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Abstract
The aim of this study is to investigate the effects of nonlinear geometry and a nonlinear
Pasternak medium on the free vibration and the mechanical buckling of viscoelastic open-
cell foam beams using a semianalytical method. The kinematic relation is considered by
the Euler–Bernoulli hypothesis and von Karman strains, while constitutive relations are de-
fined via the separable-kernel framework and Boltzmann–Volterra superposition principles.
A nonlinear nonsymmetric porosity distribution through the thickness direction is simulated
using a power-law relationship. The Galerkin method, variational method, and a numeri-
cal iterative algorithm are applied to solve two coupled partial differential equations with
frequency-dependent coefficients. To verify our results, nonlinear frequencies and buckling
loads of elastic beams, frequencies, and loss factors of viscoelastic beams are compared with
available results and close correlation is observed. The influences of axial force, boundary
condition, elastic medium, and a frequency-dependent constitutive relation on vibrational
characteristics are scrutinized through parametric studies.

Keywords Functionally graded materials · Nonlinear vibration · Buckling ·
Neutral surface · Open-cell foam · Variational method

1 Introduction

In recent years, engineering applications of foams have received increasing attention due to
their remarkable characteristics such as high specific strength, low weight, and high energy
absorption (Zamani 2021a,b). By proper material design, some issues such as delamination,
abrupt change of properties, and undesired thermal stresses can be avoided using function-
ally graded (FG) properties with continuous variations of properties through the thickness
direction. These capabilities led to the application of FG foams in various fields such as
acoustic control (Gibson and Ashby 1997; Ashby et al. 2000), shock and energy absorption
(Hedayati and Sadighi 2016; Shimazaki et al. 2016; Sadeghnejad et al. 2017), automobile
industries (Patten et al. 1998; Zhang et al. 2015), and biomedical instruments (Gibson et al.
2010). Moreover, viscoelastic damping of composites plays a fundamental role to reduce
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the amplitude of vibrations, to bring about phase delay, and to decrease the time duration of
vibrations (Zhou et al. 2016). Furthermore, FG viscoelastic (FGV) foams have an extraor-
dinary characteristic, frequency-dependent or complex damping, which would be a vital
property for beam-like structures that possess a lightweight constituent, acceptable strength,
and damping simultaneously, especially under static (Altenbach and Eremeyev 2008a,b,c,
2009) and dynamic loads (Higuchi and Adachi 2014; Al Jahwari et al. 2016; Montgomery
et al. 2021; Zamani 2022). However, it is worth noting that considering the viscoelasticity
of FG beams provides computational complexities for vibration analysis in the frequency or
the time domain and this remark may be modified using various computational approaches.

From the computational point of view, the Bubnov–Galerkin (BG) weighted residual
method has been used to solve nonlinear vibration of Kelvin–Voigt FGV beams with von
Karman geometrical nonlinearity or small strains and moderate rotations. Ghayesh (2018)
applied the BG method with a parameter-continuation technique to analyze forced vibra-
tions of FG microbeams. The same author extended this method for imperfect Timoshenko
beams (Ghayesh 2019c), imperfect Timoshenko microbeams (Ghayesh 2019d), and fully
clamped imperfect axially graded Euler–Bernoulli beams (Ghayesh 2019a). In the men-
tioned works, it should be noted that the Kelvin–Voigt viscoelastic model is applied explic-
itly in the constitutive relations of FGV beams via a simple differential operator. However,
numerical approaches should be applied for other forms of viscoelastic models such as frac-
tional derivatives. In this outline, Loghman et al. (2021) used fractional derivatives of FGV
beams. They implemented a finite-element method (FEM) and a finite-difference method to
study nonlinear free and forced vibrations of Euler–Bernoulli microbeams. Although a sim-
ple differential operator or the Kelvin–Voigt model is common in the literature, viscoelastic
behavior could also be represented through constitutive relations via frequency-dependent
properties that are suitable for vibration analysis in the frequency domain.

