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Abstract
A two-dimensional multi-phase lag model in the context of generalized thermoelasticity is
established for an isotropic half-space medium. A vector-matrix differential equation is ob-
tained from the governing equations using normal mode analysis. The eigenvalue approach
is applied to obtain the solutions. The temperature-dependent displacements, stresses, strains
are calculated numerically and represented graphically to show the accuracy of the solution
under mechanical and thermal loads.

Keywords Eigenvalue approach · Generalized thermoelasticity · Normal mode analysis and
vector-matrix differential equation

1 Introduction

The modified coupled stress-strain theory has become popular in Nano-systems to study
strain, displacement, vibration, buckling, bending, etc., in the engineering structures like
beams, plates and shells. The modified theory of coupled stress has been introduced by
Yang et al. (2002). The theory of generalized thermoelasticity was introduced to remove the
finiteness of the heat equation in the conventional classical thermoelasticity (CTE) theory.
The generalized thermoelasticity theory has become acceptable to the different engineering
fields as well as to the researcher as it is capable of avoiding the finiteness of heat propaga-
tion.
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In the history of generalized thermoelasticity, Lord and Shulman (1967) introduced a
one-relaxation time parameter in the conventional heat conduction equation to modify clas-
sical Fourier law (CFL), which is also known as the first generalization theory of ther-
moelasticity. In the second generalization theory, Green and Lindsay (1972) proposed tem-
perature rate dependent theory (TRDTE) by introducing two relaxation time parameters in
the coupled theory of thermoelasticity. In the third generalization, Hetnarski and Ignaczak
(1996) proposed the non-linear model introducing the concept of coupled thermoelasticity
with low temperature. Green and Naghdi (1991, 1992, 1993) proposed three thermoelastic
models known as Green-Naghdi type-I, type-II and type-III, respectively. Type-I is consid-
ered similar to the classical theory of thermoelasticity. Type-II model provides the idea of
non-dissipation of energy associated with zero production rate of entropy. Type-III Green-
Naghdi model is associated with type-I and type-II together with the study of energy dissipa-
tion and damped thermoelastic waves. Later on, Tzou (1995, 1999) and Chandrasekhariah
(1998) discussed the Dual Phase Lag (DPL) model to inspect the lagging behavior in the
thermoelastic medium. Again, Roy Choudhuri (2007) discussed the concept of the Three
Phase Lag Model [TPL], introducing three-time parameters in the conventional heat con-
duction equation. Ghosh et al. (2019), Ghosh and Lahiri (2020), Quintanilla and Racke
(2008) found the solutions of the heat equation in the theory of TPL heat conduction in
their recent research work. Also, Zenkour (2018) proposed a refined two-temperature multi-
phase-lag (RPL) model for a generalized thermoelastic medium consisting of both the heat
flux vector and the temperature gradient. In their work, Sardar et al. (2022) studied a three-
dimensional coupled thermoelasticity for an anisotropic half-space using multi-phase lag
gradients. Zenkour (2018) also studied the thermomechanical effects of microbeams using
refined multiphase-lag theory. In association, Alharbi et al. (2022) studied a multi-phase-lag
model to investigate the influence of variable thermal conductivity with initial stress on a
fibre-reinforced thermoelastic material in the magnetic field.

In our recent study, we investigated the effect of multi-phase lag variables on a two-
dimensional thermoelastic isotropic medium.

2 Formulation of the problem

In the orthogonal co-ordinate system XOY, we consider a two dimensional isotropic half-
space defined in the region W = {0 ≤ x < ∞,−∞ < y < ∞} (as in Fig. 1) subject to
traction free boundary x = 0. Also, y-axis is considered vertically downwards, and the xy-
plane is along the free surface of the half-space.

3 Basic equations

Equation of motion:
For a homogeneous isotropic half-space, as in Ghosh et al. (2017), Zenkour (2018) and

Eringen (1984), respectively, we consider the following governing equations.

