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Abstract
In this paper, we study the forced flexural vibrations caused by time-harmonic concentrated
loads on a transversely isotropic thin rectangular plate (TRP). A mathematical model has
been formed using a new modified Green–Naghdi (GN) III theory of thermoelasticity by
introducing higher-order memory-dependent derivatives (MDD). The memory-dependent
derivatives represent the memory effect (i.e., the instantaneous rate of change depends on
the previous state). This study not only considers the size effect but also studies the memory,
mechanical, and thermal-field effects. With the help of the double finite Fourier-transform
technique (DFFT), the expressions for lateral deflection, thermoelastic damping, tempera-
ture distribution, frequency shift, and thermal moment, have been found in the transformed
domain for simply supported (SS) TRP. Also, we have graphically demonstrated the effect
of the MDD kernel function on the lateral deflection, thermoelastic damping, temperature
distribution, frequency shift, and thermal moment.

Keywords Thin rectangular plate · Memory-dependent derivative · Thermoelastic
damping · Lateral deflection · Frequency shift · Thermal moment

Nomenclature
δij Kronecker delta
αij Linear thermal expansion coefficient
� Frequency of the applied load
tij Stress tensors
cijkl Elastic parameters
δ () Dirac delta function
eij Strain tensors
CE Specific heat
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I Moment of inertia
T0 Reference temperature
Kij Thermal conductivity
w Transverse displacement
∇4 Biharmonic operator
T Absolute temperature
K(t − ξ) Kernel function
ui Components of displacement
e0 Material constant
Mxx , Myy Bending moments
ρ Medium density
τ0 Relaxation time
Mxy Twisting moment
βij Thermoelastic coupling tensor
β1 Thermoelastic coupling
MT Thermal moment
t Time
χ Delay
fi Body forces
q (x, y, t) Applied load per unit area
∇2 Laplacian operator−→
u Displacement vector
ρ Density of the material of the plate
a Internal characteristic length
K∗

ij Material constant

1 Introduction

There are a variety of important and diverse applications for generalized thermoelasticity
in recent years, which have caught the attention of many researchers. The fabrication of
microchips, as well as many mechanical structures, require elastic thin plates. Size-based
continuum mechanics theories are becoming increasingly important with the development
of micro- and nanotechnology. There is no doubt that every profession needs to be mod-
ified at some point. Therefore, significant and advantageous characteristics and processes
can always be improved, as well as mechanical and production processes. A large number
of existing models of physical procedures have been changed using fractional calculus over
the past several decades, and its applications are employed in many fields including physics,
continuum mechanics, and biology. Conversely, when it comes to fractional differential op-
erators, they are not local. Therefore, the current and previous states of the system are used
to revise its state.

The Kirchhoff–Love model (Love 1888) of plate deformation and stress in two dimen-
sions is used to investigate how moments and forces influence thin plates. Kirchhoff’s theory
is based on Euler–Bernoulli beams and has the following kinematic considerations: (i) dur-
ing deformation, the thickness of the plate (h) remains constant and is small in comparison
to its lateral dimensions; (ii) the central plane of the plate does not exhibit any inplane defor-
mation and remains normal after bending or deforming; (iii) the midsurface displacement’s
component amounts are negligible in comparison to the plate thickness; (iv) normal stress,
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shear deformation, and strain in the transverse direction can be disregarded. Modern alterna-
tives to fractional-order derivatives are MDDs. Temporal remodeling can be better achieved
with MDDs than with FODs. There is a greater demonstration of the memory effect in this
case. To explain the memory effect in thermoelasticity, a better MDD model of thermoelas-
ticity was introduced. “MDD is defined in an integral form of a common derivative with a
kernel function on a slip-in interval”. Recently, to define the memory dependence, Yu et al.
(2014) improved Lord–Shulman (LS) theory by introducing MDD into the rate of heat flux
in generalized thermoelasticity theory as

(
1 + χDχ

)
qi = −KijT,i , (0 < χ ≤ 1) .