Kelvin–Voigt FGV beams with nonlinear geometry may face distributed forces or ex-
ternal excitations in practical circumstances. Generally, these forces are simulated via an
elastic medium or foundation. Although the linear and nonlinear coefficients of an elastic
medium complicate computations, investigations of these coefficients will improve the accu-
racy and the reliability of the design and the analyses of geometrically nonlinear vibrations
of FGV beams. For this case, Ghayesh (2019b) studied nonlinear vibrations of microbeams
resting on a nonlinear elastic support applying BG to achieve nonlinear responses of can-
tilevered (clamped–free) Euler–Bernoulli beams. Gholipour et al. (2020) scrutinized non-
linear vibrations of clamped–clamped axially graded beams resting on a nonlinear elastic
foundation using the BG method, von Karman strains and the Euler–Bernoulli assumption.
Recently, Yee et al. (2022) used a modal decomposition approach, third-order shear defor-
mation theory, and a Gaussian random field model to analyze nonlinear vibrations of im-
perfect FGV beams reinforced with graphene nanosheets on a viscoelastic foundation. It is
worth mentioning that various combinations of clamped and simply supported edge condi-
tions have remarkable importance from both practical and mathematical points of view. Ob-
viously, simultaneous study of geometrical nonlinear vibrations, a nonlinear elastic medium,
frequency-dependent constitutive relations, and general boundary conditions of FGV beams
are rarely studied in the literature.

Based on the literature survey, it is observed that the main concentration of the liter-
ature is located on the geometrically nonlinear vibrations of FGV beams (Ghayesh 2018,
2019a,c,d; Loghman et al. 2021), while nonlinear vibrations of FGV foam beams have at-
tracted less attention from researchers. In addition, the study of nonlinear vibrations of FGV
beams on nonlinear elastic/viscoelastic foundations is merely restricted to the single can-
tilevered, fully clamped, and simply supported edge conditions of beams (Ghayesh 2019b;
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Fig. 1 (a) The coordinate system of a FGV foam beam on a nonlinear elastic medium, (b) schematic of a
polymeric open-cell foam (Altenbach and Eremeyev 2008c).

Gholipour et al. 2020; Yee et al. 2022), and implementation of other edge conditions seems
to be missing from the literature. Moreover, the studied papers only considered the Kelvin–
Voigt model via a simple differential operator, while other viscoelastic models such as
Boltzmann–Volterra superposition principles that have the capability to produce frequency-
dependent representations of properties are neglected.

In the present study, large-amplitude free vibration and mechanical buckling of FGV
open-cell foam Euler–Bernoulli beams resting on a Pasternak medium are investigated us-
ing the BG approach, the He variational method, and an iterative numerical algorithm for
integropartial differential equations of motion. The nonlinearity of deformation and medium
are formulated via von Karman strains and a cubic coefficient, respectively. A simple power
law and separable kernel framework are used to define porosity and constitutive equation,
respectively. The presented method is examined for linear vibrational characteristics of vis-
coelastic composite beams, critical buckling loads, and nonlinear frequencies of homoge-
neous and FG elastic beams, while for the latter, the effect of a neutral surface is also in-
vestigated. Eventually, the impacts of medium, amplitude, constitutive relation, and edge
condition on the critical buckling load and nonlinear frequency are studied via numerical
examples.

2 Basic equations

Consider a nonhomogeneous viscoelastic beam with rectangular cross section resting on a
nonlinear Pasternak medium, as depicted in Fig. 1. Parameters L and h stand for length
and thickness, respectively. The Cartesian coordinate system (x, z) is placed on the mid-
dle surface of the beam. Also, Kw , Ks , Knl , and P denote Winkler, Pasternak, nonlinear
coefficients of the medium, and the external axial force, respectively.

