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Abstract
In this work, we study the thickness-stretching effects for vibrational behaviors of open-cell
foam plates resting on the visco-Pasternak foundation. The kinematic relations consist of
shear and normal deformation theory with hyperbolic functions and normal strains in the
thickness directions. These relations of foam plates are extended here for the first time. We
derive the porosity distribution, viscoelastic constitutive relations, and the governing equa-
tions with frequency-dependent coefficients using power law, Boltzmann–Volterra superpo-
sition principles, and the Hamilton principle, respectively. We derive natural frequencies and
modal loss factors of simply supported thick plates based on a semianalytical solution and
numerical iterative algorithm. To verify, we carry some numerical examples for elastic func-
tionally graded plates and viscoelastic laminated composite plates. We study the influences
of geometry, material, and foundation parameters through numerical examples. It is revealed
that loss factors of thin plates show increment as both thickness ratio and viscoelastic coef-
ficients increase because external damping dominates over structural damping.

Keywords Open-cell foams · Functionally graded foam · Shear and normal deformation
theory · Semianalytical solution

1 Introduction

Functionally graded (FG) foams have attracted great attention due to the remarkable si-
multaneous properties of FG and viscoelastic materials (Altenbach and Eremeyev 2009,
2008a,b,c). Functionally graded materials have degraded properties that avoid severe vari-
ations of properties and thermo-mechanical stresses, and viscoelastic materials have high
damping capability and phase delay (Brinson and Brinson 2008). Viscoelastic materials
also can provide safe and quick ophthalmic surgery (Buratto et al. 2000). These foams are
generally known as FG viscoelastic (FGV) foams and are categorized based on their inner
connections, the open-cell with interconnected networks of cells, and close-cell without in-
terconnections of cells (Ashby et al. 2000; Taraz Jamshidi et al. 2015; Hedayati and Sadighi
2016; Sadeghnejad et al. 2017; Sarrafan and Li 2022).
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The mentioned properties of FGV foams provide an opportunity to use them in beam,
plate, and shell structures, as a whole or as a constituent of composites (Jahwari and Naguib
2016; Zamani 2021a; Montgomery et al. 2021). From this point of view, FGV plates under
dynamic loads are newly at the center of the attentions of researchers. Hosseini-Hashemi
et al. (2015) used first-order shear deformation theory (FSDT) to derive natural frequency
and damping ratios of cylindrical panels under Levy-type boundary conditions. Shariyat and
Jahangiri (2020) studied the impact behavior of partially supported plates under bending-
induced fluid flow based on the Galerkin finite element method (FEM) and the Hertz law.
Zamani (2021b) applied the Galerkin, least squares, Ritz, and point collocation weighted
residual methods to derive complex frequencies of foam plates. Alavi et al. (2022) studied
transient and dynamic responses of porous standard solid plates using FSDT and the per-
turbation method. Dogan (2022) investigated quasi-static and dynamic responses of plates
based on modified Durbin’s algorithm and Navier approach. Zamani (2022) considered
thickness-stretching effect for free vibrations of thick foam plates using the Galerkin method
with various shear and normal deformation theories (SNDT). Singh et al. (2023) applied
power series EKM for standard solid piezoelectric plates with Levy-type boundary condi-
tions.

In many practical circumstances, interactions of the foundation are inevitable (Kerr
1964). Therefore FGV plates may face various loads such as elastic and viscoelastic founda-
tions. In this outline, Alimirzaei et al. (2019) investigated wave propagation of FGV plates
on the visco-Pasternak foundation using a quasi-3D shear deformation theory. Sofiyev et al.
(2019) analyzed the dynamic buckling of plates resting on an elastic foundation based on the
CPT and the Galerkin method. Also, Sofiyev (2023) extended the dynamic buckling investi-
gation for plates on viscoelastic foundation under different initial conditions. Besides FGV
plates, vibration behavior of FGV foams on foundations is taken into consideration in recent
years. Zamani et al. (2018) studied the free vibration of thin foam plates on an orthotropic
foundation based on the classical plate theory (CPT), the Galerkin method, and various
boundary conditions. Recently, Zamani et al. (2022) studied large-amplitude vibrations and
mechanical buckling of foam beams on a nonlinear elastic foundation. They concluded that
the viscoelasticity of foams enhances the differences of linear and nonlinear frequencies
and buckling loads. Obviously, vibration analysis of FGV foam plates on the viscoelastic
foundation is limited to the thin plates and CPT, whereas in many practical circumstances,
analysis of thick plates using SNDT considering thickness-stretching effects are necessary.
Furthermore, the main aim of this study is the implementation of viscoelastic foundation for
vibrations of thick foam plates considering thickness stretching.

