conditions
and good for describing the dynamics of systems with memory effect for small and large
times”. The main advantage of using this model is that it predicts finite speeds (Sherief et al.
2022) of propagation for thermal and mechanical waves while the thermal wave speed in all
previous fractional models in both fields of thermo-elasticity and thermo-viscoelasticity (Ez-
zat et al. 2013, 2015; Ezzat and El-Bary 2016) is infinite, contrary to physical observations.
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In order to illustrate the obtained results, the authors have solved a 2D thermo-viscoelastic
problem. With help of a Laplace–Fourier transform, the governing equations of our new
model are solved analytically. After acquiring the solution in the transformed domain, the
inversion of the Laplace–Fourier transform is computed numerically using a method based
on Fourier expansion technique (Honig and Hirdes 1984; Foutsitzi et al. 1997; Fayik et al.
2023) such that we have chosen PMMA as viscoelastic material and copper as the elastic
material. Finally, according to the numerical results and their graphs, conclusion about the
new model of thermo-viscoelasticity has been provided, which provides a good motivation
to investigate thermo-viscoelastic materials as a new class of applicable materials.

2 Derivation of the mathematical model for generalized fractional
thermo-viscoelasticity

We consider a continuous viscoelastic medium contained within a volume V and bounded
by a closed surface S (cf. Sherief et al. 2022). Let the position vector of a point be denoted
by x(x1, x2,x3). It is subject to a body force Fi per unit mass and a heat source of strength Q

per unit mass. Let eij be the strain tensor components defined at every point x of the body
and given by

eij = 1

2

(
ui,j + uj,i

)
, (1)

where ui, i = 1,2,3 are the components of the displacement vector. A comma indicates a
material derivative.

Now, we define a linear thermo-viscoelastic material to be one for which the stress tensor
components σij (x, t) are related to eij (x, t) by a convolution integral as follows:

σij (x, t) =
∫ t

0
Rijkl(t − ν)

∂ekl (x, ν)

∂ν
dν − αT

∫ t

0
γij (t − ν)

∂θ (x, ν)

∂ν
dν, (2)

where Rijkl and γij are fourth- and second-order tensorial relaxation functions of the ma-
terial, respectively. In addition, it is assumed that the following symmetry relations hold:(
Rijkl = Rklij = Rikj l = Rj lik, γij = γji

)
, θ = T − ϑ0, T is the absolute temperature, ϑ0

is a reference temperature such that
∣∣
∣ T −ϑ0

ϑ0

∣∣
∣ � 1, and αT is the coefficient of linear thermal

expansion.
Substituting from Eq. (2) into the equation of motion which has the form

σji,j + ρFi = ρüi, (3)

where ρ is the density, we obtain

ρüi = ρFi +
∫ t

0
Rijkl (t − ν)

∂ekl,j (x, ν)

∂ν
dν − αT

∫ t

0
γij (t − ν)

∂θ,j (x, ν)

∂ν
dν. (4)

The dot denotes differentiation with respect to time.
For an isotropic body, the tensorial relaxation functions can be written as follows (Fung

1965):

Rijkl = R1δij δkl +R2
(
δikδjl + δilδjk

)
, (5)
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γij = (3R1 + 2R2) δij , kij = kδij , (6)

where Ri (t;β), (i = 1,2) are assumed to be a causal relaxation functions of time.
For the present purposes, we take these relaxation functions as a variation of the Mittag-

Leffler relaxation function which arises in the description of complex relaxation processes.
There has been much recent interest in the Mittag-Leffler and related functions in connection
with the description of relaxation phenomena in complex physical and biophysical systems
(Weron and Kotulski 1996; Hilfer and Anton 1995).

The relaxation functions Ri (t;β), (i = 1,2) are taken of the form:

Ri (t;β) = Riτ
βEβ

(
−β

tβ

1 − β

)
, t > 0, (7)

where R1, R2 are the viscoelastic material constants, τ is a positive constant for the ratio
of the shear viscosity to Young’s modulus, and β is an arbitrary parameter which represents
the order of the time derivative, β ∈ (0,1).

Equations (5) and (6) can be written as follows:

Rijkl (t;β) = [
R1δij δkl + R2

(
δikδjl + δilδjk

)]
τβEβ

(
−β

tβ

1 − β

)
, (8)

γij (t;β) = Rδij τ
βEβ

(
−β

tβ

1 − β

)
, (9)

where R = (3R1 + 2R2).
By substituting from Eqs. (8) and (9) into Eq. (2), we obtain

σij (x, t) = 2R2τ
β

∫ t

0
Eβ

(
−β

(t − ν)β

1 − β

)
∂eij (x, ν)

∂ν
dν

+ τβδij

[
R1

∫ t

0
Eβ

(
−β

(t − ν)β

1 − β

)
∂e (x, ν)

∂ν
dν

− (3R1 + 2R2)αT

∫ t

0
Eβ

(
−β

(t − ν)β

1 − β

)
∂θ (x, ν)

∂ν
dν

]
.