2.1 Constitutive equations

Due to the nonlinear nonsymmetric distribution of properties through the thickness direction
and around the midplane, there are bending–extensional couplings in the constitutive rela-
tions. These couplings could be neglected using a neutral physical surface (Abrate 2008).
However, in order to retain the generality of the analysis, a common approach that considers
couplings is applied through this section. Based on the classical beam theory and nonlinear
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von Karman strains, strain–displacement relations are assumed as (Ghayesh 2019a; Daya
et al. 2004): {

εx

κx

}
=

{
u,x + 1

2w2
,x

w,xx

}
, (1)

where u, w, εx , κx , and subscript “,” stand for displacement components in the x and z direc-
tions, normal strain, curvature, and the differential operator, respectively. The constitutive
equation of the plane stress state of FGV materials can be written as (Zamani 2021b, 2022;
Zamani et al. 2018; Brinson and Brinson 2008):

σx = Q11(ω)εx (2){
Nx(ω)

Mx(ω)

}
=

∫ h/2

−h/2
σx

{
1

z

}
dz

=
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]{
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}
, (3)

where σx , Nx , Mx , and ω stand for stress, stress resultant, bending moment per unit
length, and frequency, respectively. Also, A11, B11, D11, and Q11 denote spatial/frequency-
dependent extensional stiffness, bending–extensional coupling, bending stiffness, and re-
duced stiffness, respectively, which are all defined as (Zamani 2021b, 2022; Zamani et al.
2018): ⎧⎪⎨

⎪⎩
A11(ω, z)

B11(ω, z)
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Q11(ω, z) = 4G(ω, z)(3K(ω, z) + G(ω, z))

3K(ω, z) + G(ω, z)
, (5)

where G and K stand for the distortion and dilatation moduli, respectively. The stiffness
coefficients in Eq. (4) are similar to those that are represented for general elastic compos-
ites, while these coefficients are spatially dependent like FG materials and frequency de-
pendent like viscoelastic materials, simultaneously. In addition, Eq. (5) can be derived from
the elastic domain using the Alfrey correspondence principle (Alfrey 1944), which transfers
properties from the elastic to the viscoelastic domain. Furthermore, the effective properties
of FGV open-cell foam beams are defined as (Hatami et al. 2008; Gibson and Ashby 1997):

ρ(z,ω) = ρsV (z) (6)

K(z,ω) = K0V
2(z) (7)
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1 + iβc1ω
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2
+ z

h

)p

, (9)
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where ρ, ρs , ρp/ρs , V (z), β , p, K0, and G0 stand for density, minimum density, minimal
relative density, volume fraction, parameter of constitutive relation, power index, elastic di-
latation, and distortion moduli, respectively. Furthermore, β = 0, 0.5, and 1 refer to Kelvin–
Voigt, standard solid, and elastic materials, respectively. It is worth mentioning that p = 0,
1 denote homogeneous and linear distributions of porosity, respectively (Gibson and Ashby
1997).

2.2 Governing equations

The dynamic version of the principle of virtual displacements or the Hamilton principle can
be expressed as: ∫ t2

t1

(δTk + δVw − δU)dt = 0

δu = δw = 0,

(10)

where t , δ, U , Vw , and Tk stand for time, variational operator, strain energy, work of external
load, and kinetic energy, respectively, which are all defined as:

δU =
∫

ϑ

σxδεxdϑ (11)

δVw =
∫

A

qw(x)δwdA (12)

δTk =
∫

ϑ

ρ(u,t δu,t + w,t δw,t )dϑ, (13)

where ϑ , A, and qw stand for volume element, area element, and transverse applied load,
respectively. The transverse load or interaction of a Pasternak medium is presented as
(Gholipour et al. 2020):

qw(x) = −Kww − Knlw
3 + Ksw,xx. (14)

Application of integration by parts and revealing virtual displacements lead to the governing
equations of motion with frequency-dependent coefficients as:

δu : Nx,x(ω) = I (ω)u,tt − P (15)