In accordance with the literature review, it is revealed that dynamic analysis of FGV
plates is restricted to the CPT (Shariyat and Jahangiri 2020; Dogan 2022), FSDT (Hosseini-
Hashemi et al. 2015; Alavi et al. 2022), refined FSDT (Zamani 2021b), quasi-3D theories
(Singh et al. 2023), and SNDT (Zamani 2022). Moreover, dynamic analysis of FGV plates
on foundations (Sofiyev et al. 2019; Sofiyev 2023) and FGV foams on foundations (Zamani
et al. 2018, 2022) is limited to the CPT and wave propagation with quasi-3D (Alimirzaei
et al. 2019) approach. Overall, there is no study for the application of SNDT for vibrations of
thick shear-and-normal deformable FGV foam plates resting on the viscoelastic foundations.

In this paper, SNDT is applied to study the complex frequency behavior of foam plates.
Shear and normal deformation theory includes in-plane and out-of-plane displacements,
whereas normal strain through the thickness direction is also considered. Simple power law,
separable kernels framework, and Boltzmann–Volterra superposition integral are adapted for
constitutive relations. The Hamilton principle is used to derive the governing equations of
motions with frequency-dependent coefficients. The Galerkin method in conjunction with
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QZ iterative numerical algorithm is implemented to derive natural frequencies and modal
loss factors. Some numerical examples are carried out to assess the accuracy of the present
method. Then the impacts of material model, geometrical parameters, and foundation coef-
ficients are investigated through parametric studies.

2 Basic formulation

Consider a rectangular plate as depicted by Fig. 1. Variables x, y, and z stand for orthogonal
coordinate systems, and the origin is placed at the corner of the midsurface of the plate. The
parameters a, b, and h denote the length, width, and total thickness, respectively. Moreover,
Kw , Kp , and Kd represent the Winkler, Pasternak, and damping coefficients of foundation,
respectively.

2.1 Constitutive equations

In the present work, we adapt the Boltzmann–Volterra superposition integral is adapted for
linear viscoelastic behavior of the open-cell foam plate as follows (Brinson and Brinson
2008):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σyz

σxz

σxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1)

=
∫ t

−∞

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1(t − t ′) λ(t − t ′) λ(t − t ′) 0 0 0
λ1(t − t ′) λ(t − t ′) 0 0 0

λ1(t − t ′) 0 0 0
Sym. μ(t − t ′) 0 0

μ(t − t ′) 0
μ(t − t ′)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εx,t ′(t ′)
εy,t ′(t ′)
εz,t ′(t ′)
εyz,t ′(t ′)
εxz,t ′(t ′)
εxy,t ′(t ′)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

dt ′,

where σ , ε, t , t ′, and “ , ” stand for the stress, strain, time, Boltzmann integral vari-
able, and differential operator, respectively. Moreover, λ, λ1, and μ represent frequency-
dependent viscoelastic Lame coefficients (Brinson and Brinson 2008; Altenbach and Ere-
meyev 2008b,c):

λ(z,ω) = K(zω) − 2

3
G(z,ω) = ν(z,ω)E(z,ω)

(1 − 2ν(z,ω)) (1 + ν(z,ω))
,

λ1(z,ω) = K(z,ω) + 4

3
G(z,ω) = (1 − ν(z,ω))

v(z,ω)
λ(z,ω), (2)
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Fig. 1 The geometry and
coordinates of a functionally
graded viscoelastic plate (a) and
schematic of a polymeric
open-cell foam (b) (Altenbach
and Eremeyev 2008c)

μ(z,ω) = G(z,ω) = E(z,ω)

2(1 + ν(z,ω))
,

λ (ω, z) + 2μ(ω, z) = λ1 (ω, z) ,

Ĉ12 (ω) + 2Ĉ66 (ω) = Ĉ11 (ω) ,

Ĉ11 (ω) = Ĉ22 (ω) = Ĉ33 (ω) ,

Ĉ13 (ω) = Ĉ23 (ω) = Ĉ12 (ω) ,

Ĉ44 (ω) = Ĉ55 (ω) ,

where ω, K G, E, C, and ν stand for the frequency, bulk, shear, Young moduli, viscoelas-
tic stiffness coefficients, and Poisson ratio, respectively. Generally, the mentioned proper-
ties are frequency-dependent or time-dependent, and in the present study, we consider the
frequency-dependent one. Also, frequency-dependent properties and viscoelastic stiffness
coefficients could be derived directly using the Alfrey correspondence principle (Alfrey
1944). Other effective properties could be written as (Srinivas and Rao 1971; Hatami et al.
2008)

ρ (z,ω) = ρsV (z) , (3)

K (z,ω) = K0V
2 (z) , (4)

G(z,ω) = G0
1 + ic1ω

1 + iβc1ω
V 2 (z) , c1 = h

√
ρ

G0
, (5)



Mechanics of Time-Dependent Materials (2024) 28:663–680 667

Fig. 2 The effects of power
index on volume fraction
(Zamani et al. 2018)