(10)

The integral terms on the right-hand side of Eq. (10) represent a new fractional deriva-
tive with nonlocal and nonsingular kernel which was suggested by Atangana and Baleanu
(2016).

After some manipulations, we can rewrite Eq. (10) in the form

σij = R̂β

(
2R2eij + δij [R1e − (3R1 + 2R2)αT θ ]

)
, (11)

where e is the cubical dilatation given by e = ekk , and the operator R̂β (·) is defined for any
function g(x, t) of class C1 as

R̂β [g(x, t)] = τβ

∫ t

0
Eβ

(
−β

(t − v)β

1 − β

)
∂g(x, v)

∂v
dv. (12)

Hence, the equation of motion (3) can be written as follows:

ρûi = R̂β

(
2R2eij,j + R1e,i − (3R1 + 2R2)αT θ,i

) + ρFi. (13)



Mechanics of Time-Dependent Materials

To derive the equation of heat conduction, we start by assuming that for a thermally
conducting viscoelastic solid subjected to small strain and small temperature changes, we
have (Foutsitzi et al. 1997)

ρϑ0η = ρcEθ + αT ϑ0

∫ t

0
γij (t − v)

∂eij (x, v)

∂v
dv, (14)

where η is the entropy per unit mass and ϑ0 is a reference temperature for which the medium
is in equilibrium free of strain. By the same manner, Eq. (14) can be written in the form

ρϑ0η = ρcEθ + (3R1 + 2R2) τ βαT ϑ0δij

∫ t

0
Eβ

(
−β

(t − v)β

1 − β

)
∂eij (x, v)

∂v
dv

= ρcEθ + (3R1 + 2R2)αT ϑ0R̂β (e) .

(15)

We shall use the linearized entropy balance equation, namely

ρϑ0η̇ = −qi,i + ρQ, (16)

where qj is the heat flux vector and Q is the internal heat source per unit mass. Using
Eq. (15), the previous Eq. (16) reduces to

qi,i = − ∂

∂t

(
ρcEθ + (3R1 + 2R2)αtϑ0R̂β (e)

)
+ ρQ. (17)

The non-Fourier formula of heat conduction is given by
(

1 + τ0
∂

∂t

)
qi = −kij θ,j , (18)

where τ0 � 1 is the thermal relaxation time and kij is a thermal conductivity tensor. Now,
taking divergence of both sides of Eq. (18) and using Eq. (17), we arrive at

(
kij θ,j

)
,i

=
(

1 + τ0
∂

∂t

)(
∂

∂t

[
ρcEθ + (3R1 + 2R2)αT ϑ0R̂β (e)

]
− ρQ

)
. (19)

Here, all consider functions depend on (x, t ). The summation notation is used and we
ignore the microrotations.

3 Application of the constitutive model

3.1 Formulation of the problem

The structure of our problem (trilayered thermo-elastic materials) has been widely used
in many applications like Micro-Electro-Mechanical System (MEMS) (Battal and Okyay
2013; Kim et al. 2011; Zuo et al. 2019). In smart structure design, when thermo-elasticity is
assumed, it is important to understand the influence of an internal variable heat sources on
manufacturing processes (Abouelregal et al. 2023).

The region under consideration in rectangular Cartesian coordinates (x, y, z) consists of
three thick layers with finite thickness and infinite extent placed in perfect contact one on
top of another. They occupy the region L1 ∪ L2 ∪ L3, where

L1 = {(x, y) : −∞ < x < ∞, h1 ≤ y ≤ h2} ,
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Fig. 1 Schematic for the physical
problem

L2 = {(x, y) : −∞ < x < ∞,−h1 ≤ y ≤ h1} ,

L3 = {(x, y) : −∞ < x < ∞,−h2 ≤ y ≤ −h1} .

The y-axis is perpendicular to the surfaces of the layers while the x-axis is parallel to
them (see Fig. 1). The material constants can be taken as (R1 = λ, R2 = μ) such that λ, μ

are Lame’s constants.
We shall consider two cases. In case (I), the middle layer L2 is made of a homogenous

isotropic thermo-viscoelastic material acting as a heat source of intensity Q(x,y, t) per unit
mass. The other two layers are composed of the same thermo-elastic material. On the other
hand, in case (II), the middle layer L2 is the thermo-elastic one with the heat source while
the other two layers are thermo-viscoelastic. We assume that the initial state of the medium
is quiescent. The outer surfaces of layers L1 and L3 are rigidly fixed and thermally isolated.
In what follows, we shall denote functions in layer Lm by the subscript m, m = 1,2,3.