δw : Mx,xx(ω) + Nx(ω)w,xx = I (ω)wtt + Kww + Knlw
3 − Ksw,xx, (16)

where I stands for an inertia term that is defined as:

I (ω) =
∫ h/2

−h/2
ρ(z,ω)bdz, (17)

where b stands for the width of the FGV beam. In order to simplify the governing equations
of motion, some assumptions are applied as (Emam and Nayfeh 2009; Fallah and Aghdam
2011; Emam and Lacarbonara 2021, 2022):

• Inertia and a distributed axial force in the inplane direction are neglected and therefore,
the axial force or axial stress resultant Nx is assumed constant.
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• The FGV beam is restricted at x = 0, while a compressive axial load, P is applied at
x = L.

• The FGV beam is axially restrained and the ends cannot slide axially. Therefore, midplane
stretching and the definite integral will appear in the governing equations of motions.

Using these assumptions together with some mathematical manipulations, the governing
equations of motion and their initial conditions can be expressed respectively, as (Emam
and Nayfeh 2009; Fallah and Aghdam 2011; Emam and Lacarbonara 2021, 2022):

b

(
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11(ω)
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)
w,xxxx

+
(

P − bA11(ω)

2L
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0
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w
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2
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(
L

2
,0

)
= 0, (19)

where a stands for the nondimensional maximum amplitude of vibration at the center of
the beam. It is worth mentioning that the governing equations have similarities with their
counterparts in the elastic domain, whereas, the frequency-dependent coefficients are dis-
tinctive points. To maintain the generality of the solution, some nondimensional parameters
are introduced as:

x̄ = x

L
, w̄ = w

r
, t̄ = t

√
b
(ω)

I (ω)L4
, 
(ω) = D11(ω) − B2

11(ω)

A11(ω)
, r =

√
I (ω)

A
, (20)

where x̄, w̄, t̄ , 
, and r stand for nondimensional longitudinal and transverse coordinates,
time, stiffness, and radius of gyration, respectively. Using Eq. (18) together with the nondi-
mensional parameters in Eq. (20), the governing equation of motion can be rewritten as:

(
P̄ (ω) − 1

2
�(ω)

∫ 1

0
(w̄,x̄ )

2dx̄ − B(ω)
(
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))
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w̄,t̄ t̄ + w̄,x̄x̄x̄x̄ + K̄w(ω)w̄ + K̄nl(ω)w̄3 − K̄s(ω)w̄,x̄x̄ = 0

, (21)

where a separable function and the nondimensional parameters are expressed as:

w̄(x̄, t̄) = W(x̄)q(t̄), P̄ (ω) = PL2

b
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, �(ω) = A11(ω)r(ω)2


(ω)

B(ω) = B11(ω)r


(ω)
, K̄w(ω) = KwL4

b
(ω)
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2L4

b
(ω)
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2

b
(ω)
,

(22)

where W(x̄) and q(t̄) stand for spatial and temporal functions, respectively. It should be
noted that Emam and Nayfeh (2009), Fallah and Aghdam (2011) derived the governing
equations in the elastic domain, while the governing equations are extended for the vis-
coelastic domain in the present study. Moreover, CC, CS, and SS denote fully clamped,
clamped–simply supported, and simply supported boundary conditions, respectively; while
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Table 1 Spatial functions of
plates (Rao 2004) BCs W (x)

CC
cosh(qx) − cos(qx) − λ(sinh(qx) − sin(qx))

λ = cosh(q)−cos(q)
sinh(q)−sin(q)

, q = 4.730041

CS
cosh(qx) − cos(qx) − λ(sinh(qx) − sin(qx))

λ = cosh(q)−cos(q)
sinh(q)−sin(q)

, q = 3.926602

SS sinπx

the first and the second letters refer to edge conditions at x̄ = 0 and 1, respectively. The
considered edge conditions are expressed as:

CC : W(0) = W ′(0) = W(1) = W ′(1) = 0

CS : W(0) = W ′(0) = W(1) = W ′′(1) = 0

SS : W(0) = W ′′(0) = W(1) = W ′′(1) = 0.