V (z) = ρp

ρs

+ (1 − ρp

ρs

)(
1

2
− z

h
)p, (6)

where ρ, ρs , ρp/ρs , p, β , K0, and G0 stand for the density, minimum density, minimal
relative density, power index, parameter of constitutive relation, elastic dilatation, and dis-
tortion moduli, respectively. Also, β = 0.5,1 and p = 0,1,2 represent standard solid and
elastic models, and homogenous, linear, and quadratic distributions of porosity through the
thickness direction, respectively. It is worth mentioning that homogenous and linear distri-
butions of porosity are particular cases, and in this study, we also consider other values of p.
Generally, power index represents the order of variations of volume fraction and eventually
other properties. Moreover, for illustration, in Fig. 2, we present the effects of power index
on volume fraction for ρp/ρs = 0.3.

2.2 Kinematic formulation

In this work, consider the displacement field in three different directions (Mantari 2015;
Mantari and Guedes Soares 2014):

u1 (x, y, z, t) = u (x, y, t) − z

[

wb,x +
(

f ′
(

h

2

)

+ g

(
h

2

))

ws,x

]

+ f (z)ws,x,

u2 (x, y, z, t) = v (x, y, t) − z

[

wb,y +
(

f ′
(

h

2

)

+ g

(
h

2

))

ws,y

]

+ f (z)ws,y, (7)

u3 (x, y, z, t) = wb (x, y, t) + g (z)ws (x, y, t) ,

f (z) = h

m
tanh(

mz

h
) + z3,

g(z) = nf (z),

n = 2/15,m = 0.4,

where u, v, wb , and ws stand for midplane displacements in the x, y, z directions, bending
the component and shear components of transverse displacements, respectively. Also, f (z)

and g(z) are obtained using stress-free edge conditions on the top of the plate, and for details,
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we refer to Mantari and Guedes Soares (2014) and Mantari (2015). It is worth mentioning
that the number of unknowns is four, which is less than in FSDT and higher-order shear
deformation theory (HSDT).

The linear strain-displacement components are expressed as (Mantari and Guedes Soares
2014; Mantari 2015)

⎧
⎨

⎩

εx

εy

γxy

⎫
⎬

⎭
=

⎧
⎨

⎩

u,x

v,y

u,y + v,x

⎫
⎬

⎭
− z

⎛

⎝

⎧
⎨

⎩

wb,xx

wb,yy

2wb,xy

⎫
⎬

⎭
+

(

f ′(
h

2
) + g(

h

2
)

)
⎧
⎨

⎩

ws,xx

ws,yy

2ws,xy

⎫
⎬

⎭

⎞

⎠

− f (z)

⎧
⎨

⎩

ws,xx

ws,yy

2ws,xy

⎫
⎬

⎭
,

(8)

εz = g′(z)ws,

{
γyz

γxz

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

−f ′(
h

2
) + g(

h

2
) + g(z) + f ′(z)

)

ws,y

(

−f ′(
h

2
) + g(

h

2
) + g(z) + f ′(z)

)

ws,x

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where εi (i = x, y, z) and γi (i = xy, yz, xz) stand for the normal and shear strains, respec-
tively. Clearly, the normal strain through the thickness direction is proportional to the shear
component of transverse displacement, a polynomial and trigonometric hyperbolic function
in the thickness direction.

3 Governing equations

In this section, we derive the governing equations of motions of FGV open-cell foam plates
on visco-Pasternak foundation considering thickness-stretching effect. To this aim, we im-
plement the dynamic version of virtual displacement or Hamilton principle:

∫ t2

t1

(δU + δV − δT )dt = 0,

δU =
∫

A

∫ h/2

−h/2

(
σxx(ω)δεx + σyy(ω)δεy + σzz(ω)δεz

+σxy(ω)δεxy + σyz(ω)δεyz + σxz(ω)δεxz

)

dzdA,

δV =
∫

A

∫ h/2

−h/2
(Kwδu3 − Kp

(
u3,xδu3,x + u3,yδu3,y

) + Kdu3,t δu3,t )dzdA, (9)

δT =
∫

A

∫ h/2

−h/2
ρ(z,ω)(u1,t δu1,t + u2,t δu2,t + u3,t δu3,t )dzdA,

δui = 0, (ui = u,v,wb,ws) ,

where A, t1, t2, δui , δU , δV , and δT denote the area, initial time, terminal time, virtual
displacement, virtual strain energy, potential energy of foundation, and virtual kinematic
energy, respectively. Substituting Eqs. (1)–(8) into Eqs. (9), integrating in the thickness di-
rection, and integrating by parts, we can extract the virtual displacements and write the



Mechanics of Time-Dependent Materials (2024) 28:663–680 669

resulting equations of motions as

δu : Nx,x (ω) + Nxy,y (ω)