From the physics of the problem, all functions will depend on x, y, t , and will be inde-
pendent of z. In layer Lm, the displacement vectors thus have components

um = (um, vm,0) ,m = 1,2,3. (20)

The cubical dilatations em are given by

em = div (um) = ∂um

∂x
+ ∂vm

∂y
,m = 1,2,3. (21)

The equations of motion in vector form in the absence of body forces are

ρm

∂2um

∂t2
= R̂βm

(
(λm + μm)grad em + μm∇2um − γm grad θm

)
,m = 1,2,3, (22)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is Laplace operator in Cartesian coordinates and (λm, μm) are Lame’s
constants, ρm is the density, t is the time variable, θm = Tm − ϑ0, Tm is the absolute temper-
ature of the mth medium, γm = (3λm + 2μm)αm, αm being the coefficients of linear thermal
expansion.
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The operator R̂βm [g (x, t)] is defined for any function of class C1 by

R̂βm [g (x, t)] = τβm

∫ t

0
Eβm

(
−βm

(t − v)βm

1 − βm

)
∂g (x, v)

∂v
dv,βm ∈ [0,1] .

We note that for the case of a thermo-viscoelastic material with no viscosity (βm = 0),
we have R̂βm

[g(x, t)] = g(x, t).
Equation (22) can be written in Cartesian form

ρm

∂2um

∂t2
= R̂βm

(
(λm + μm)

∂em

∂x
+ μm

(
∂2um

∂x2
+ ∂2um

∂y2

)
− γm

∂θm

∂x

)
,m = 1,2,3, (23)

ρm

∂2vm

∂t2
= R̂βm

(
(λm + μm)

∂em

∂y
+ μm

(
∂2vm

∂x2
+ ∂2vm

∂y2

)
− γm

∂θm

∂y

)
,m = 1,2,3. (24)

The generalized fractional equation of heat conduction has the form

km∇2θm = ρmcEm

(
∂

∂t
+ τ0m

∂2

∂t2

)(
θm + γmϑ0R̂βmem

)

−
(

1 + τ0m

∂

∂t

)
Q,m = 1,2,3.

(25)

where km is the thermal conductivity of the mth layer, τ0m are constants with the dimensions
of time, τ0m are relaxation times, cEm is the specific heat at constant strain. Distributed
variable heat sources are essential to many fields. These heat sources contribute to accurate
temperature control and improve process quality and efficiency in manufacturing for metals
and energy generation (Yang et al. 2023; Kiran et al. 2022).

The heat source is defined as

Q(x,y, t) = Q0H(t)H (h1− | y |) e−2π |x|,−∞ < x < ∞, t ≥ 0. (26)

The selected heat source variable above is chosen to indicate symmetry with respect
to the x and y axes. This particular form of applied heat source will lead to all function
fields being dependent on the variables (x, y, t ), hence modeling the problem into a two-
dimensional (2D) problem.

Applying the div operator to both sides of Eqs. (22), we obtain

ρm

∂2em

∂t2
= R̂βm

(
(λm + 2μm)∇2em − γm∇2θm

)
,m = 1,2,3. (27)

These equations are supplemented by the constitutive equations

σmxx = R̂βm

(
(λm + 2μm)em − 2μm

∂vm

∂y
− γmθm

)
,m = 1,2,3, (28)

σmyy = R̂βm

(
(λm + 2μm) em − 2μm

∂um

∂x
− γmθm

)
,m = 1,2,3, (29)

σmzz = R̂βm (λmem − γmθm) ,m = 1,2,3, (30)

σmxy = μmR̂βm

(
∂um

∂y
+ ∂vm

∂x

)
,m = 1,2,3, (31)
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σmxz = σmyz = 0,m = 1,2,3, (32)

and by the generalized Fourier’s law (MCV) of heat conduction, namely

qm + τ0mq̂m = −km grad θm,m = 1,2,3, (33)

where qm is the heat flux vector for layer Lm.
The preceding governing equations can be put in nondimensional forms using the fol-

lowing dimensionless parameters (Elhagary 2010):

(
x ′, y ′, u′

m, v′
m

) = c2η2 (x, y,um, vm) ,

(
t ′, τ ′

0m

) = c2
2η2 (t, τ0m) ,

θ ′
m = γ2 (θm − ϑ0)

(λ2 + 2μ2)
,q′

m = γ2qm

k2c2η2 (λ2 + 2μ2)
, σ ′

mij = σmij

μ2
,m = 1,2,3,

where ηm = ρmcEm

km
, and cm =

√
(λm+2μm)

ρm
is the speed of propagation of isothermal elastic

waves in the mth layer. So, the governing Eqs. (23)–(33) in nondimensional form are sim-
plified as (dropping the primes for convenience)

ξm

∂2um

∂t2
= R̂βm

(
ψm

∂em

∂x
+ ∇2um − δm

∂θm

∂x

)
,m = 1,2,3, (34)

ξm

∂2vm

∂t2
= R̂βm

(
ψm

∂em

∂y
+ ∇2vm − δm

∂θm

∂y

)
,m = 1,2,3, (35)