(23)

3 Method of solution

In this section, Eq. (21) is solved via a two-step procedure. First, the BG method with an
appropriate shape function is implemented to discretize Eq. (21) in the spatial domain. The
considered shape functions are presented in Table 1 (Rao 2004). Next, the resulted nonlinear
ordinary differential equation (ODE) with frequency-dependent coefficients is determined
by a variational method. To gain more details of the method, one may refer to other studies,
see for instance (He 2007). The resultant equation and initial conditions take a novel form
using BG and variational methods as:

q̈(t) + (
α1(ω) + αp(ω)P̄ (ω) + αkl(ω) + αks(ω)

)
q(t)

+ α2(ω)q2(t) + (
αKnl(ω) + α3(ω)

)
q3(t) (24)

q(0) = a, q̇(0) = 0, (25)

where the frequency-dependent coefficients are defined as:

α1 =
∫ 1

0 W,x̄x̄x̄x̄Wdx̄∫ 1
0 W 2dx̄

, αp =
∫ 1

0 W,x̄x̄Wdx̄∫ 1
0 W 2dx̄

, α2 = −B(ω)
(
W,x̄(1) − W,x̄(0)

)
αp

αkl = K̄w, αks = −K̄sαp, αknl = K̄nl

∫ 1
0 W 4dx̄∫ 1
0 W 2dx̄

, α3 = −1

2
�αp

∫ 1

0
(W,x̄)

2dx̄.

(26)

It should be noted that the physical neutral surface vanishes at α2 or a quadratic nonlinear-
ity. However, a nonlinear eigenvalue solver is required to solve the ODE with frequency-
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dependent coefficients. Indeed, the He variational method is used as (He 2007):

q̈ + f (q) = 0 (27)

J (q) =
∫ T/4

0

{
−1

2
q̇2 + F(q)

}
dt = 0

T = 2π/ω

(28)

q = a cos(ωt), (29)

where T stands for period of vibration. Equations (27)–(29) refer to a homogeneous second-
order ODE, a functional equation, and an approximate solution, respectively. Substitution
of Eq. (29) into Eq. (28) leads to (He 2007):

J (a,ω) = 1

ω

∫ π/2

0

{
−1

2

(
aω sin(τ )

)2 + F
(
a cos(τ )

)}
dτ = 0

τ = ωt. (30)

Implementation of ∂J/∂a = 0 results in a nonlinear algebraic equation as (He 2007):

1

ω

(
1

8
πa2(α1 + αpP̄ + αkl + αks) + 2

9
a3α2 + 3

64
πa4(αKnl + α3) − 1

8
πa2ω2

)
= 0. (31)

For a linear frequency, an ODE with nonlinear frequency-dependent coefficients should be
solved for a = 0. Equation (31) will be solved in the complex frequency domain via the
QZ iterative algorithm (Golub and Van Loan 2013) in the following computations. The
outcomes of Eq. (31) are expressed as (Zamani and Aghdam 2015):

ω = ωRe + iωIm

ωn = ωRe

η = Im
(
ω2

)
/Re

(
ω2

)
,

(32)

where ω, ωn, η stand for complex frequency, natural frequency, and loss factor, respectively.