= I0 (ω)u,tt − I1 (ω)wb,xtt

+
(

I3 (ω) −
(

f ′
(

h

2

)

+ g

(
h

2

))

I1 (ω)

)

ws,xtt ,

(10)

δv : Nxy,x (ω) + Ny,y (ω)

= I0 (ω)v,tt − I1 (ω)wb,ytt

+
(

I3 (ω) −
(

f ′
(

h

2

)

+ g

(
h

2

))

I1 (ω)

)

ws,ytt ,

(11)

δwb : Mx,xx(ω) + 2Mxy,xy(ω) + My,yy(ω)

= I0(ω)wb,tt + I1(ω)
(
u,x + v,y

)

,t t
− I2(ω)∇2wb,tt

+ (
I4(ω) − I2(ω)(f ′(h/2) + g(h/2)

)∇2ws,tt + I6(ω)ws,tt

+ Kw (wb + g(h/2)ws) − Kp

(

∇2wb + g

(
h

2

)

∇2ws

)

+ Kd

(

wb,t + g

(
h

2

)

ws,t

)

,

(12)

δws : (f ′(h/2) + g(h/2)
) (

Mx,xx(ω) + 2Mxy,xy(ω) + My,yy(ω)

− Nxz,x(ω) − Nyz,y(ω)
) − Px,xx(ω) − 2Pxy,xy(ω) − Py,yy(ω) + Qyz,y(ω)

+ Qxz,x(ω) + Kyz,y(ω) + Kxz,x(ω) − Rz(ω)

= − (
I3(ω) − I1(ω)(f ′(h/2) + g(h/2)

) (
u,x + v,y

)

,t t

+ (
I4(ω) − I2(ω)(f ′(h/2) + g(h/2)

)∇2wb,tt

+
(
− (

f ′(h/2) + g(h/2)
)2

I2 + 2
(
f ′(h/2) + g(h/2)

)
I4 − I5

)
∇2ws,tt

+ I6wb,tt + I7ws,tt

+ g

(
h

2

)

Kw

(

wb + g

(
h

2

)

ws

)

− g

(
h

2

)

Kp

(

∇2wb + g

(
h

2

)

∇2ws

)

+ g

(
h

2

)

Kd

(

wb,t + g

(
h

2

)

ws,t

)

,

(13)

where N , M , Q, K , R, and Ii (i = 0, . . . ,6) stand for the frequency-dependent stress resul-
tants and frequency-dependent mass inertia, respectively, which are defined as

⎧
⎨

⎩

Ni(ω),Mi(ω),Pi(ω)

Qj (ω),Kj (ω)

Rz(ω)

⎫
⎬

⎭
=

∫ h
2

− h
2

⎧
⎨

⎩

σi (1, z, f )

σj (g,f ′(z))
σzg,z

⎫
⎬

⎭
dz

(
i = x, y, xy, yz, xz

j = xz, yz

)

, (14)
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⎧
⎨

⎩

Ii(ω)

Ij (ω)

Ik(ω)

⎫
⎬

⎭
=

∫ h
2

− h
2

⎧
⎨

⎩

ρzi

ρ(f, zf,f 2)

ρ(g, g2)

⎫
⎬

⎭
dz

⎛

⎝
i = 0,1,2
j = 3,4,5
k = 6,7

⎞

⎠ .

For the case of stress resultants, the extended form is rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx

Ny

Nxy

Mx

My

Mxy

Px

Py

Pxy

Rz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 A12 0 B11 B12 0 C11 C12 0 F12

A12 A11 0 B12 B11 0 C12 C11 0 F12

0 0 A66 0 0 B66 0 0 C66 0
B11 B12 0 G11 G12 0 H11 H12 0 K ′

12
B12 B11 0 G12 G11 0 H12 H11 0 K ′

12
0 0 B66 0 0 G66 0 0 H66 0

C11 C12 0 H11 H12 0 L11 L12 0 O12

C12 C11 0 H12 H11 0 L12 L11 0 O12

0 0 C66 0 0 H66 0 0 L66 0
F12 F12 0 K ′

12 K ′
12 0 O12 O12 0 U11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0
xx

ε0
yy

ε0
xy

ε1
xx

ε1
yy

ε1
xy

ε2
xx

ε2
yy

ε2
xy

εzz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(15)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Nyz

Nxz

Kyz

Kxz

Qyz

Qxz

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A66 0 D66 0 E66 0
0 A66 0 D66 0 E66

E66 0 Q′
66 0 S66 0

0 E66 0 Q′
66 0 S66

D66 0 P ′
66 0 Q′

66 0
0 D66 0 P ′

66 0 Q′
66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε0
yz

ε0
xz

ε3
yz

ε3
xz

ε4
yz

ε4
xz

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (16)

where the matrix coefficients and strains are defined as

(Ai,Bi,Ci,Di,Ei,Fi,Gi) =
∫ h/2

−h/2
Qij (z)