∇2θm =
(

∂

∂t
+ τ0m

∂2

∂t2

)(
ζmθm + εmR̂βmem

)
−

(
1 + τ0m

∂

∂t

)
Q,m = 1,2,3, (36)

χm

∂2em

∂t2
= R̂βm

(∇2em − φm∇2θm

)
,m = 1,2,3, (37)

σmxx = R̂βm

(
�m1em − 2�m2

∂vm

∂y
− �m3θm

)
,m = 1,2,3, (38)

σmyy = R̂βm

(
�m1em − 2�m2

∂um

∂x
− �m3θm

)
,m = 1,2,3, (39)

σmzz = R̂βm (�m4em − �m3θm) ,m = 1,2,3, (40)

σmxy = �m2R̂βm

(
∂um

∂y
+ ∂vm

∂x

)
,m = 1,2,3, (41)

qm + τ0mq̂m = −�m5 grad (θm) ,m = 1,2,3, (42)

where

ξm = ρm (λ2 + 2μ2)

ρ2μm

,ψm = λm + μm

μm

, δm = γm

γ2

(λ2 + 2μ2)

μm

,φn = γm

γ2

(λ2 + 2μ2)

(λm + 2μm)
,

ζm = ηm

η2
, εm = γmγ2ϑ0

(λ2 + 2μ2) kmη2
, χm = c2

2

c2
m

,�m1 = λm + 2μn

μ2
,�m2 = μm

μ2
,
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�m3 = γm

γ2

(λ2 + 2μ2)

μ2
,�m4 = λm

μ2
,�m5 = km

k2
,m = 1,2,3.

Equation (42) can be written in Cartesian form as

(
1 + τ0m

∂

∂t

)
qmx = −�m5

∂θm

∂x
,m = 1,2,3, (43)

(
1 + τ0m

∂

∂t

)
qmy = −�m5

∂θm

∂y
,m = 1,2,3. (44)

The previous equations are solved subject to the following boundary conditions: (i) Me-
chanical boundary conditions that the outer surfaces of layers L1 and L3 are rigidly fixed:

um|(x,±h2,t) = vm|(x,±h2,t) = 0,m = 1,3. (45)

(ii) Thermal boundary conditions that the outer surfaces of layers L1 and L3 are thermally
isolated:

∂θm

∂y

∣∣
∣∣
(x,±h2,t)

= 0,m = 1,3. (46)

The continuity conditions at the interfaces between the two media require that at y = h1,
the following matching must hold:

(
θ2, u2, v2, q2y, σ2yy, σ2xy

)∣∣
(x,h1,t)

= (
θ1, u1, v1, q1y, σ1yy, σ1yy

)∣∣
(x,h1t)

, (47)

while at y = −h1

(
θ2, u2, v2, q2y, σ2yy, σ2xy

)∣∣
(x,−h1t)

= (
θ3, u3, v3, q3y, σ3yy, σ3xy

)∣∣
(x,−h1,t)

. (48)

3.2 Solution in the transformed domain

We shall now define the Laplace transform with respect to a function f (x, y, t) by the rela-
tion

L[f (x, y, t)] = f̂ (x, y, s) =
∫ ∞

0
exp(−st)f (x, y, t)dt. (49)

According to the homogenous initial conditions, applying the Laplace transform to both
sides of Eqs. (34)–(44), we obtain the following set of equations:

(
∇2 − ξms2

ωm

)
ûm = ∂

∂x

(
δmθ̂m − ψmêm

)
,m = 1,2,3, (50)

(
∇2 − ξms2

ωm

)
ν̂m = ∂

∂y

(
δmθ̂m − ψmêm

)
,m = 1,2,3, (51)

(∇2 − sζm (1 + τ0ms)
)
θ̂m = εm�m

(
s + τ0ms2

)
êm − (1 + τ0ms) Q̂,m = 1,2,3, (52)

(
∇2 − χms2

�m

)
êm = φm∇2θ̂m,m = 1,2,3, (53)
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σmxx = �m

(
�m1êm − 2�m2

∂ν̂m

∂y
− �m3θ̂m

)
,m = 1,2,3, (54)

σmyy = �m

(
�m1êm − 2�m2

∂ûm

∂x
− �m3θ̂m

)
,m = 1,2,3, (55)

σ̂mcz = �m

(
�m4êm − �m3θ̂m

)
,m = 1,2,3, (56)

σmxy = �m2�m

(
∂ûm

∂y
+ ∂ν̂m

∂x

)
,m = 1,2,3, (57)

(1 + τ0ms)qmx = −�m5
∂θm

∂x
,m = 1,2,3, (58)

(1 + τ0ms)qmy = −�m5
∂θm

∂y
,m = 1,2,3, (59)

where �m(s) = (τms)βm
(
sβm+ βm

1−βm

) .

