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Abstract
This study aims to describe a toughened adhesive’s ratcheting–recovery behavior under re-
versed cyclic load using a viscoelastic–viscoplastic model. As most adhesives are based
on synthetic polymers, their tensile and compression response can be different. A series
of load–Sunload tests were conducted on bulk adhesives and bonded joints involving ten-
sion/compression–shear loads to characterize the initial yield surface. The effect of hydro-
static stress was studied by considering the instantaneous response and yield strength under
tensile and compression loads. Given the observed modulus degradation and extensive per-
manent strain during reversed cyclic tests, time-dependent damage factors were considered
for both viscoelastic and viscoplastic responses. The model was implemented in a finite el-
ement (FE) code and used to model the shear response to reversed cyclic load with varying
frequency. Good agreement between the model and experiment was obtained. The consider-
ation of both hydrostatic stress and damage was required to describe the observed adhesive
reversed cyclic response.
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1 Introduction

Adhesive bonding is popular in the aerospace industry due to its high strength to weight
ratio, good resistance of fatigue and corrosion, reduced stress concentration, and flexibility
in bonding different materials and honeycomb structures (Wahab 2015). With the increas-
ing use of adhesives in bonding critical aircraft parts, accurate evaluation and prediction of
adhesives’ mechanical behaviors play an important role in the design and manufacturing of
adhesively bonded joints.

Due to the nature of polymers, adhesives often have complex nonlinear behaviors such
as viscoelasticity, plasticity, or viscoplasticity. Some adhesives behave differently in tension
and compression because of the influence of hydrostatic stress on the nonlinear behaviors.
Several experimental investigations involving multiaxial stress states, such as Arcan joints
(Bidaud et al. 2016; Suwanpakpraek et al. 2020), lap shear joints (Srinivasan et al. 2020;
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Zgoul and Crocombe 2004), scarf joints (Afendi et al. 2011; Carrere et al. 2015), and tubu-
lar butt joints (Arnaud et al. 2014; Cognard et al. 2012), have shown that the yield and failure
of adhesives were influenced by hydrostatic stress. Accordingly, yield criteria involving hy-
drostatic stress, such as Drucker–Prager (Ignjatovic et al. 1998; Morin et al. 2011), exponent
Drucker–Prager (Dean et al. 2004; García et al. 2011; Srinivasan et al. 2020), and Drucker–
Prager/Cap yield criteria (Ignjatovic et al. 1998; Wang and Chalkley 2000), were employed
for modeling adhesives’ mechanical behaviors under multiaxial loads. In addition, some
have observed that the nonlinear viscoelastic behavior of polymers is not only governed by
shear but also affected by hydrostatic stress, which causes a different tensile and compres-
sion response (Buckley and Green 1976; Buckley and McCrum 1974). Popelar and Liechti
(1997) proposed a modified free volume approach that included both dilatational and distor-
tional effects on the temporal behavior for enhanced viscoelasticity in tension and reduced
viscoelasticity in compression. Lai and Bakker (1996) accommodated the hydrostatic effect
using viscoelastic nonlinear parameters in the Schapery model.

Adhesives are commonly used in load-bearing structures, such as wing assemblies, that
are tested and deployed under fully reversed cyclic load. However, there are few published
studies of adhesives under reversed cyclic load. Xia et al. (Shen et al. 2004) studied the
stress–strain response of an epoxy polymer subjected to fully reversed load with different
stress amplitudes. The ratcheting behavior and nonlinearity were more evident in tension
than compression, which was explained by anisotropic behavior in tension and compres-
sion. They also proposed a rheological viscoelastic model with the capability of changing
stiffness between loading and unloading (Xia et al. 2005). The model was able to describe
the stress–strain hysteresis and ratcheting of the polymer under reversed cyclic load, but
it could not predict residual strain. Krause and Smith (Krause and Smith 2021) conducted
cyclic tests on adhesives in scarf joints and observed that the adhesive exhibited higher
ratcheting deformation under reversed cyclic load than tension–tension cyclic load. The en-
hanced ratcheting during the reversed loading was attributed to kinematic hardening. Eslami
et al. (2020) analyzed the load-displacement behavior and energy dissipation of a flexible
adhesive by a series of monotonic and reversed cyclic tests on double-lap joints. At low and
medium load rates, more damage was accumulated under cyclic load than monotonic load.
Softening was also observed during cyclic loading.