(
1, z, f (z), g(z), f ′(z), g′(z), z2

)
dz,

(
Hi,K

′
i ,Li,Oi,Ui

) =
∫ h

2

− h
2

Qij (z)
(
zf (z) , zg′ (z) , f 2 (z) , f (z) g′ (z) , g′2 (z)

)
dz, (17)

(
Q′

i , Si,P
′
i

) =
∫ h/2

−h/2
Qij (z)

(
g(z)f ′(z), f ′2(z), g2(z)

)
dz,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0
xx

ε0
yy

ε0
xy

ε1
xx

ε1
yy

ε1
xy

ε2
xx

ε2
yy

ε2
xy

εz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u,x

v,y

u,y + v,x

−wb,xx − (
f ′(h/2) + g(h/2)

)
ws,xx

−wb,yy − (
f ′(h/2) + g(h/2)

)
ws,yy

−2wb,xy − 2
(
f ′(h/2) + g(h/2)

)
ws,xy

ws,xx

ws,yy

2ws,xy

ws

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (18)
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε0
yz

ε0
xz

ε3
yz

ε3
xz

ε4
yz

ε4
xz

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− (
f ′(h/2) + g(h/2)

)
ws,y

− (
f ′(h/2) + g(h/2)

)
ws,x

ws,y

ws,x

ws,y

ws,x

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (19)

Also, the displacement field variables are expressed based on harmonic functions as (Rao
2004)

u(x, y, t) = u(x, y)eiωt ,

v (x, y, t) = v (x, y) eiωt ,

wb (x, y, t) = wb (x, y) eiωt ,

ws (x, y, t) = ws (x, y) eiωt .

(20)

By substitution of strains (18)–(19) into the resultant equations (15)–(16), using har-
monic functions, we can rewrite the governing equations (10)–(13) as

A11u,xx + A66u,yy + (A12 + A66) v,xy − B11∇2wb,x + (B11q11 + C11)∇2ws,x (21)

+ F12ws,x − ω2
(−I0u + I1wb,x + (I3 − I1q11)ws,x

) = 0,

(A12 + A66)u,xy + A66v,xx + A11v,yy − B11∇2wb,y + (B11q11 + C11)∇2ws,y (22)

+ F12ws,y − ω2
(−I0v + I1wb,y + (I3 − I1q11)ws,y

) = 0,

B11∇2u,x + B11∇2v,y + G11

(
q11∇4ws − ∇4wb

) + H11∇4ws + K ′
12∇2ws (23)

− (Kw + iωKd) (wb + g(h/2)ws) + Kp

(∇2wb + g(h/2)∇2ws

)

− ω2
(−I0wb − I1u,x − I1v,y + I2∇2wb + (I4 − q11I2)∇2ws − I6ws

) = 0,

−C11∇2
(
u,x + v,y

) − F12

(
u,x + v,y

) + q11B11∇2
(
u,x + v,y

)
(24)

+ (H11 − G11q11)∇4wb + K ′
12∇2wb − g(h/2)

(
(Kw + iωKd) (wb + g(h/2)ws)

− Kp

(∇2wb + g(h/2)∇2ws

))

+ (−q2
11A66 + 2Q′

66 + P ′
66 − 2O ′

12 + S ′
66

)∇2ws + (
q2

11G11 − L11

)∇4ws − U11ws

− ω2
(
(I3 − I1q11)

(
u,x + v,y

) + (q11I2 − I4)∇2wb − I6wb

+ I5∇2ws − I7ws + (
q2

11I2 − 2q11I4

)∇2ws

) = 0,

∇2 () = (),xx + (),yy , (25)

∇4 () = ∇2
(∇2 ()

) = (),xxxx + 2 (),xxyy + (),yyyy ,

where ∇2 () and ∇4 () stand for the Nabla and biharmonic operators, respectively.
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4 Semianalytical solution

In this section, we resolve the mentioned governing equations of motions using the Bubnov–
Galerkin method and QZ eigenvalue solver (Golub and Van Loan 2013) to obtain funda-
mental frequencies and modal loss factors of foam plates with simply supported boundary
conditions. The introduced edge conditions are defined as

Nx = Mx = Px = v = wb = ws = ws,y = 0, x = 0, a,

Ny = My = Py = u = wb = ws = ws,x = 0, y = 0, b.
(26)

By applying the Galerkin weighed residual method, we discretize four-coupled PDEs
of motion in the spatial domain. The applied functions of movable simply supported edge
conditions are (Mantari 2015)

u(x, y) = cos(
mπ

a
x) sin(

nπ

b
y),

v(x, y) = sin(
mπ

a
x) cos(

nπ

b
y),

wb(x, y) = sin(
mπ

a
x) sin(

nπ

b
y), (27)

ws(x, y) = sin(
mπ

a
x) sin(

nπ

b
y).