The Laplace transform of the cubical dilatation (21) becomes

êm = ∂ûm

∂x
+ ∂v̂m

∂y
,m = 1,2,3. (60)

Eliminating θ̂m from (52) and (53), we obtain

(
∇4 − ∇2

[
(ζm + εm�mφm)

(
s + τ0ms2

) + χms2

�m

]

+ s3ζmχm (1 + τ0ms)

�m

)
êm = − (1 + τ0ms)∇2Q.

(61)

We use the Fourier exponential transform defined by the relation

ˆ̂
f (q, y, s) = 1√

2π

∫ ∞

−∞
e−ixx f̂ (x, y, s) dx, (62)

with its corresponding inversion formula

f̂ (x, y, s) = 1√
2π

∫ ∞

−∞
eiqx ˆ̂

f (q, y, s)dq, where i = √−1. (63)

We assume that all the relevant functions (such as temperature and stress) are sufficiently
smooth on the real line such that the Fourier transforms of these functions exist.

Applying the Fourier exponential transform to both sides of Eq. (61), we obtain

(
D2 − h2

m1

) (
D2 − h2

m2

) ˆ̂em = Q0q
2 (1 + τ0ms)

πs
(
q2 + 1

) H (h1− | y |) , (64)

where hmn = √
q2 + k2

mn, (m = 1,2,3, n = 1,2) and
(
k2

mn,n = 1,2
)

are the roots of the
characteristic equation

k4
m − k2

m

[
(ζm + εm�mφm)

(
s + τ0ms2

) + χms2

�m

]
+ s3ζmχm (1 + τ0ms)

�m

= 0. (65)
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The general solution of equation (64) can be written as

ˆ̂em =
2∑

n=1

φmk2
mn [Amn cosh (hmny) + Bmn sinh (hmny)]

+ Q0q
2 (1 + τ0ms)

πs
(
q2 + 1

)
h2

m1h
2
m2

H (h1− | y |) ,

(66)

where Amn and Bmn are parameters depending on s and q for layer Lm. Again, by eliminat-
ing êm from (52) and (53), we obtain

(
∇4 −

[
(ζm + εm�mφm)

(
s + τ0ms2

) + χms2

�m

]
∇2 + ζmχms3 (1 + τ0ms)

�m

)
θm

= − (1 + τ0ms)

(
∇2 − χms2

�m

)
Q̂.

(67)

Similarly, applying the Fourier exponential transform to both sides of Eq. (67), we get

(
D2 − h2

m1

) (
D2 − h2

m2

) ˆ̂
θm = Q0 (1 + τ0ms)

πs
(
q2 + 1

)
(

q2 + χms2

�m

)
H (h1− | y |) . (68)

The solution of Eq. (68) for layer Lm can be written as

ˆ̂
θm =

2∑

n=1

(
k2

mn − χms2

�m

)
(Amn cosh (hmny))

+ Q0 (1 + τ0ms)

πs
(
q2 + 1

)
h2

m1h
2
m2

(
q2 + χms2

�m

)
H (h1− | y |) .

(69)

Applying the Fourier exponential transform to both sides of Eqs. (50)–(59), we obtain
the following set of equations:

(
D2 −

(
q2 + ξms2

�m

))
ˆ̂um = iq

(
δm

ˆ̂
θm − ψm

ˆ̂em

)
,m = 1,2,3, (70)

(
D2 −

(
q2 + ξms2

ωm

))
ˆ̂vm = ∂

∂y

(
δm

ˆ̂
θm − ψm

ˆ̂em

)
,m = 1,2,3, (71)

σ̂ mxx = �m

(

�m1
ˆ̂em − 2�m2

∂ ˆ̂vm

∂y
− �m3

ˆ̂
θm

)

,m = 1,2,3, (72)

σ̂ myy = �m

(
�m1

ˆ̂em − 2iq�m2
ˆ̂um − �m3

ˆ̂
θm

)
,m = 1,2,3, (73)

σ̂ mzz = �m

(
�m4

ˆ̂em − �m3
ˆ̂
θm

)
,m = 1,2,3, (74)

(1 + τ0ms) ˆ̂qmx = −iq�m5
ˆ̂
θm,m = 1,2,3, (75)

(1 + τ0ms) ˆ̂qmy = −�m5
∂

ˆ̂
θm

∂y
,m = 1,2,3, (76)
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ˆ̂em = iq ˆ̂um + ∂ ˆ̂vm

∂y
,m = 1,2,3. (77)

Substituting from Eqs. (66) and (69) into the right-hand sides of Eqs. (70) and (71), we
obtain

(
D2 −

(
q2 + ξms2

�m

))
ˆ̂um = iqφm

⎛

⎜
⎝

∑2
n=1 Amn

(
k2

m − κ2
ms2

ωm

)
cosh (hmny)