The higher-order Taylor’s series expansion of Fourier’s law that incorporates MDD and
kernel functions is presented by Abouelregal et al. (2021a). Abouelregal et al. (2021b) used
MD derivatives to develop a new generalized mathematical thermoelastic model consist-
ing of various phase delays and a high-order heat-transfer law. A memory-dependent heat-
conduction model with dual phase lags was derived using the modified fractional derivative
of Caputo and the higher-order MDD by Abouelregal (2022). Ezzat et al. (2014, 2015, 2016,
2017) discussed the MDD-LS model of generalized thermoelasticity and this was used to
solve a few one-dimensional problems. Utilizing the MDD with two temperatures with the
modified GN heat-conduction equation, Kaur and Singh (2023) analyzed the fluctuations
in a transversely isotropic thick circular plate subjected to ring loading. With the aid of a
transversely isotropic, homogeneous plate containing ring loads and two hyperbolic tem-
peratures, Kaur and Singh (2021a) explored fluctuations in fractional-order strain. Kaur and
Singh (2021b) investigated the thermoelastic damping in a Kirchhoff–Love plate. Kaur et al.
(2020) investigated forced flexural vibrations in a transversely isotropic thermoelastic thin
rectangular plate (TRP) using a Kirchhoff–Love plate.

A general model based on Hamilton’s principle was developed by El Kadiri et al. (2002)
to describe nonlinear free vibrations of rectangular, homogeneous and composite plates and
fully clamped beams at large displacement amplitudes. A nonlinear mechanics theory for
shells and plates was developed by Amabili (2008). The vibrations of rectangular plates
generated by harmonically excited vibrations of large amplitudes were studied by Amabili
(2006). Hamilton’s principle and spectral analysis were used by Beidouri et al. (2006) for the
geometric analysis of nonlinear vibrations in thin structures. In a recent study, Majid et al.
(2021) examined the impacts of force transverse vibrations on accurately shaped rectangular
plates supported by clamped, simply clamped, and simple clamps subjected to significant
amplitudes. Other researchers also developed various theories of thermoelasticity, such as
Kaur et al. (2020, 2021, 2020), Alzahrani et al. (2020), Trivedi et al. (2022), Sur and Kanoria
(2018), Lata et al. (2020), Gupta et al. (2022), Marin et al. (2013), and Kaur and Singh (2021,
2022).

The present investigation focuses on a higher-order memory-dependent derivative
(MDD) effect on forced flexural vibrations due to time-harmonic concentrated loads in a
TRP. With the DFFT technique, expressions for lateral deflection, thermoelastic damping,
temperature distribution, frequency shift, and thermal moment, have been found in the trans-
formed domain for simply supported (SS) TRP. We have demonstrated the effectiveness of
the higher-order MDD kernel function on the resultant quantities.

2 Basic equations

2.1 Constitutive equations

A linear elastic solid has the following motion equation according to Kirchhoff (1888):

tij,j + fi = ρüi, (1)
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tij = cijklekl − βijT , (2)

eij = 1

2

(
ui,j + uj,i

)
, i, j = 1,2,3, (3)

βij = cijklαkl, (4)

where cijkl(cijkl = cklij = cjikl = cij lk) are elastic parameters, βij = βiδij , Kij = Kiδij ,
K∗

ij = K∗
i δij , i is not summed,

2.2 Heat-conduction equation

Using Green and Naghdi (1992) and Bachher (2019), the constitutive equation for ATM
with GN-III theory with higher-order memory-dependent derivatives is:

K∗
ij T,ij + Kij Ṫ,ij =

(

1 +
N∑

r=1

χr

r! Dr
χ

)
(
βijT0ëij + ρCET̈

)
, (5)

where the rth-order MDD for a differentiable function f (t) with delay χ > 0 for a fixed
time t presented by Wang and Li (2011) is:

Dr
χf (t) = 1

χ

∫ t

t−χ

K (t − ξ)f r (ξ) dξ. (6)

The K(t − ξ) and χ is determined from the material properties. From Ezzat et al. (2014,
2015, 2016) the following kernel function K(t − ξ) is used

K (t − ξ) = 1 − 2β

χ
(t − ξ) + α2

χ2
(t − ξ)2 =

⎧
⎪⎪⎨

⎪⎪⎩

1
1 + (ξ − t)/χ

ξ − t + 1
[1 + (ξ − t)/χ ]2

α = 0, β = 0,

α = 0, β = 1/2,

α = 0, β = χ/2,

α = 1, β = 1,

(7)

where α and β are constants. Additionally, the comma indicates the derivative w. r. t. the
space variable and the dot superimposed on it signifies the time derivative.

3 Method and formulation of the problem

3.1 Formulation

Consider a homogeneous, transversely isotropic thermoelastic thin rectangular plate TRP
(Fig. 1) with Cartesian axes (x, y, z) having length a (0 ≤ x ≤ a), width b (− b

2 ≤ y ≤ b
2 )

and thickness h (− h
2 ≤ z ≤ h

2 ). A right-handed set is formed by placing the midsurface of
the TRP in the x–y plane and the z-axis toward the thickness direction. The origin is chosen
to be at one corner of the center surface of the plate in the chosen coordinate system, as
shown in Fig. 1.

The Kirchhoff–Love plate theory is consistent with the deformation of the TRP. Rao
(2007) provides the displacement components for a minor deflection of a straightforward
bending problem using the fundamental classical theory of a thin plate.

u1 (x, y, z, t) = −z
∂w

∂x
,u2 (x, y, z, t) = −z

∂w

∂y
,u3 (x, y, z, t) = w (x,y, t) . (8)
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Fig. 1 Schematic design of the
TRP

The TRP’s normal and shear strain components are

exx = −z
∂2w

∂x2
, (9)

eyy = −z
∂2w

∂y2
, (10)

exy = −2z
∂2w

∂x∂y
, (11)

ezz = eyz = exz = 0. (12)

According to Eringen theory, with the use of equation (8), the constitutive equation de-
rived from equation (2) becomes

txx = c11

(
−z

∂2w

∂x2

)
+ c12

(
−z

∂2w

∂y2

)
− β1T , (13)

tyy = c12

(
−z

∂2w

∂x2

)
+ c11

(
−z

∂2w

∂y2

)
− β1T , (14)

txy = (c11 − c12)
1

2

(
−2z

∂2w

∂x∂y

)
, (15)

tyz = txz = 0, (16)

where β1 = (c11 + c13)α1 + C13α3.
As per Rao (2007), the Mxx , Myy , and Mxy are given by

Mxx (x, y, t) =
∫ h

2

−h
2

txxzdz, (17)

Myy (x, y, t) =
∫ h

2

−h
2

tyyzdz, (18)

Mxy (x, y, t) =
∫ h

2

−h
2

txyzdz. (19)

After multiplication of (13)–(15) by z, integration w.r.t z, and with the help of equations
(17)–(19) yields

Mxx = −c11

(
I
∂2w

∂x2

)
− c12

(
I
∂2w

∂y2

)
− MT , (20)
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Myy = −c12

(
I
∂2w

∂x2

)
− c11

(
I
∂2w

∂y2

)
− MT , (21)

Mxy = (c11 − c12)

(
−I

∂2w

∂x∂y

)
, (22)

where

MT (x, y, t) = β1

∫ h
2

−h
2

T zdz, (23)

I = h3

12
. (24)

According to Rao (2007), Ventsel and Krauthammer (2002), the transverse equation of
motion with forced vibrations of the TRP is written as

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
+ q (x, y, t) = ρh

∂2w

∂t2
. (25)