In the present work, a toughened adhesive subjected to reversed cyclic load is experimen-
tally and theoretically considered. The effects of hydrostatic stress on yielding and instan-
taneous elastic response were considered while modulus degradation and permanent strain
were reflected by damage factors. The model was implemented into a finite element code
and compared with scarf joints subjected to reversed cyclic load with varying frequencies.
Good agreement with experiment was obtained. The contribution of hydrostatic stress and
damage is discussed.

2 Yielding of a toughened adhesive

2.1 Experiment

The yield stress from monotonic tests is commonly found from a strain offset or the inter-
section of the initial and final slope of a strain–stress curve. However, adhesives often yield
without a significant change in the elastic or plastic response because the temporal effect is
mixed with plasticity. Therefore, in this work the yield stress was determined from strain re-
covery, where yielding starts at the onset of residual strain (after long recovery) from varying
stress levels.
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Fig. 1 Test setup for (a) bulk coupon, (b) Arcan joint, and (c) scarf joint

This study considered the response of a toughened (Hysol EA9696) film adhesive, which
was cured at 120 °C. To investigate the effect of hydrostatic stress on yielding, monotonic
tests with stress control were conducted on bulk coupons, Arcan, and scarf joints involving
tension, compression, and shear conditions, as shown in Fig. 1.

The adhesive bulk samples were laminated from eight layers of adhesive film and cured
to a thickness of 1.6 mm. Bulk coupons measuring 12×12 mm2 were loaded in compression
in a servo-hydraulic load frame between two lubricated parallel plates to minimize lateral
constraint as shown in Fig. 1a. The coupons were loaded at 150 N/s and unloaded at 300
N/s to shorten the experiment since the unloading rate does not affect the residual strain.
After the load was removed, the coupon was allowed to recover for 80,000 s or at least 200
times the loading duration where the residual strain was steady. The thickness change of
each coupon was measured by a digital caliper to obtain permanent deformation.

Arcan joints bonded with the toughened adhesive film measuring 76 × 6 mm2 were
loaded at −45 degrees to provide a combined compression and shear stress state (Fig. 1b),
while scarf joints with a scarf angle of 10 degrees over a cross section of 25 × 6 mm2 were
loaded under tension and compression to find shear properties (Fig. 1c). The adherends were
made from 2024 T3 aluminum plates that were phosphoric acid anodized and primed before
bonding. The adhesive of bonded joints was 0.2 mm thick. Load was applied to the scarf and
Arcan joints along the y-axis at 148 N/s and then removed to allow recovery. The adhesive
shear strain (S12) was measured using stacked rosette strain gages (Micro-Measurements
062 WW) positioned at the center of the bond line. This method of adhesive strain mea-
surement has been compared with the digital image correlation and extensometry, showing
good reliability and accuracy in measuring the shear response of adhesives in bonded joints
(Krause and Smith 2021).

2.2 Yield stress

Figure 2 shows the residual strain as a function of applied stress for different specimens,
where the applied stress is the average stress over the bonding area. For the bulk coupons
(Fig. 2a), the trend of residual strain indicated the yield stress in uniaxial compression at ap-
proximately 55.1 MPa. The two results of small positive residual were due to measurement
error. Observing from Fig. 2b, the scarf joint’s yield shear stress in tension, 15.8 MPa, was
significantly lower than in compression, which was 24.1 MPa. For the Arcan joint, the shear
yield stress under compression was approaching 14.2 MPa.
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Fig. 2 Residual strains as functions of applied stress in tension (Ten) and compression (Com) for the adhesive
in (a) bulk and (b) bonded joints

Table 1 Relation between the
normal and shear stress
components for three different
bonded joints

S11/S12 S22/S12 S33/S12

Scarf – Tension 0.16 0.31 0.14

Scarf – Compression 0.15 0.27 0.13

Arcan – −45° 0.98 0.63 0.58

Fig. 3 Von Mises (σe) and
hydrostatic (σh) components of
the yield strength of each coupon
type. The dashed and solid lines
represent the von Mises (vM) and
Drucker–Prager yield criterion
(D-P), respectively

The Arcan and scarf joint tests were under biaxial stress, which allowed yielding to in-
clude the effect of hydrostatic stress. A three-dimensional elastic FE model was employed
to compare the normal and shear stress components. Table 1 shows the ratio of the normal
stress (S11) and lateral stresses (S22 and S33) to the shear stress (S12), taken at the center
of each joint. As expected, the shear stress was the dominant component in the scarf joint
tests. The Arcan joint loaded at −45 degrees provided the ratio S11/S12 close to unity. Con-
sequently, larger adhesive lateral stresses, due to Poisson’s effect, were present in the Arcan
coupons.