+
Q0

(
q2+ κ2

ms2

ωm

)
(1+τ0ms)

πs
(
q2+1

)
h2
m1h2

m2
H (h1− | y |)

⎞

⎟
⎠ , (78)

(
D2 −

(
q2 + ξms2

�m

))
ˆ̂vm = −φm

(
2∑

n=1

Amnhmn

(
k2

mn − κ2
ms2

ωm

)
cosh (hmny)

)

, (79)

where κ2
m = χmδm

ϕm
, m = 1,2,3. The general solutions of Eqs. (59) and (60) compatible with

Eq. (38) are

ˆ̂um = Cm cosh (dmy)

+ iqφm

(
2∑

n=1

(Amn cosh (hmny)) − Q0 (1 + τ0ms)

πs
(
q2 + 1

)
h2

m1h
2
m2

H (h1− | y |)
)

,
(80)

ˆ̂vm = iq

dm

Cm sinh (dmy) − φm

2∑

n=1

Amnhmn sinh (hmny) , (81)

where dm =
√

q2 + ξms2

�m
, m = 1,2,3.

Substituting from Eqs. (50), (53), and (61) into the right-hand sides of Eqs. (72)–(76),
we get the solution for nonvanishing components of stress for layer Lm,m = 1,2,3.

σ̂ mxx = �m2�m

(

2iqCm sinh (dmy) + φm

2∑

n=1

Am

(
κ2

ms2

ωm

− 2h2
mn

)
sinh (hmny)

)

, (82)

ˆ̂σmxy = −�m2�m

((
d2

m + q2

dm

)
Cm sinh (dmy) + 2iqφm

2∑

n=1

Amnhmn sinh (hmny)

)

, (83)

(1 + τ0ms) ˆ̂qmx = −iq�m5

⎛

⎝
∑2

n=1 Amn

(
k2

mn − χms2

�m

)
cosh (hmmy)

+ Q0(1+τms)

πs
(
q2+1

)
h2
m1h2

m2

(
q2 + χ0ms2

�m

)
H (h1 − |y|)

⎞

⎠ , (84)

(1 + τ0ms) ˆ̂qmy = �m5

(
2∑

n=1

Amnhmn

(
k2

mn − χms2
)

sinh (hmny)

)

. (85)

Taking the Laplace and Fourier transforms of Eqs. (35), (36), and (37), respectively, we
obtain the boundary conditions in the transformed domain as

ˆ̂um

∣
∣∣
(q,±h2,t)

= v̂m

∣
∣∣
(q,±h2t)

= 0,m = 2,3, (86)

∂θ̂m

∂y

∣∣
∣∣∣
(q,±h2,t)

= 0,m = 2,3. (87)
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The continuity conditions at the interfaces between the two media require that at y = h1

and y = −h1, the following matching must hold:

( ˆ̂
θ1, ˆ̂u1, ˆ̂v1, ˆ̂q1y, σ̂ 1yy, σ̂ 1xy

)∣
∣∣
(x,h1,t)

=
( ˆ̂
θ2, ˆ̂u2, ˆ̂v1, ˆ̂q2y, σ̂ 2yy, σ̂ 2xy

)∣
∣∣
(x,h1,t)

, (88)

( ˆ̂
θ1, ˆ̂u1, v̂1, ˆ̂q1y, σ̂ 1yy, σ̂ 1xy

)∣
∣∣
(x,−h1,t)

=
( ˆ̂
θ3, ˆ̂u3, v̂3, ˆ̂q3y, σ̂ 3yy, σ̂ 3xy

)∣
∣∣
(x,−h1,t)

. (89)

Due to the symmetry with respect to the x-axis, the boundary conditions at y = h2 and
the continuity conditions between the two media at y = h1 are sufficient to determine the
unknown parameters Amm and Cm, (m = 1,2,3, n = 1,2) by solving immediately the fol-
lowing system of linear equations:

C1 cosh (d1h2) + iqφ1

2∑

n=1

(A1n cosh (h1nh2)) = 0, (90)

iq

d1
C1 sinh (d1h2) − φ1

2∑

n=1

A1nh1n sinh (h1nh2) = 0, (91)

2∑

n=1

(
k2

1n − χls
2

�1

)
A1nh1n cosh (h1nh2) = 0, (92)

2∑

l=1

(
2∑

n=1

(−1)lAln

(
k2

ln − χls
2

�l

)
cosh (hlnh1)

)

= − Q0 (1 + τ02s)

πs
(
q2 + 1

)
h2

21h
2
22

(
q2 + χ2s

2

�2

)
,

(93)

2∑

l=1

(
2∑

n=1

(−1)lAlnhln

(
k2

ln − χls
2

�l

)
cosh (hlnh1)

)

= 0, (94)

2∑

l=1

iq

(

(−1)l

(
2∑

n=1

Alnφl cosh (hlnh1) + Cl

iq
cosh (dlh1)