The degraded PDEs of motions convert to a system of complex algebraic equations with
frequency-dependent coefficients. The system of equations can be rewritten as

(
C(ω) − ω2M(ω) + C ′(ω)

)
q = 0, (28)

where C, C ′, M, and q stand for the square matrices of frequency-dependent stiffness, damp-
ing, inertia, and vector of displacement, respectively. By applying QZ eigenvalue solver the
outcomes are complex roots, which are written as (Zamani and Aghdam 2016)

ω = ωRe + iωIm,

ωmn = ωRe,

η = 2ωReωIm

(ωRe)2 − (ωIm)2
,

(29)

where η and superscripts Re, Im stand for the modal loss factor and real and imaginary
parts of frequencies, respectively. Furthermore, the real and imaginary parts of complex
frequencies refer to the natural frequency and damping capability, respectively. In this study,
damping emanates from two sources: first, material damping due to viscoelasticity, and the
second is external damping of foundations.

5 Results and discussion

In this part, the presented method is verified and the impacts of various parameters are eval-
uated through numerical examples. First, the present method is verified for available results
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of elastic Al/Al2O3 plate on an elastic foundation (Thai and Choi 2012; Akavci 2014; Man-
tari et al. 2014b,a; Alazwari and Zenkour 2022) and laminated viscoelastic composite plate
(Koo and Lee 1993). Then the impacts of geometry and foundation on complex frequen-
cies are studied with numerical examples. We further assume the following properties of
FGV open-cell foam plates: ρp/ρs = 0.65, ρs = 200 kg/m3, G0 = 2 GPa, K0 = 2G0, h = 1,
β = 0.5, b/a = 1, a/h = 10, p = 1, (m,n) = (1,1).

5.1 Comparative studies

In this section, we compare the nondimensional fundamental frequency parameters of
elastic Al/Al2O3 plates with available results reported by Thai and Choi (2012), Akavci
(2014), Mantari et al. (2014a), Mantari et al. (2014b), and Alazwari and Zenkour (2022).
For this case, the assumed properties and parameters are as follows: Em = 70 GPa,
ρm = 2702 kg/m3, Ec = 380 GPa, ρc = 3800 kg/m3, ν = 0.3, K̄w = Kwa4

Dm
, K̄s = Ksa

4

Dm
,

Dm = Emh3

12(1−ν2)
, ω̄ = ωa2

h

√
ρm/Em. The obtained results are compared in Table 1. As we

can see, by increment of side-to-thickness ratio and aspect ratio the frequencies increase.
Also, by adding the elastic foundation frequencies enlarge, whereas by increment of power
index frequencies decrease. Moreover, it is revealed that the aspect ratios have more impacts
on frequencies than the side-to-thickness ratios.

The next example studies the nondimensional natural frequencies ω′ = a2/h(ρ/E2)
1/2

and modal loss factors of laminated viscoelastic composite plates with [0]8T layers, and
material properties are (Koo and Lee 1993): ρ = 1566 kg/m3, Vf = 0.516, h = 1.58 mm,
a = b = 200 mm, ν12 = 0.3, E1 = 172.7(1 + 0.0007162i), E2 = 7.2(1 + 0.0067816i),
G12 = G23 = 3.76(1 + 0.01122i). The results are collated in Fig. 3, and a reliable corre-
lation is observed between the present result and those obtained via Mindlin plate theory. It
should be mentioned that the present study represents lower natural frequencies and higher
loss factors than Mindlin theory due to greater flexibility of SNDT than Mindlin theory.
Also, the presented results have no significant differences because the considered compos-
ite plates are very thin. After verification in elastic and viscoelastic domains, the effects of
parameters on vibrational characteristics could be evaluated via a set of parametric study.

5.2 Parametric studies

In this part, we study the effects of parameters of aspect ratio (b/a), thickness ratio (a/h),
power index, and foundation coefficients via numerical examples.

First, the fundamental frequencies and loss factors versus aspect ratio of FGV foam plates
with different power indices are depicted in Fig. 4.

As we can see, both frequencies and loss factors decrease as the aspect ratio increases.
Also, long rectangular narrow foam plates have lower values of stiffness and damping ca-
pability. However, the maximum and minimum reductions of frequencies are 49.07% and
40.46%, which refer to plates with p = 1, 5, respectively. In other words, plates with linear
distribution of porosity are more sensitive to the aspect ratios. The counterpart values of
loss factors are 48% and 38% for p = 0, 5, respectively. In other words, the loss factors of
homogenous plates are the most affected by the aspect ratio. Moreover, foam plates with
long aspect ratios have lower damping capability.