It is assumed that inside the plate at a point (ε,μ), a time-harmonic concentrated load is
applied such that

q (x, y, t) = Pδε (x) δμ (y) eiωt ,

where P is a constant.
Equation (25) with the help of (20)–(24) becomes

c11I

(
∂4w

∂x4
+ ∂4w

∂y4
+ 2

∂4w

∂x2∂y2

)
+

(
∂2MT

∂x2
+ ∂2MT

∂y2

)
+ ρh

∂2

∂t2
(w)

= −Pδε (x) δμ (y) eiωt . (26)

Therefore, using (8), equation (5) becomes
(

K∗
1 + K1

∂

∂t

)(
∂2T

∂x2
+ ∂2T

∂y2

)
+

(
K∗

3 + K3
∂

∂t

)
∂2T

∂z2

=
(

1 +
N∑

r=1

χr

r! Dr
χ

)(
β1T0

∂2

∂t2

(
−2z

(
∂2w

∂x2
+ ∂2w

∂y2

))
+ ρCET̈

)
. (27)

The following dimensionless quantities (DQ) are presented in order to simplify the solu-
tion:

x ′ = x

L
, t ′xx = txx

c11
, y ′ = y

L
, t ′ = c1t

L
, z′ = z

L
,w′ = w

L
,

M ′
T = MT

T0Ah
,T ′ = T

T0
, c11 = ρc2

1.

(28)

Using DQ as in equation (28) in equations (26) and (27), and then suppressing primes
yields

[
∇4 + δ1

∂2

∂t2

]
w + δ2∇2MT = −Pδε (x) δμ (y) eiωt , (29)
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(
K∗

1 + K1
c1

L

∂

∂t

)
∇2T +

(
K∗

3 + K3
c1

L

∂

∂t

)
∂2T

∂z2

=
(

1 +
N∑

r=1

χr

r! Dr
χ

)(
δ3

∂2

∂t2

(−2z∇2w
) + δ4T̈

)
, (30)

where

δ1 = 12L2

h2
, δ2 = T0L

hc11
, δ3 = c2

1β
2
1 , δ4 = ρCEc2

1.

To find the solution to the problem, we can express the time-harmonic behavior as fol-
lows:

[w (x,y, t) , T (x, y, z, t)] = [
w (x,y) , T (x, y, z)

]
eiωt . (31)

As a result,

MT (x, y, t) = eiωtβ1

∫ h
2

−h
2

T (x, y, z) zdz = MT (x, y, t) eiωt . (32)

Using equation (31) in (29) and (30) we have

[∇4 − δ1ω
2
]
w + δ2∇2MT = −Pδε (x) δμ (y) , (33)

[
(
K∗

1 + K1
c1

L
iω

)
∇2 +

(

1 +
N∑

r=1

χr

r! Gr

)

δ4ω
2

]

T +
(
K∗

3 + K3
c1

L
iω

) ∂2T

∂z2

− 2zδ3

(

1 +
N∑

r=1

χr

r! Gr

)

ω2∇2w = 0, (34)

where Gr = (iω)r−1
[(

1 − e−iωχ
)(

1 − 2β

χ iω − 2α2

χ2ω2

)
−

(
α2 − 2β + 2α2

χ iω

)
e−iωχ

]
.

3.2 Thermal field in the thickness direction

It can be assumed that the TRP’s thermal gradient along the x and y directions is very small
as compared to its thickness,

(
∂2

∂x2
+ ∂2

∂y2

)
T � ∂2T

∂z2
. (35)

As a result,

∂2T

∂z2
+ p2T = δ5z∇2w, (36)

where

p = ω

√√√
√

(
1 + ∑N

r=1
χr

r! G
r

)
ρCEc2

1
(
K∗

3 + K3
c1
L

iω
) , δ5 =

2δ3

(
1 + ∑N

r=1
χr

r! G
r
)

ω2

(
K∗

3 + K3
c1
L

iω
) .
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In our scenario, it is assumed that no heat flows between the upper and lower surfaces of
the TRP

∂T

∂z
= 0 at z = ±h

2
. (37)

As a result, the temperature distribution is given by

T = 2β2
1

ρCE

(

z − sinpz

p cos ph

2

)

∇2w. (38)

Using (38) in (23) yields

MT = β3
1h3

6ρCE

(1 + f (p))∇2w, (39)

where

f (p) = 24

p3h3

(
ph

2
− tan

ph

2

)
.