Using the measured average yield stress, S12, and the ratios from Table 1, estimates of the
normal stress components at yield were found and used to obtain the von Mises stress (σe)
and the hydrostatic stress (σh) as shown in Fig. 3. Contrary to that found elsewhere (Mo-
hapatra 2018), the yield stress was sensitive to the hydrostatic stress. Accordingly, pressure
sensitive yield criteria were considered.

While the bulk and scarf coupons (Fig. 4b) have a nearly constant stress over their bonded
regions, the Arcan joints (Fig. 4a) have a parabolic shear stress distribution and a normal
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Fig. 4 Stress distribution along the bond line of an (a) Arcan joint at −45 degrees and (b) scarf joint with the
average shear stress of 50% USS

stress that peaked at the bondline edge (Chen and Smith 2021b) (Cognard et al. 2008).
Accordingly, the Arcan hydrostatic and von Mises stresses in Fig. 3 (based on the average
yield stress) are lower than the corresponding bulk and scarf coupons. Thus, all the results
in Fig. 3 are consistent with an adhesive yield strength that is dependent on the hydrostatic
stress.

Due to the linear relation between the von Mises stress and hydrostatic stress (Fig. 3),
the Drucker–Prager yield criterion (Drucker and Prager 1952) was considered. It is modified
from the von Mises criterion to include hydrostatic stress sensitivity and is widely used for
polymeric materials (Quinson et al. 1997; Wang and Rose 1997) and can be written as

f = AI1 + √
J2 − B = 3Aσh + σe√

3
− B, (1)

where I1 is the first stress invariant, A and B are defined as positive material constants, and
J2 is the second invariant of deviatoric stress. Fitting Eq. 1 to the yield stress of the bulk
and bonded joints, a good agreement between the model (D-P) and experiment is shown in
Fig. 3, where A = 0.245 and B = 19 MPa.

The toughened adhesive exhibited both viscoelastic and viscoplastic behaviors, where
an overstress-based viscoplastic model (Perzyna) described the growth of permanent strain
under creep and cyclic loads (Chen and Smith 2021a). Moreover, nonlinear kinematic
hardening was observed for the adhesive (Mohapatra and Smith 2021). Therefore, the
Drucker–Prager criterion combined with nonlinear kinematic hardening was employed for
a viscoelastic–viscoplastic model in the following study.

3 Viscoelastic–viscoplastic model

3.1 Constitutive model

The total strain was decomposed into viscoelastic and viscoplastic components with the
assumption that they are uncoupled,

εtot
ij = εve

ij + ε
vp

ij , (2)

where the superscripts tot, ve, and vp denote total, viscoelastic, and viscoplastic parts, re-
spectively.
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3.1.1 Viscoelastic component

The modified Schapery model (Lai and Bakker 1996) consisting of the hydrostatic and de-
viatoric parts was employed to describe the nonlinear viscoelastic component, which is pre-
sented as

ε
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ij =e
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ij + 1
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where δij is Kronecker delta. e
ve,t
ij , ε

ve,t
kk , and St

ij are the deviatoric strain, volumetric strain,
and deviatoric stress at the current time t , respectively. And ψ t is the effective time given by

ψt = t

a
, (4)

where a, g0, g1, and g2 are nonlinear viscoelastic parameters and assumed to be a function
of the von Mises equivalent stress σe or

gi = βi1 (σe)
βi2 + βi3(i = 1,2), (5)

a = βa1 (σe)
βa2 + βa3, (6)

where βij (i = 1,2, a; j = 1,2,3) are constants.
The effect of hydrostatic stress on the viscoelastic response can be different in tension and

compression. In the Schapery model, the hydrostatic effect may be reflected in the elastic
response by g0 (Haj-Ali and Muliana 2004; Lai and Bakker 1996). In this work, to encour-
age convergence and accommodate complex boundary conditions, g0 was expressed as a
function of σe considering both tension and compression as

g0 = β
j
1 (σe)

β
j
2 + β

j
3, (7)

where βi (i = 1,2,3) are material constants, and the superscript j indicates tension (+) or
compression (−).