Second, the effects of thickness ratio on natural frequencies and loss factors are pre-
sented in Fig. 5. By increment of thickness ratio fundamental frequencies increase; in other
words, frequencies of thin plates are larger than those of thick plates. However, thin plates
have lower loss factor or damping capability than that of thick plates. Among considered
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Table 1 A comparison of the frequency parameters ω̄ of Al/Al2O3 plates on elastic foundation

p = 0 p = 1

K̄w , K̄p a/b a/h Refa Refb Present Refa Refb Refc Refd Refe Present

0, 0 0.5 5 6.7610 6.7771 6.9836 5.2016 5.2122 5.2875 5.2018 5.28772 5.1830

10 7.1746 7.1794 7.0314 5.4887 5.4918 5.5728 5.4887 5.57286 5.3537

20 7.2936 7.2948 8.1472 5.5704 5.5712 5.6538 5.5704 5.65379 6.2253

1 5 10.3761 10.4133 10.8207 8.0122 8.0368 8.1509 8.0127 8.15131 8.3102

10 11.3351 11.3468 11.4775 8.6824 8.6899 8.8178 8.6825 8.81788 8.8546

20 11.6307 11.6338 11.6550 8.8859 8.8879 9.0196 8.8859 9.01959 9.0071

2 5 22.7045 22.8734 27.0728 17.7148 17.8289 18.0607 17.7181 18.0627 20.5980

10 27.0439 27.1085 27.9347 20.8063 20.8487 21.1501 20.8071 21.15090 20.7321

20 28.6985 28.7174 28.1257 21.9548 21.9670 22.2914 21.9550 22.29144 21.4151

0, 102 0.5 5 11.1150 11.1237 11.3349 10.8450 10.8489 10.7649 10.8451 10.76493 10.9442

10 11.4474 11.4503 11.3584 11.0926 11.0940 11.1042 11.0926 11.10417 11.0351

20 11.5467 11.5474 12.1065 11.1656 11.1660 11.1999 11.1656 11.19984 11.5070

1 5 15.1867 15.2095 15.8031 14.3818 14.3923 14.2406 14.3820 14.24088 14.8660

10 15.9732 15.9813 16.1998 14.9401 14.9443 14.9631 14.9402 14.96319 15.0556

20 16.2263 16.2285 17.3901 15.1177 15.1189 15.1825 15.1177 15.18244 15.8550

2 5 28.5409 28.6623 33.2002 25.6294 25.6912 25.2563 25.6312 25.25781 28.3028

10 32.2917 32.3444 33.2264 28.2023 28.2316 28.2878 28.2028 28.28833 28.7568

20 33.7917 33.8076 33.2709 29.2181 29.2272 29.4271 29.2182 29.42715 28.8632

102, 0 0.5 5 7.2126 7.2276 7.4363 5.8654 5.8746 5.9257 5.8655 5.92588 5.8638

10 7.6108 7.6153 7.4727 6.1366 6.1393 6.2077 6.1366 6.20770 6.0217

20 7.7260 7.7272 8.5368 6.2144 6.2152 6.2883 6.2145 6.28824 6.8078

1 5 10.6723 10.7082 11.1306 8.4517 8.4748 8.5671 8.4522 8.56752 8.7704

10 11.6147 11.6261 11.3258 9.1035 9.1107 9.2282 9.1036 9.22829 9.2689

20 11.9062 11.99093 11.9268 9.3025 9.3044 9.4292 9.3025 9.42918 10.3375

2 5 22.8378 23.0053 27.2205 17.9108 18.0231 18.2385 17.9141 18.24050 20.8162

10 27.1603 27.2246 28.0514 20.9821 21.0241 21.3187 20.9829 21.31945 21.5919

20 28.8106 28.8295 28.2393 22.1257 22.1378 22.4585 22.1258 22.45857 21.6414

102, 102 0.5 5 11.3952 11.4036 11.6144 11.1780 11.1817 11.0894 11.1781 11.08946 11.2836

10 11.7257 11.7285 11.6400 11.4270 11.4284 11.4358 11.4270 11.43582 11.3696

20 11.8246 11.8253 12.3720 11.5005 11.5008 11.5331 11.5005 11.53311 11.8322

1 5 15.3904 15.4127 15.9569 14.6305 14.6407 14.4792 14.6307 14.47947 15.1176

10 16.1728 16.1808 16.0117 15.1887 15.1927 15.2084 15.1887 15.20848 15.3031

20 16.4249 16.4271 16.3966 15.3663 15.3674 15.4293 15.3663 15.42927 16.0924

2 5 28.6467 28.7674 33.2982 25.7640 25.8251 25.3782 25.7657 25.37974 28.4354

10 32.3893 32.4417 33.3332 28.3322 28.3613 28.4137 28.3327 28.41429 28.8874

20 33.8869 33.9029 33.3670 29.3467 29.3557 29.5539 29.3469 29.55394 28.9941

a Thai and Choi (2012); b Akavci (2014); c Mantari et al. (2014a); d Mantari et al. (2014b); e Alazwari and
Zenkour (2022).
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Fig. 3 A comparison of fundamental frequencies and loss factors of laminated composite plates versus side-
to-thickness ratio

Fig. 4 Vibrational characteristics of plates with different aspect ratios and power indices

Fig. 5 Vibrational characteristics of plates with different side-to-thickness ratios and power indices

plates, the plates with linear and parabolic distributions of porosities have the maximum
fundamental vibrational characteristics. On the contrary, foam plates with drastic variations
of properties or higher values of power index have lower natural frequencies and damping
capability.