Now, applying equation (39) to equation (33) yields

∇4w − η4w = ε2, (40)

where η4 = δ1ω
2

(1 + ε1 (1 + f (p)))
, ε1 = δ2

β1h
3

12ρCE

, ε2 = −Pδε (x) δμ (y)

(1 + ε1 (1 + f (p)))
. (41)

3.3 Initial conditions

The initial conditions for an undeformed and homogeneous plate, at a uniform temperature
T0 and without rotation are considered as follows:

w (x,y, t)|t=0 = ∂w (x, y, t)

∂t

∣
∣∣
∣
t=0

= 0, T (x, y, t)|t=0 = ∂T (x, y, z, t)

∂t

∣
∣∣
∣
t=0

= 0. (42)

3.4 Mechanical boundary conditions

It is considered that the TRP ends are simply supported. Therefore, for simply supported
edges x = 0, a, y = 0, b, the bending moment and deflection must be zero

w (x,y, t)|x=0,a = Mxx |x=0,a = 0, w (x, y, t)|y=0,b = Myy

∣∣
y=0,b

= 0,

MT (x, y, t)|x=0,a,y=0,b = 0, (43)

Mxx |x=0,a =
[
−c11

(
I
∂2w

∂x2

)
− c12

(
I
∂2w

∂y2

)
− MT

]

x=0,a

= 0. (44)

Subsequently w (x,y, t) = 0 along the edge x = 0, a, all the derivatives of w w.r.t. y

are also zero. Therefore,

∂w (x, y, t)

∂y

∣
∣∣∣
x=0,a

= 0,
∂2w (x,y, t)

∂y2

∣
∣∣∣
x=0,a

= 0. (45)
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If we use (45) in Mxx |x=0,a = 0 it yields

∂2w

∂x2

∣∣
∣∣
x=0,a

= 0. (46)

Likewise, Myy

∣∣
y=0,b

= 0 infers

∂2w

∂y2

∣∣
∣∣
y=0,b

= 0. (47)

3.5 Solution of vibration

As per Debnath and Bhatta (2007) “the double finite Fourier sine transform (DFFST) of a
function F on a domain over a rectangular region 0 ≤ x ≤ a, 0 ≤ y ≤ b as a function of fs :

DFis (f (x, y)) = fs (m,n) =
∫ a

0

∫ b

0
F (x, y) sin

(mπx

a

)
sin

(nπy

b

)
dydx. (48)

The inverse double Fourier sine transform of a function fs will be:

DF−1
is (fs (m,n)) = f (x, y) =

(
4

ab

) ∞∑

m=1

∞∑

n=1

fs (m,n) sin
(mπx

a

)
sin

(nπy

b

)
. (49)

Theorem 1: If a function F vanishes on the boundary of the rectangular region 0 ≤ x ≤ a,
0 ≤ y ≤ b then:

DFis

(
∂2F (x, y)

∂x2
+ ∂2F (x, y)

∂y2

)
= −π2

(
m2

a2
+ n2

b2

)
fs (m,n) . (50)

With the help of Pasquel (2019) and Al-Khaled (2018) equation (46) can be solved using
a DFFST in the x and y directions defined by equations (52) and (53) as

w (x,y) =
(

4

ab

) ∞∑

m=1

∞∑

n=1

ws (m,n) sin
(mπ

a
x
)

sin
(nπ

b
y
)

, (51)

where m is the wavenumber along x and n along y directions.
Equation (42) with the help of equation (55) yields the value of ws (m,n) as

ws (m,n) = −P sin
(

mπε
a

)
sin

(
nπμ

b

)

δ6
, (52)

where δ6 = (1 + ε1 (1 + f (p)))

{(
m2π2

a2 + n2π2

b2

)2 − η4

}
.