(λ + μ)
∂e

∂x
+ μ∇2u − P

2

∂2u

∂y2
+ P

2

∂2v

∂x∂y
− γ

∂T

∂x
= ρ

[
∂2u

∂t2
− �2u

]
(1)

(λ + μ)
∂e

∂y
+ μ∇2v + P

2

∂2u

∂x∂y
− P

2

∂2v

∂x2
+ γ

∂T

∂y
= ρ

[
∂2v

∂t2
− �2v

]
(2)



Mechanics of Time-Dependent Materials (2024) 28:485–499 487

Fig. 1 Schematic diagram of the
problem

The stress-displacement relation:

τxx = (λ + 2μ + P )
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Heat conduction equation (In context of multi-phase Lag):

(
1 +

N∑
n=1

τn
θ

n!
∂n

∂tn

)(
K11

∂2T

∂x2
+ K22

∂2T

∂y2

)

=
[
R + τ0

∂

∂t
+

N∑
n=1

τn+1
q

(n + 1)!
∂n+1

∂tn+1

][
ρCE

∂2T

∂t2
+ (3λ + 2μ)α0T0

∂2

∂t2

(
∂u

∂x
+ ∂v

∂y

)]
(6)

where γ = (3λ + 2μ)αt , λ + 2μ = ρc1
2 and e = ∂u

∂x
+ ∂v

∂y

4 Nomenclature

Column 1 Column 2

u, v: Displacement Components e: Dilatation
T: Absolute thermodynamic temperature. t: Time variable
CE : Specific heat at constant strain λ, μ: Lame’s Constant
T0: Reference temperature τ : Relaxation Time
τq , τθ : Dual-phase-lag, τ0: thermal relaxation time ρ : Density of the material
K11, K22 : Thermal conductivity �: angular velocity in the domain W.
αt : Coefficient of linear thermal expansion P: Initial stress
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5 Method of solution

5.1 Formulation of a vector-matrix differential equation

For the solution of equations (1)–(6), the physical quantities can be decomposed into the
following form
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Introducing non-dimensional variables, we obtain from equations (1), (2) and (6) (omit-
ting primes for convenience),
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After introducing non-dimensional variables, the stress-displacement relations (equa-
tions (3)–(5)) reduce to (omitting primes for convenience),
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5.2 Normal mode analysis

To decompose the physical variables in terms of normal modes, as in Ghosh et al. (2018),
we consider the following normal mode analysis

(u, v, τxx, τyy, τxy, T )(x, y, t) = (u∗, v∗, τ ∗
xx, τ

∗
yy, τ

∗
xy, T

∗)(x)eωt+iay (14)

where ω is the angular frequency, a is the wave number along the x-axis, and i = √−1.
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Introducing normal mode analysis to equation 8, 9 and 10, we obtain (omitting asterisks
for convenience):
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Introducing normal mode analysis to equations (11)–(13), we obtain the stress compo-
nents as (omitting asterisks for convenience)
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du

dx
+ C42 iav − T (18)
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− T (19)

τxy = C51
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where Mij (i = 1,2,3 and j = 1,2, ..,6) and Cij (i = 1,2,3,4,5 and j = 1,2) are men-
tioned in the Appendix.

6 Solution of the vector-matrix differential equation

The equations (15)–(17) reduce to the compact form of vector-matrix differential equation
as follows

d

dx
(�v) = A�v (21)

where �v = (
u v T du

dx
dv
dx

dT
dx

)
, and A is given in the appendix.