4 Results and discussion

In this section, first, the accuracy of the present solution is verified via different examples.
Finally, the impacts of various parameters are analyzed via parametric studies. For the first
part, three examples compare nonlinear to linear frequency ratios of homogeneous elastic
SS (Qaisi 1993; Ke et al. 2010), CS, and CC (Qaisi 1993) beams, frequency ratio, and the
critical buckling load of FG beams (Fallah and Aghdam 2011; Ke et al. 2010; Gunda et al.
2011; Yaghoobi and Torabi 2013). Also, frequencies and loss factors of viscoelastic beams
are compared with the results of FEM (Bilasse et al. 2010) and exact solutions (Rao 1978).
For the final part, the impacts of a Pasternak medium, a constitutive relation, the amplitude
of vibration, the nonhomogeneity of the material, and edge conditions on the frequency
ratio, buckling load ratio (BLR), and loss factor are scrutinized elaborately.
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Table 2 A comparison of the
frequency ratios of SS beams

aQaisi (1993)

bKe et al. (2010)

a/r

1 2 3 4 5

HBMa 1.0897 1.3229 1.6394 – –

DNIMb 1.0892 1.3178 1.6257 1.9760 2.3502

present 1.0897 1.3228 1.6393 1.9999 2.3848

Table 3 A comparison of the
frequency ratios of beams

aQaisi (1993)

a/r 1.0 1.5 2.0 2.5 3.0 3.5

CS HBMa 1.0841 1.1775 1.2920 1.4193 1.5534 1.6900

present 1.0995 1.2126 1.3551 1.4287 1.5975 1.7011

CC HBMa 1.0628 1.1322 1.2140 1.3017 1.3904 1.4786

present 1.0551 1.1203 1.2056 1.3071 1.4214 1.5456

Table 4 Material properties of
FG beams (Gunda et al. 2011) Material properties SuS304 (bottom) Si3N4 (top)

modulus, E (GPa) 207.8 322.3

Poisson ratio, υ 0.3178 0.24

density, ρ (kg/m3) 8166 2370

4.1 Comparative study

The first example is assigned to the nonlinear to linear frequency ratio (ωnl/ωl) of homo-
geneous beams with L/h = 20, h = 0.1. In this example, the present results are compared
with those reported by Qaisi (1993) based on an analytical or harmonic balance method
(HBM), Ke et al. (2010) based on a direct numerical integration method (DNIM) for SS

beams in Table 2 and CS, CC beams in Table 3. As can be observed, a reliable correlation
is observed, however, it should be noted that weighted residual methods naturally overes-
timate the eigenvalues of eigenvalue problem (Leissa 1969). Therefore, the present results
demonstrate higher values than the results of HBM and DNIM. In addition, the frequency
ratios in Table 3 demonstrate the remark that CC beams or stiff edge conditions display
more resistance than CS beams against geometrical nonlinearity.

The second example compares the nonlinear frequency and BLRs of FG beams resting
on a nonlinear elastic medium with reported results based on DNIM (Ke et al. 2010), an
iterative FEM (IFEM) (Gunda et al. 2011), the He variational method (HVM) (Fallah and
Aghdam 2011), and the variational iteration method (VIM) (Yaghoobi and Torabi 2013). It
should be noted that Fallah and Aghdam (2011) applied HVM via a ODE45 command in
MATLAB software, while the present variational method is applied based on the QZ iter-
ative algorithm that is used for complex eigenvalue problems (Golub and Van Loan 2013).
Also, the considered parameters are p = 2, P = 1, K̄w = K̄nl = K̄s = 50, and other material
properties are given by Table 4 (Gunda et al. 2011). Table 5 expresses comparisons between
the nonlinear ratios of the general approach considering coupling, neutral surface approach
neglecting coupling, and other results. As can be seen, acceptable accuracy is depicted by
the present results. Moreover, SS beams without coupling presents the upper bound of fre-
quency ratios, while the general approach presents the lower bound of ratios. Furthermore,
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Table 5 A comparison of
frequency/buckling ratios of FG
beams on a nonlinear elastic
medium

aKe et al. (2010)

bGunda et al. (2011)
cFallah and Aghdam (2011)