As a result, the expression for the TRP’s lateral deflection, temperature distribution, and
the thermal moment is given by

w (x,y, t) =
(

4

ab

) ∞∑

m=1,n=1

ws (m,n) sin
(mπ

a
x
)

sin
(nπ

b
y
)

eiωmnt , (53)
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T (x, y, z, t) = − β2
1

ρCE

(
8

ab

)(

z − sinpz

p cos ph

2

) ∞∑

m=1,n=1

(
m2π2

a2
+ n2π2

b2

)

× ws (m,n) sin
(mπ

a
x
)

sin
(nπ

b
y
)

eiωmnt , (54)

MT (x, y, t) = β3
1h3

3ρCE

(
2

ab

)
(1 + f (ω))

∞∑

m=1,n=1

(
m2π2

a2
+ n2π2

b2

)

× ws (m,n) sin
(mπ

a
x
)

sin
(nπ

b
y
)

eiωmnt . (55)

3.6 Resonance conditions

Equation (41) provides the harmonic vibration frequency ωmn of a Kirchhoff TRP as

ωmn = ω0

[
1 + ε1

2
(1 + f (p0))

]
, (56)

where ε1 � 1,ω0 = h

2
√

3L

(
m2π2

a2
+ n2π2

b2

)
,p0 = ω0

√
(1 + Gr)ρCEc2

1(
K∗

3 + K3
c1
L

iω0

) ,

n,m = 1,2,3,4, . . . .

(57)

The expression of thermoelastic damping is written as

Q−1 = 2

∣
∣∣
∣
ωI

mn

ωR
mn

∣
∣∣
∣ , (58)

where ωR
mn and ωI

mn are the real and imaginary parts of frequency ωmn. The frequency shift
because of thermal variations is written as:

ωS =
∣∣
∣∣
ωR

mn − ω0

ω0

∣∣
∣∣ . (59)

4 Numerical results and discussion

To show our theoretical results and the effect of MDD, physical data of copper material is
taken from Dhaliwal and Singh (1980) for numerical calculation

c11 = 3.07 × 1011 N m−2, c12 = 1.650 × 1011 N m−2,

c13 = 1.027 × 1010 N m−2, c33 = 3.581 × 1011 N m−2,

c44 = 1.510 × 1011 N m−2, CE = 4.27 × 102 j kg−1 K−1,

β1 = 7.04 × 106 N m−2 K−1, β3 = 6.90 × 106 N m−2 K−1,

K1 = 0.690 × 102 W m−1 K−1, K3 = 0.690 × 102 W m−1 K−1,

K∗
1 = 0.02 × 102 N s−2 K−1, K∗

3 = 0.04 × 102 N s−2 deg−1,
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Fig. 2 (a and b). Deviation of Dimensionless Lateral Deflection w with MDD

Fig. 3 (a and b). Deviation of Dimensionless Thermal Moment MT with the length of the thin plate

L

h
= 10,

b

h
= 0.5, ρ = 8.836 × 103 kg m−3.

Figures 2(a and b) demonstrate the deviation in the dimensionless lateral deflection w

w.r.t length and breadth of the thin plate with different mode numbers (n = 1, m = 1) and

mode numbers (n = 2, m = 2) and the MDD kernel function value
[
1 + (ξ−t)

χ

]2
when α = 1,

β = 1, respectively. It is observed in Fig. 2(a) that at the boundary of the plate the deflection
in the lateral direction is zero and we have the maximum deflection at the center of the
plate. Moreover, as the value of the mode number increases, as shown in Fig. 2(b), there is
a corresponding change in the lateral deflection. At the boundary of the plate the deflection
is zero, hence, it satisfies the boundary condition.