))

= iqQ0φ2 (1 + τ02s)

πs
(
q2 + 1

)
h2

21h
2
22

, (95)

2∑

l=1

(−1)i

(
iqCl

dl

sinh (dlh1) −
2∑

n=1

φlAlnhln sinh (hlnh1)

)

= 0, (96)

2∑

l=1

�l2�l(−1)l

(

−iqCl cosh (dly) + φl

(
2∑

n=1

Aln

(
κ2

l s2

�1
+ 2q2

)
cosh (hlny)

))

= −2�22�2φ2Q0q
2 (1 + τ02s)

πs
(
q2 + 1

)
h2

21h
2
22

,

(97)

2∑

l=1

�l2�l

((
d2

l + q2

dl

)
Cl sinh (dly) + 2iqφl

2∑

n=1

Alnhln sinh (hlny)

)

= 0. (98)

The solution of the above system was carried out using the numerical methods, and this
completes the solution of the problems in the transformed domain.
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Table 1 Mechanical and thermal properties of copper and PMMA (Ezzat et al. 2015; Mahdy et al. 2021;
Jahangir et al. 2021; Youssef and Al Thobaiti 2022))

Property Material

PMMA Copper

λ, Lame’s constant (kg/m s2) 0.4 × 1010 7.76 × 1010

μ, Lame’s constant (kg/m s2) 0.19 × 1010 3.86 × 1010

ρ, density (kg/m2) 1160 8954

ε, thermo-viscoelastic coupling parameter 0.02105 0.0168

k, thermal conductivity (W/mK) 187 386

cE , is the specific heat at constant strain (J/kg K) 1475 383.1

αT , coefficient of linear thermal expansion (K−1) 6.3 × 10−5 1.78 × 10−5

τo, hypothetical values of relaxation time (s), 0.022 0.02

Fig. 2 (a) Temperature
distribution against y-axis at
different values of β for case (I).
(b) Temperature distribution
against y-axis at different values
of β for case (II)

(a)

(b)
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Fig. 3 (a) Displacement
component v against y-axis at
different values of β for case (I).
(b) Displacement component v

against y-axis at different values
of β for case (II)

(a)

(b)

3.3 Numerical results

We have chosen copper as an elastic material and PMMA as a viscoelastic material. Their
physical properties are listed in Table 1.

Numerical Laplace–Fourier inversion is performed to obtain the nondimensional temper-
ature, displacement, and stress in a specific domain. The numerical code has been prepared
using FORTRAN programming language. From an application point of view, the graphs
have been displayed and divided into two categories for the two cases (I) and (II). In the
figures, the shaded area refers to the viscoelastic region. Our main objective, in this connec-
tion, is to illustrate the shape memory effect (fractional time derivative parameter β) on the
temperature, displacement, and stress distributions at a specific time t = 0.1.

Figures 2(a) and 2(b) are plotted to show the variation of temperature θ on the y-axis for
different values of β for cases (I) and (II), respectively. In the middle layer, the temperature
records its maximum value θmax = (0.283725 for case (I), 0.31612 for case (II)) at the middle
position y = 0.0, and drops gradually until it reaches the interfacial temperature θinterfacial =
(0.08233 for case (I), 0.240345 for case (II)) at the position (|y| = h1). In the upper and
lower layers, the temperature gradually decays down until it falls to zero near the position
(2.45 for case (I), 0.95 for case (II)).

By comparing Figs. 2(a) and 2(b), we note that
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Fig. 4 (a) Stress component σyy

against y-axis at different values
of β for case (I). (b) Stress
component σyy against y-axis at
different values of β for case (II)

(a)

(b)

• The temperature at the interface for case (I) is less than its counterpart for case (II).
• The distance of propagation of the thermal wave in the regions (L1,L3) for case (I) is

greater than its counterpart for case (II).

The reason for these two phenomena is that the thermal conductivity of copper is much
greater than that of PMMA (kcopper > kPMMA). This produces two effects; first, the heat
produced at the middle layer (L2) has some difficulty in reaching the interfaces. So, the
accumulated temperature at the interface is less than that in case (II). Secondly, once the
temperature wave leaves region (L2), it encounters a region where the conductivity is higher.
This enables the wave to travel a greater distance.

Our calculations up to the specified accuracy (10−5) show that the values of the temper-
ature profile distribution are very closely for different values of β .