dYaghoobi and Torabi (2013)
eWith coupling

fNeutral surface

BCs Method a

0 0.5 1 1.5 2

ωnl/ωl SS DNIMa 1.00 1.007 1.032 1.072 1.130

IFEMb 1.00 1.006 1.031 1.072 1.128

HVMc 1.00 1.006 1.031 1.072 1.128

VIMd 1.00 1.009 1.036 1.079 1.137

Presente 1.00 1.007 1.031 1.072 1.128

Presentf 1.00 1.009 1.036 1.079 1.137

CC DNIMa 1.00 1.014 1.053 1.115 1.198

IFEMb 1.00 1.014 1.053 1.116 1.198

HVMc 1.00 1.013 1.053 1.116 1.198

VIMd 1.00 1.014 1.053 1.116 1.198

Presente 1.00 1.013 1.053 1.116 1.198

Presentf 1.00 1.013 1.053 1.116 1.198

Pnl/Pl SS HVMc 1.00 1.018 1.085 1.199 1.361

VIMd 1.00 1.018 1.085 1.199 1.361

Presente 1.00 1.018 1.085 1.199 1.361

Presentf 1.00 1.024 1.096 1.216 1.385

CC HVMc 1.00 1.036 1.144 1.323 1.574

VIMd 1.00 1.036 1.144 1.323 1.574

Presente 1.00 1.036 1.143 1.323 1.574

Presentf 1.00 1.035 1.143 1.323 1.574

Table 6 The first six modes of
sandwich beams with a
viscoelastic core

aBilasse et al. (2010)

bRao (1978)

Mode FEMa Exactb Present

�l ηl/ηc �l ηl/ηc �l ηl/ηc

1 148.51 0.3502 148.51 0.3502 149.72 0.3544

2 488.48 0.1958 488.47 0.1958 489.07 0.1969

3 1034.75 0.1071 1034.69 0.1071 1039.76 0.1074

4 1795.32 0.0652 1795.13 0.0653 1805.80 0.0668

5 2771.98 0.0434 2771.49 0.0434 2800.03 0.0466

6 3965.32 0.0308 3964.28 0.0308 4001.50 0.0322

both approaches approximately result in the same frequency and BLRs of fully clamped
beams.

The third example investigates the first six frequencies and loss factors of sandwich
beams with isotropic elastic face sheets and a viscoelastic core. The geometrical and
mechanical properties of face sheets and core are L = 177.8 mm, b = 12.7 mm, ρc =
968.1 Kg/m3, Ec = 1.794(1 + 0.1i) MPa, vc = 0.3, hc = 0.127 mm, ρf = 2766 Kg/m3,
Ef = 69 GPa, vf = 0.3, hf = 1.524 mm. Results are assessed by comparison with the re-
sults of Bilasse et al. (2010) based on FEM and Rao (Rao 1978) based on exact solutions in
Table 6. The obtained results are in good agreement with other predictions. As mentioned
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Table 7 Frequency ratio, buckling load, and loss factor of elastic and FGV foam beams with various ampli-
tudes and boundary conditions

BCs a Kelvin–Voigt Standard solid Elastic

ωnl/ωl ηnl Pnl/Pl ωnl/ωl ηnl Pnl/Pl ωnl/ωl Pnl/Pl

CS 0 1.000 6.46 × 10−8 1.000 1.000 2.97 × 10−8 1.000 1.000 1.000

0.5 1.0123 0.08196 1.0358 1.0123 0.04004 1.0359 1.0124 1.0359

1.0 1.0719 0.10766 1.1999 1.0720 0.05329 1.2000 1.0721 1.2000

1.5 1.1716 0.08320 1.4921 1.1718 0.04262 1.4924 1.1719 1.4925

2.0 1.3024 0.02355 1.9125 1.3025 0.01550 1.9130 1.3026 1.9131

CC 0 1.000 2.58 × 10−8 1.000 1.000 6.01 × 10−8 1.000 1.000 1.000

0.5 1.0155 0.02011 1.0409 1.0155 0.00918 1.0409 1.0145 1.0383

1.0 1.0609 0.07647 1.1638 1.0609 0.03474 1.1639 1.0571 1.1535

1.5 1.1326 0.15929 1.3687 1.1326 0.07171 1.3688 1.1244 1.3454

2.0 1.2260 0.25735 1.6555 1.2259 0.11430 1.6558 1.2124 1.6141

previously, the present method overestimates natural frequencies and loss factors due to the
nature of the weighted residual method; however, the differences from the exact solution are
acceptable.