For the solution of the vector-matrix differential equation (21), we apply the method of
eigenvalue approach as in Ghosh and Lahiri (2018). The characteristic equation of matrix A
is given by ∣∣A − λI

∣∣ = 0 (22)

The roots of the characteristic equation (21) are λ = λi (i = 1(1)6), and the corresponding
eigenvector X is given below

X = [δ1 δ2 δ3 λδ1 λδ2 λδ3 ]T (23)

where

δ1 = f11f23 − f13f22,

δ2 = f13f21 − f11f23,

δ3 = f11f22 − f12f21

(24)
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and fij (i, j = 1,2,3) are given in the Appendix.
The solution of the vector-matrix equation is given by

u = ∑3
i=1 Ai(δ1)λ=−λi

e−λix

v = ∑3
i=1 Ai(δ2)λ=−λi

e−λix

T = ∑3
i=1 Ai(δ3)λ=−λi

e−λix

(25)

Thus the stress components are as follows

τxx = ∑3
j=1 AjR1j (x),

τyy = ∑3
j=1 AjR2j (x),

τxy = ∑3
j=1 AjR3j (x),

(26)

where Rij i, j = 1,2,3 are given in the appendix, and Aj , j = 1,2,3 are to be obtained
using the boundary conditions..

7 Boundary conditions

Due to the regularity condition of the solution at infinity, three terms containing exponen-
tials of growing in nature in the space variables x have been discarded, and the remaining
arbitrary constants Ai , (i = 1,2, . . .4) are to be determined from the following boundary
conditions.

7.1 Mechanical boundary

The boundary of the half-space x = 0 has no traction elsewhere, i.e.,

τxx(x, y, t) = σ0e
iωt at x = 0 and t = 0; (27)

7.2 The thermal boundary condition

T (x, y, t) = T0e
iωt at x = 0 and t = 0; (28)

∂T

∂x
+ hT (x, y, t) = 0 at x = 0 and t = 0; (29)

Applying the above boundary conditions in equations (25) and (26), we get the following
simultaneous equations:

A1S11 + A2S12 + A3S13 = z1

A1S41 + A2S42 + A3S43 = z2

A1S51 + A2S52 + A3S53 = 0
(30)

The arbitrary constants can be obtained by solving the above simultaneous equations where,
Ai = Di

D
, i = 1,2,3, D,Di : i = 1,2,3, Sij : i, j = 1,2,3 and zi : i = 1,2, which are given in

the Appendix.
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Fig. 2 Distribution of τxx vs. x for different t at y =0.7

8 Numerical analysis

Numerical analysis and computation have been done using the mechanical and thermal con-
ditions mentioned in equations (27)–(29) to study the characteristic behaviors of the physical
constants with respect to space variables in triclinic half-space. The numerical values (in SI
units) of constants are taken as in Eringen (1984), Zenkour (2018):

λ = 9.4 × 1010 N/m2, μ = 4.0 × 1010 kg/ms2, ρ = 1.7 × 103 kg/m3,

a = 2.0, b = 0.5, T0 = 293, K,αT = 7.4033 × 10−7 K−1, t = 0.3s, σ0 = 200.0,

K11 = 113 × 10−4 N/m2, K22 = 117 × 10−4 N/m2, CE = 1.4 × 103 J/(kgk),

γ = 210 × 104, � = 0.5, k = 348, � = 0.5, ET = 0.0016, ω = 2.0

9 Geometrical representation and analysis

The expressions for displacements, stress, and temperature are very complex, and we prefer
to develop an efficient computer program for numerical computations. We now depict some
graphs to illustrate the problem.

10 Concluding remarks

Figure 2, 3 and 4 depict the characteristic behavior of the different stress components τxx ,
τxy , and τyy , respectively, along the x-axis with respect to the space variable (x) in different
times (t=0.1, t=0.4, t=0.7). Also, Fig. 5, 6 and 7 represent the space variation of non-
dimensional displacement components (u and v) and temperature (T ) along the x-direction
for different times mentioned in the legend.
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Fig. 3 Distribution of τxy vs. x for different t at y =0.7

Fig. 4 Distribution of τyy vs. x for different t at y =0.7

Figure 8, 9, 10 and 11 are pointing out the three-dimensional variations of different
stress components τxx , τxy , τyy and temperature (T ), respectively, with respect to the space
variable(x and y) in a particular time span (t=0.3).