Figure 3(a) and 3(b) show the variations of the displacement component v on the y-
axis for different values of fractional parameter β in cases (I) and (II), respectively. In both
cases, we note that for any fixed value of β , the magnitude of the displacement component
increases from zero at (y = 0) to the maximum peak inside the middle layer and then de-
creases to the interfacial value. In the upper and lower layers, the magnitude of the displace-
ment component increases from the interfacial value to a maximum peak near the interface
and deceases gradually to zero at the position 3.00 for case (I), 0.8 for case (II). For case
(I), the deformations in the middle layer (L2) is smaller than that in layers (L1, L3). In ad-
dition, the decrease of β for viscoelastic material induces a large deformation in the middle
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Fig. 5 (a) Stress component σxx

against y-axis at different values
of β for case (I). (b) Stress
component σxx against y-axis at
different values of β for case (II)

(a)

(b)

layer (L2) and records the large interfacial values. In the upper and lower layers, the effects
of (β > 0) becomes insignificant. On the other side, for case (II), the deformations in the
middle layer (L2) is larger than that in the layers (L1, L3). Also, the effect of time fractional
derivative parameter β for viscoelastic materials in the layers (L1, L3) is significant on the
displacement component v in the middle elastic layer (L2) such that a decrease in β leads to
a decrease in v, after crossing the interface, a decrease in β leads to an increase in v in the
viscoelastic layers (L1, L3).

By comparing Figs. 3(a) and 3(b), we observe that the different values of β which are
related to the viscoelastic material lead to the different values for v in the elastic material
also. The reason for this in Fig. 3(a) is that the fractional time parameter β changes the
interfacial values (start values) of v for the layers (L1, L3). In Fig. 3(b), the effects we see
in the elastic region are due to the existence of the wave transmitted from the viscoelastic
region to the elastic region.

Figure 4(a) and 4(b) depict the stress component σyy on the y-axis for different values
of fractional parameter β for both cases (I) and (II). We note that for any fixed value of
β , the stress component records the positive value at y = 0, it increases to a maximum
peak in middle layer, and decreases sharply to the interfacial value. In the upper and lower
layers, the stress component σyy still decreases from the interfacial value to a minimum peak
near the interface and increases gradually to zero. For case (I), the magnitude of the stress
component σyy increases in the middle layer as β decreases and, after crossing the interface
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Fig. 6 (a) Displacement
component u against distance y

at different values of β in the
plane (x = 0.05) for case (I). (b)
Displacement component u

against distance y at different
values of β in the plane
(x = 0.05) for case (II)

(a)

(b)

planes, the effect is slightly observed for all values of β > 0. On the other hand, for case (II),
the effect of β for viscoelastic material (L2) is insignificant on the stress component σyy up
to (y = 0.42) in the middle elastic layer, but it is significant near the interface planes such
that a decrease in β leads to a decrease in σyy . After crossing the interface, the decrease of
β leads to an increase the magnitude of the stress component σyy in the viscoelastic layers
(L1,L3).

Figure 5(a) and 5(b) represent the stress component σxx on the y-axis for different values
of the fractional parameter β . We note that the behavior of the stress component σxx and the
effect of fractional order parameter are similar to those of σyy .

Of course, on the plane (x = 0), the variations of the displacement component u and
shear stress σxy are identically zero on the y-axis, which is in agreement with our theoretical
results. We illustrated their variations against y for different β at the plane (x = 0.05, say)
in Figs. 6 and 7. For any fixed value of β , the displacement component u records a negative
value at y = 0, it decreases to the minimum negative peak in the middle layer, and increases
to the interfacial values. In the upper and lower layers, the magnitude of the displacement
component still increases from the interfacial value to the maximum positive peak near the
interface and deceases gradually to zero. Meanwhile, the magnitude of the shear stress σxy

always begins at the zero value. It vibrates through the middle layer and records a maximum
value for each β on the interfaces. In the upper and lower layers, it decreases sharply near
the interfaces to a negative peak, and diminishes to zero.
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Fig. 7 (a) Stress component σxy

against distance y at different
values of β in the plane
(x = 0.05) for case (I). (b) Stress
component σxy against distance
y at different values of β in the
plane (x = 0.05) for case (II)

(a)

(b)

4 Conclusion

The main goal of our paper was to introduce a new fractional mathematical model of gener-
alized thermo-viscoelasticity associated with nonsingular fractional relaxation function. A
simple physical explanation of using fractional derivatives over ordinary derivatives when
constructing a physical model is the fact that the fractional model predicts that a retarded
response is instantaneous. This is because the evaluation of the fractional derivatives is ac-
complished by integrating over a past period of time. Retarded response is observed in all
physical situations, especially in thermo-viscoelasticity. This is why the early models of
fractional viscoelasticity were so successful. Our new model is proven to be valid for analy-
sis of wave propagation in sandwiched plates. Summing up the discussions through an appli-
cation, we note that the fractional time parameter role was demonstrated to be a promising
and powerful tool for precisely processing metals (i.e., the memory time effect is prominent
on the thermal and mechanical nature).

Nowadays, the knowledge of generalized thermo-viscoelasticity theory associated with
nonsingular fractional relaxation function can be utilized by engineers, in particular by me-
chanical and structural engineers for designing machine elements, e.g., when synthesizing
metals, where temperature-induced viscoelastic deformation occurs.
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