In Eq. 3, J0 and B0 are instantaneous elastic shear and bulk compliances, respectively.
Similarly, �J and �B are transient shear and bulk compliances, respectively. The integrals
in Eq. 3 present time-dependent response. The shear and bulk compliances, in turn, can be
presented by uniaxial compliances

J0 = 2 (1 + υ)D0 (8)

B0 = 3 (1 − 2υ)D0 (9)

�Jψt = 2 (1 + υ)�Dψt

(10)

�Bψt = 3 (1 − 2υ)�Dψt

, (11)

where ν is the Poisson’s ratio, D0 is the uniaxial elastic compliance, and the uniaxial tran-
sient compliance �Dψt was presented as a five-term Prony-series

�Dψt =
5∑

n=1

Dn

(
1 − exp

(−λnψ
t
))

, (12)
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where Dn and λn are material coefficients.
Some have expanded the Schapery model for anisotropic response by introducing com-

pliance tensors �D
ψt

ij and Doij (Poon and Ahmad 1999) or Qij (Rand and Sterling 2006).
This work used an isotropic model as observed experimentally (Lemme 2016) and since the
scarf joint test specimens are dominated by uniaxial shear.

When polymers and adhesives are subjected to cyclic loads, damage can cause modulus
degradation (Drozdov 2011; Khashaba 2020). According to the postulate of strain equiva-
lence by Lemaitre (Lemaitre 1984), the effective modulus can be described by a damage
variable D,

ED = E0 (1 − D) , (13)

where E0 is the original modulus.
Therefore, the Schapery model (Eq. 3) was modified by incorporating a time-dependent

damage variable to describe cyclic modulus reduction. Since the time-dependent strain is
much smaller than the instantaneous elastic strain, damage was only applied to the elastic
response as
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where the damage variable Dve is defined by

Dve =
3∑

i=1

ait
i , (15)

where ai are constants. It should be noted that the damage variable is not related to physical
considerations and is phenomenological for simplicity as done elsewhere (Carraro et al.
2013; Da Costa Mattos et al. 2012; Shenoy et al. 2010).

3.1.2 Viscoplastic component

The viscoplastic strain rate was described by Perzyna’s model (Perzyna 1966) with the as-
sociated flow rule

ε̇
vp,t

ij = η 〈φ (f )〉 ∂f

∂σ t
ij

, (16)

where η is a viscosity parameter and �(f ) is the overstress function expressed with the
yield function f . 〈·〉 is the McCauley bracket such that

〈φ (f )〉 =
{

0, φ (f ) ≤ 0
(

f

σ 0
y

)N

, φ (f ) > 0
, (17)

where σ 0
y is the initial yield stress and N is a rate sensitive constant.

The Drucker–Prager yield criterion with nonlinear kinematic hardening was employed
for the yield function (Rakic and Zivkovic 2015). The slope of each stress—strain hysteresis
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loop corresponds to fatigue damage (Foletti et al. 2020), which affects the viscoplastic yield
stress. The yield function f was written as

f = AI1 + √
J2D − (1 − Dvp)B = AI1 +

√
1

2

(
Sij − αij

) (
Sij − αij

) − (1 − Dvp)B, (18)

where J 2D is the second deviatoric invariant with kinematic hardening and αij is the back-
stress tensor describing the center of the yield surface in the deviatoric stress plane. The
evolution of the backstress was defined by Armstrong–Fredrick hardening (Frederick and
Armstrong 2007)

α̇ij = 2

3
cε̇

vp

ij − καij ε̇
vp
e , (19)

where C and K are material parameters and ε̇
vp
e is the rate of the effective viscoplastic strain,

or

ε̇vp
e =

√
2

3
ε̇

vp

ij ε̇
vp

ij . (20)

The damage factor Dvp is often presented as a function of plastic strain. Since this study
only considered fixed frequencies of reversed loading, Dvp was described as a function of
time as

Dvp = t

tD
, (21)

where tD is a reference time.