Also, Fig. 12, 13 are about the three-dimensional depiction of the two elementary dis-
placement components (u and v) w.r.t x and y for the fixed time (t=0.3).
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Fig. 5 Distribution of temperature (T) vs. x for different t at y =0.7

Fig. 6 Distribution of displacement component (u) vs. x for different t at y =0.7

11 Significance and applications

The Dual Phase Lag (DPL) model by Tzou, Chandrasekhariah and Three Phase Lag (TPL)
by Roy Choudhury have been extended here using the refined technics known as the multi-
phase lag model. In our work, the multi-phase lag concept is studied and verified success-
fully using the prominent mechanical and thermal boundary conditions associated with gov-
erning equations. The two- and three-dimensional variations of the different stress compo-
nents, strain components and temperature curves have been represented graphically.
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Fig. 7 Distribution of displacement component (v) vs. x for different t at y =0.7

Fig. 8 Normal stress component, τxx as a function of x and y at time t=0.3

The tabular data in Fig. 14 represents the compact variations of the numerical value of
different stress components, temperature and displacement components in the context of
different thermoelastic models compared to the multi-phase lag model. From the data table,
it is possible to differentiate the effect of different phase lag models and multi-phase lags on
different physical variables.

Appendix 1

M11 =aC12 + ω2 − �2, M12 = M13 = M14 = 0, M15 = −iaC11, M16 = 1,

M21 =M25 = M26 = 0, M22 = a2 + ω2 + �2

C21
, M23 = − ia

C21
, M24 = − iaC22

C21
,
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Fig. 9 Shearing tress, τxy as a function of x and y at time t=0.3

Fig. 10 Normal stress component, τyy as a function of x and y at time t=0.3

M31 =M35 = M36 = 0, M32 = ia
γ 2T0

ρ2C2
1CE

,
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Fig. 11 Representation of temperature ( T ) as a function of x and y at time t=0.3

Fig. 12 Displacement field (u) as a function of x and y at time t=0.3

M33 =a2 K22

K11
+

ω2

(
R + τ0ω + ∑N

n=1
τn+1
q

(n+1)!ω
n+1

)

K11
ρCEC2

1

(
1 + ∑N

n=1
τn
θ

n! ω
n

) ,



Mechanics of Time-Dependent Materials (2024) 28:485–499 497

Fig. 13 Displacement field (v) as a function of x and y at time t=0.3

Fig. 14 Data table
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L21 =
⎛
⎝M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎠ L22 =

⎛
⎝M14 M15 M16

M24 M25 M26

M34 M35 M36

⎞
⎠

f11 = M11 + λM14 − λ2 f21 = M21 + λM24 f31 = M31 + λM34

f12 = M12 + λM15 f22 = M22 + λM25 − λ2 f32 = M32 + λM35

f13 = M13 + λM16 f23 = M23 + λM26 f33 = M33 + λM36 − λ2

R1i (x) =[−C41λi(delta1)λ=λi
+ iaC42(δ2)λ=−λi

− (δ3)λ=λi
]e−λix, i = 1,2,3

R2i (x) =[iaC41(δ2)λ=−λi
− C42λ1(δ1)λ=−λi

− (δ3)λ=−λi
]e−λix, i = 1,2,3

R3i (x) =[−C51λi(δ2)λ=−λi
+ iaC52(δ1)λ=−λi

]e−λix, i = 1,2,3

z1 = σ0e
iωt

z2 = T0e
iωt

Sij =Rij (0), i = 1,4, j = 1,2,3

S5k =R5k(x), k = 1,2,3

D1 =
∣∣∣∣∣∣
z1 S12 S13

z2 S42 S43

0 S52 S53

∣∣∣∣∣∣ D2 =
∣∣∣∣∣∣
S11 z1 S13

S41 z2 S43

S51 0 S53

∣∣∣∣∣∣

D3 =
∣∣∣∣∣∣
S11 S12 z1

S41 S42 z2

S51 S52 0

∣∣∣∣∣∣ D =
∣∣∣∣∣∣
S11 S12 S13

S41 S42 S43

S51 S52 S53

∣∣∣∣∣∣
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