Figures 3(a and b) show the deviation of dimensionless thermal moment MT w.r.t length
and breadth of the thin plate with different mode numbers (n = 1, m = 1) and mode num-

bers (n = 2, m = 2) and the MDD kernel function value
[
1 + (ξ−t)

χ

]2
when α = 1, β = 1,

respectively. It is observed in Fig. 3(a) that at the boundary of the plate the thermal moment
is zero and we have the maximum variation at the center of the plate. The variation in the
thermal moment shows the opposite behavior from the lateral deflection. Moreover, as the
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Fig. 4 (a and b). Deviation of Dimensionless Temperature Distribution with MDD

value of the mode number increases, as shown in Fig. 3(b), there is a corresponding change
in the thermal moment. At the boundary of the plate the thermal moment is zero, hence, it
satisfies the boundary condition.

Figures 4(a and b) display the deviation of the dimensionless temperature distribution
w.r.t length and breadth of the thin plate with different mode numbers (n = 1, m = 1) and

mode numbers (n = 2, m = 2), and the MDD kernel function value
[
1 + (ξ−t)

χ

]2
when α = 1,

β = 1, respectively. It is observed in Fig. 4(a) that at the boundary of the plate the tempera-
ture distribution is zero and we have the maximum variation at the center of the plate. The
variation in the temperature distribution shows the opposite behavior from the lateral de-
flection. Moreover, as the value of the mode number increases, as shown in Fig. 3(b), there
is a corresponding change in the temperature distribution. At the boundary of the plate the
temperature distribution is zero, hence, it satisfies the boundary condition.

Figure 5 displays the variation in dimensionless thermoelastic damping with the change
in the values of α and β the parameters of the kernel function of the MDD with mode
numbers (n = 2, m = 2). The curves clearly illustrate that the kernel function influences the
thermoelastic damping. Without the MDD, the thermoelastic damping is sharply decreased,
whereas, it is different in the case with the higher-order parameter of the MDD. As the
value of the higher-order parameter of the MDD increases, there is shift in the peak of the
thermoelastic damping.

Figure 6 displays the variation in the dimensionless frequency shift with the change in the
values of α and β the parameters of the kernel function of the MDD with mode numbers (n =
2, m = 2). The curves clearly illustrate that the kernel function influences the frequency shift.
Without the MDD, the thermoelastic damping is sharply decreased, whereas it is different
in the case with the higher-order parameter of the MDD. As the value of the higher-order
parameter of the MDD increases, there is a shift in the graphs of the frequency shift.

5 Conclusions

The purpose of this study was to discuss higher-order memory-dependent derivatives with
a delay-time parameter. Based on Taylor-series expansions to Fourier’s law for higher-
order MDD, a thermomechanical model is proposed for predicting the thermomechanical
response of a rectangular transversely isotropic thermoelastic plate under a concentrated
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Fig. 5 Variation of dimensionless
thermoelastic damping

Fig. 6 Variation of
dimensionless Frequency Shift

time-harmonic load. This model can be used to obtain different cases for many thermoelas-
ticity models with and without memory dependence. The study and discussion were con-
ducted on solutions based on a higher-order MDD kernel function. Based on the results
obtained, the following conclusions can be drawn:

• A thin plate closed-form mathematical model is developed with Kirchhoff–Love plate
theory and MDD. This study not only considered the size effect but also studied the
memory, mechanical, and thermal-field effects.

• It has been observed that with the usage of higher-order MDD in the heat-conduction
equation, the frequency shift and thermoelastic damping is predicted to be low, contrary
to the heat-conduction equation without MDD. This infers that the memory-dependent
derivatives can reduce damping and frequency shifts and improve MEMS/NEMS quality.

• The MDD theory is used to study and illustrate lateral deflections, thermal moments, and
temperature distributions, and it is seen that the MDDs have a major effect on all the
parameters of the thin plate.
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