3.2 Numerical implementation

The viscoelastic–viscoplastic model was implemented into the finite element software
ABAQUS 2016 via a user material subroutine (UMAT). Figure 5 shows the iterative al-
gorithm to solve for the viscoelastic–viscoplastic system with a stress correction for each
iteration. Considering a time increment from the previous (t-�t) to the current time (t), the
strain history from Eq. 2 and the current stress can be discretized as

ε
tot,t
ij = ε

ve,t−�t
ij + ε

vp,t−�t

ij + �ε
ve,t
ij + �ε

vp,t

ij (22)

σ t
ij = σ t−�t

ij + �σ t
ij . (23)

At the beginning of each time increment, the material was assumed to exhibit only viscoelas-
ticity. The viscoelastic (VE) implementation and system scheme can be found elsewhere
(Chen and Smith 2021a). The viscoplastic calculation was activated once the yield func-
tion f was larger than zero. Considering the interaction between f and �ε

vp,t

ij , Newton’s
iteration was employed to calculate the strain iteratively, as shown in the dashed square in
Fig. 5.

A backward Euler method allowed the viscoplastic strain from Eq. 16 to be defined in
the incremental form as follows:

�ε
vp,t

ij = �tη

(
f

σ 0
y

)N

∂f

∂σ t
ij

= γ
∂f

∂σ t
ij

, (24)
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where γ is initialized as a constant at the beginning of the iteration. Consequently, the yield
function can be expressed as a function of γ such as

f = σ 0
y

(
γ

�tη

) 1
N

. (25)

The derivative of f with respect to σ t
ij can be obtained by Eq. 18:

∂f

∂σ t
ij

= ∂f

∂I1

∂I1

∂σ t
ij

+ ∂f

∂J2D

∂J2D

∂σ t
ij

= Aδij + St
ij − αt

ij

2
√

J2D

. (26)

Consequently, the viscoplastic strain increment is obtained by combining Eq. 24 and 26:
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ij = γAδij + γ

2
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J2D

(
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)
. (27)

The effective strain increment �ε
vp,t
e can be defined by Eq. 20 as
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The current backstress is αt
ij = αt−�t

ij at the first iteration and was corrected in the following
iterations by

αt
ij = αt−�t

ij + �αt
ij . (29)

Combining Eqs. 19, 27, and 28, the backstress increment was updated by
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2
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The yield function f can be updated by substituting Eqs. 29 and 30 into Eq. 18:

f = AI1 +
√

1

2

(
St

ij − αt−�t
ij + �αt
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St
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Employing the Newton iteration method, a dynamic difference of the yield function between
Eqs. 25 and 31 is required and defined as
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√
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To minimize ξ , γ is modified iteratively by

γ = γ − ξ
∂ξ

∂γ

. (33)
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The derivative of ξ with respect to γ is derived from Eq. 32:
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The iteration was assumed to converge when ξ < 10−6. The material’s Jacobian matrix was
required for each time increment in the UMAT. The Jacobian matrix for the viscoelastic–
viscoplastic model is

∂�εt
ij

∂σ t
kl

= ∂�ε
ve,t
ij

∂σ t
kl

+ ∂�ε
vp,t

ij

∂σ t
kl

. (35)

The derivative of the viscoplastic strain increment with respect to the current stress is derived
from Eq. 19 ignoring the high order derivative, which is written as

∂�ε
vp,t

ij

∂σ t
kl

= �tηN

f

(
f

σ 0
y

)N

∂f

∂σ t
ij

∂f

∂σ t
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. (36)

A plane strain assumption has shown good agreement with the three-dimensional model
(Chen and Smith 2021a). Given the reduced computational cost, the viscoelastic–visco-
plastic model was simplified to the plane strain condition by

ε13 = ε23 = ε33 = σ13 = σ23 = 0 (37)

σ33 = υ(σ11 + σ22) (38)

3.3 Finite element model

The model was calibrated and validated from the scarf joint experiments. The mesh and
boundary conditions of the scarf joints were created with the preprocessor in ABAQUS
2016, as shown in Fig. 6 (Chen and Smith 2021b). Four-node bilinear, reduced integration
with hourglass control plane strain elements (CPE4R) was used for most of the scarf joint,
while three-node linear plane strain elements (CPE3) were used for the wedge shapes near
the bondline edge of the scarf joint. Four layers of elements were generated through the
adhesive thickness. Both ends of the scarf joint were supported and a pressure load was
applied on the free end surface. The adherends were modeled as linear elastic with a modulus
of 73 GPa and Poisson’s ratio of 0.33.