Third, the impacts of power index and material models are investigated by Fig. 6. As
depicted, both models have the maximum frequencies at p = 2, whereas the material model
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Fig. 6 Vibrational characteristics of plates with different power index and model

has no significant effects on natural frequencies. On the contrary, the material model has
remarkable effects on loss factors. Indeed, the Kelvin–Voigt model predicts higher loss fac-
tor than the standard solid model. Also, the maximum loss factor of Kelvin–Voigt refers to
p = 1, and the maximum loss factor of standard solid refers to p = 2. In other words, the
material model is the key factor for damping analysis, regardless the functions of porosity
distribution.

Fourth, the effects of foundation are considered in Fig. 7 for plates in three cases. For
the first case, Kw = 0,102,103,5000, Kp = Kd = 0, for the second case, Kw = 103, Kp =
0,50,102,250, Kd = 0, for the last case, Kw = 103, Kp = 102, Kd = 0,10−3,5×10−3,10−2

are assumed. As we can observe, the fundamental frequencies increase as the thickness
ratio increases. However, based on the assumed values of foundation stiffness, the Pasternak
coefficients lead to remarkable distinction of frequencies, whereas the Winkler coefficients
have lower impacts.

In addition, these values of damping coefficients result in no remarkable change of fre-
quencies. For the loss factor, some interesting remarks are observed. Although it is men-
tioned that thin plates without foundation have lower damping capability, this remark is
reliable to some extent for plates on viscoelastic foundation. Indeed, this behavior is true for
elastic foundations, whereas, as both thickness ratio and viscoelastic coefficients promote,
thin plates show an incremental approach of loss factors. The main reason refers to the fact
that external damping outweighs material damping. So the loss factors reach their minimum
points and then follow an incremental approach. It is worth mentioning that the minimum
points refer to a/h = 10,12,20, and 40 for Kd = 10−2,5 × 10−3,10−3, and 0, respectively.

Fifth, the behaviors of higher-mode of vibrations are studied in Fig. 8. For this case,
Kw = 103, Kp = 102, and Kd = 10−3 are assumed. For this example, the minimum
value of loss factors of (1,1). (1,2), (2,2), (1,3), and (2,3) modes refer to a/h =
18,28,40,44, and 50, respectively. From damping capability point of view, fundamental
modes are the most important modes due to remarkable variations of loss factors. In addi-
tion, it is clear that higher modes of plates on viscoelastic foundation are less sensitive to the
thickness ratio variation. Besides, fundamental modes display thoroughly obvious behavior
in comparison with higher mode of vibrations. Moreover, the curves of loss factors pass each
other, which is known as the crossing phenomenon (Leissa 1974; Perkins and Mote 1986).
Therefore here the crossing phenomenon of FGV foam plates on viscoelastic foundation is
reported for the first time.
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Fig. 7 Vibrational characteristics versus side-to-thickness ratio of plates on the viscoelastic foundation

Fig. 8 The higher modes of plates on the viscoelastic foundations
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6 Conclusions

The free vibration behavior of FGV open-cell foam plate on viscoelastic foundations is
studied based on thickness-stretching effect. Boltzmann superposition principle, separable
kernel framework, and simple power law are used to derive constitutive relations, and the
Hamilton principle is implemented to obtain integro-PDEs of motion. The Galerkin method
and the iterative numerical algorithm are applied to derive complex frequencies. For com-
parison, elastic FG plates on Pasternak foundation and laminated viscoelastic composite
plates are studied. Based on new results, some conclusions are derived:

• Long rectangular narrow foam plates have smaller frequencies and loss factors than wide
plates.

• Aspect ratios are the most effective on plates with linear distribution of porosity and on
loss factors of homogenous plates.

• FGV plates with linear and parabolic distributions of porosities have the maximum fun-
damental frequencies and loss factors.

• Regardless of the porosity distribution, the material model is the key factor for damping
analysis.

• Based on the values, Pasternak, Winkler, and damping coefficients are the most remark-
able factor on frequencies.

• Loss factors of thin plates display an incremental approach as both thickness ratio and
viscoelastic coefficients increase due to outweighing external damping over structural
damping.

• The crossing phenomenon of FGV foam plates on viscoelastic foundation is observed.
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