A convergence was conducted to identify an optimal mesh refinement. Figure 7 shows
the normalized shear strain and von Mises stress as a function of element length along the
bondline. The stress and strain were nearly unchanged when the element length was less
than 0.7 mm. In the following, an element length of 0.5 mm was employed.
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Fig. 5 Flowchart of the viscoelastic–viscoplastic system

Fig. 6 Mesh and boundary conditions for the scarf joint

3.4 Parameter calibration

3.4.1 Viscoelastic parameters

The parameters in the viscoelastic component of the model, including the Prony series and
viscoelastic nonlinear parameters, were determined from a series of creep tests of scarf joints
with varying stress levels and load durations. The details can be found elsewhere (Chen and
Smith 2021a, 2021b). The Prony series parameters (Eqs. 8–12) are presented in Table 2.

To investigate g0 in compression, monotonic shear tests were conducted at rates of R

and 2R on the scarf joints to various stress levels (where R = 22.2 kN/min). Since the yield
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Fig. 7 Mesh convergence for the
scarf joint

Table 2 The Prony series
parameters

Prony series

D1 [1/Mpa] 1.74×10−5 λ1 [1/s] 1×10−2

D2 [1/Mpa] 2.32×10−5 λ2 [1/s] 1×10−3

D3 [1/Mpa] 1.02×10−5 λ3 [1/s] 5×10−4

D4 [1/Mpa] 1.45×10−5 λ4 [1/s] 1×10−4

D5 [1/Mpa] 2.9×10−5 λ5 [1/s] 1×10−5

J0 [1/Mpa] 1.29×10−3 B0 [1/Mpa] 1.90×10−4

Fig. 8 The viscoelastic
parameter g0 fitting the scarf
experiment under varying shear
stress levels

strength was not rate-dependent, their elastic response (involving go) was similar. At a given
load, for instance, the time-dependent response at R will be double that of tests at 2R. Thus,
the difference in the strain response between tests at R and 2R is the time-dependent portion
of the response for tests done at 2R; and subtracting this time-dependent response from tests
done at 2R results in the elastic response. g0 was obtained as a function of applied stress
by fitting the experimental elastic response as shown in Fig. 8. g0 increased more in tension
than in compression, which indicates higher elastic response in tension than compression at
the same stress level. Table 3 shows the viscoelastic nonlinear parameters (Eqs. 5–7).

To describe modulus degradation during cyclic loading, the hysteresis loops of scarf
joints subjected to reversed cyclic load under stress control at 0.5 Hz were examined as
shown in Fig. 9a. The loop modulus EL, defined as the slope of the straight line between
the valley and peak of each loop, decreased as the cycle number increased (or in terms of
compliance, the damage function is 1/(1- Dve) in Eq. 14). As Fig. 9b shows, the normalized
loop compliance 1/EL (EL0/EL, EL0 is the loop modulus at the first cycle) was averaged
from three repeated tests (solid line) and fit to a polynomial (dashed line).
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Table 3 Viscoelastic nonlinear
parameters g0

β+
1 8.84×10−3 β+

2 0 β+
3 0.8733

β−
1 2.28×10−3 β−

2 0 β−
3 0.9667

g1 β11 3.99×10−4 β12 2.51 β13 0.8

g2 β21 1.40×10−2 β22 0 β23 0.8

a βa1 −1.86×10−2 Ba2 0 Ba3 1.2667

Fig. 9 Calibration of the damage factor Dve on a stress-controlled reversed cyclic test at 0.5 Hz: (a) evolution
of the hysteresis loops and decreasing loop modulus EL and (b) comparison between the experimental nor-
malized loop compliance and the fitted curve of the function of Dve. Error bars correspond to one standard
deviation

Fig. 10 Comparison between the
fitted and experimental
monotonic shear strain–stress
curves of the scarf joints for the
calibration of hardening
parameters

3.4.2 Viscoplastic parameters

The yield function f was calibrated from the yield stress from bulk and scarf joints, as
shown in Fig. 3. The viscoplastic parameter η and rate-sensitive constant N (which influence
viscoplastic deformation) were found from the residual strains of cyclic tensile tests of scarf
joints with varying frequency (Chen and Smith 2021b). Ignoring the damage effects, the
nonlinear kinematic hardening parameters (c and κ in Eq. 19) were fit to a monotonic tensile
test at 148 N/s as shown in Fig. 10. Since the scarf joints subjected to reversed cyclic load at
0.5 Hz broke at around 6200 cycles, tD is defined as 12400 s. Table 4 shows the parameters
for the viscoplastic model.
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Table 4 Parameters in the
viscoplastic model A B (MPa) c (MPa) κ η N tD

0.245 19 5144.8 110 0.07 2.4 12400

Fig. 11 Comparison of the (a) ratcheting and (b) recovery behaviors of the toughened adhesive in scarf joints
with the proposed model (Model) and model without Dve (Model_Dve) or Dvp (Model_Dvp). Error bars
correspond to one standard deviation

4 Result and discussion

4.1 Cyclic calibration at 0.5 Hz

The model was compared to scarf joints subjected to reversed cyclic load at 50% USS and
0.5 Hz as shown in Fig. 11. After 1000 cycles the load was removed and the specimens were
allowed to recover. The test was repeated three times, where the peak and valley strain for
each cycle and the residual strain after load removal were measured. The ratcheting strain
in tension was twice that observed in compression. The model (solid line) showed good
agreement with the experiment at 0.5 Hz in both the loading and recovery stages.

The model was compared without Dve or Dvp (viscoelastic and viscoplastic damage,
respectively). As indicated by the dotted line in Fig. 11a, the peak and valley strain increased
in parallel when viscoelastic damage (Dve) was removed. Their range was also smaller than
experiment, showing that modulus reduction is underestimated without Dve.

The dashed line in Fig. 11a removes only viscoplastic damage from the model. While
the range in the peak-valley strain is comparable to experiment, they are both lower than
experiment. This is a result of underestimating the permanent strain as evidenced in Fig. 11b.
Thus, both the viscoelastic and viscoplastic damage factors are necessary to describe the
ratcheting–recovery response of the adhesive subjected to reversed cyclic load.

4.2 Model validation at 3 Hz

The model described above was used to predict the response of scarf joints exposed to
reversed cyclic load at 3 Hz. Scarf joints were loaded for 1000 and 3000 cycles and then
allowed to recover. Each test was repeated three times. Figure 12 shows the comparison
between the experiment and the model. Similar to the result at 0.5 Hz, nonlinearity and
ratcheting were observed in tension and compression.

In prior work involving tensile cycling load, a model with a von Mises yield criterion
showed good agreement with experiment (Chen and Smith 2021b). To evaluate the influ-
ence of hydrostatic stress with reversed cyclic load, the Drucker–Prager yield criterion used
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Fig. 12 Comparison of ratcheting–recovery behavior between the model and experiment of the scarf joints
at 3 Hz with (a) 1000 and (b) 3000 cycles. Error bars correspond to one standard deviation

in this work was replaced with the von Mises yield criterion (noted vm in Fig. 12a). The
model with von Mises yielding could not describe the different tensile and compressive re-
sponse and did not account for the observed permanent deformation after load removal. The
departure from experiment was evident after the first cycle since removing the dependence
of g0 on the hydrostatic stress led to the same tensile and compressive strain at the first cycle.
Accounting for the effect of hydrostatic stress on the tensile, compressive response appears
to be necessary for this adhesive when exposed to fully reversed load.

At 3000 cycles (Fig. 12b), increased ratcheting and residual strain was observed with
increasing cycles. The model correctly described the ratcheting trend, while the predicted
peak and residual strains were 4.3% and 1.9% lower than experiment, respectively. Overall,
the model had favorable agreement with the experiment at 3 Hz.

5 Conclusion

This work studied the ratcheting–recovery behavior of a toughened adhesive subjected to
reversed cyclic load. Using the residual strains from a series of load–unload experiments,
a hydrostatic stress sensitive yield surface was characterized and described by a Drucker–
Prager yield criterion. The effect of hydrostatic stress on viscoelasticity was included in
the model and increased the adhesive’s nonlinear response. Damage was observed from
modulus degradation during cyclic loading and was accompanied with permanent strain,
which were described in the model using damage factors in the viscoelastic and viscoplastic
components. The model showed good agreement with reversed cyclic tests of scarf joints at
0.5 and 3 Hz where the nonlinearity of ratcheting and permanent strain arose from both the
effect of hydrostatic stress and damage.
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