4.2 Parametric study

In this section, a parametric study is conducted on FGV foam beams on an elastic medium.
The considered parameters include Winker, Pasternak, and nonlinear coefficients of the elas-
tic medium, axial load, edge conditions, vibration amplitude, and foam nonhomogeneity.

4.2.1 Constitutive relation parameters

The effects of a standard solid, Kelvin–Voigt, and elastic models of constitutive relations are
taken into consideration in Table 7. In this case, the assumed values are K̄w = 50, K̄nl = 10,
K̄s = 5, P = 1, γ = K0/G0 = 2, ρp/ρs = 0.65. It is worth mentioning that linear frequency
ωl and linear buckling load Pl refer to a = 0. As can be observed, by an increment of
the amplitude, three parameters show increases regardless of edge conditions and material
models. Also, to some extent, BLRs present a sharp increase as the amplitude increases.
In other words, by comparisons of the ratios, the stability of beams is the most affected,
as the amplitude increases. For the loss factor, an interesting point can be extracted from
the results. Although loss factors amplify by increments of the amplitude, a jump can be
seen from a = 0 to 0.5. Moreover, the range of the frequency and BLRs are approximately
similar to each other while Kelvin–Voigt beams have higher loss factors than standard solid
beams. For the case of CC edge conditions, elastic beams have lower frequency ratios and
BLRs than viscoelastic beams. In other words, the viscoelasticity of foams increases the
discrepancies of the linear and nonlinear parameters of CC beams. Therefore, the influences
of viscoelastic behavior come to the fore in the nonlinear regime of clamped beams.

The next studied parameter is the power index that demonstrates the degree of nonhomo-
geneity or the distribution of properties through the thickness direction. Frequency ratios and
BLRs of beams with various power indices and viscoelastic models are presented in Table 8.
For this example, K̄w = 100, K̄nl = 100, K̄s = 50, P = 5, a = 2, γ = 2, ρp/ρs = 0.65 are
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Table 8 Frequency/buckling
load ratios of FGV foam beams
with various porosities

BC p Kelvin–Voigt Standard solids

ωnl/ωl Pnl/Pl ωnl/ωl Pnl/Pl

SS 0 1.2102 1.57524 1.2102 1.57524

0.5 1.1999 1.54944 1.2000 1.54941

1 1.1951 1.53746 1.1952 1.53743

1.5 1.1926 1.53037 1.1927 1.53036

2 1.1934 1.53342 1.1926 1.52957

2.5 1.1912 1.52597 1.1935 1.53128

CS 0 1.3507 2.03003 1.3507 2.03000

0.5 1.3458 2.01748 1.3448 2.01371

1 1.3424 2.00770 1.3435 2.01102

1.5 1.3393 1.99811 1.3432 2.01054

2 1.3375 1.99166 1.3377 1.99175

2.5 1.3361 1.98718 1.3367 1.98803

CC 0 1.2954 1.85839 1.2954 1.85831

0.5 1.2989 1.86925 1.2974 1.86454

1 1.2993 1.87049 1.3005 1.87422

1.5 1.2974 1.86450 1.3020 1.87873

2 1.2955 1.85828 1.2947 1.85612

2.5 1.2939 1.85332 1.2924 1.84887

assumed. Clearly, the frequency and critical buckling load are decreased via the increment
of power index due to stiffness reduction. Also, both ratios of CC beams have lower values
than CS beams. To clarify, some interpretation should be declared. First, the mean values
of the linear and nonlinear parameters of CS beams are lower than those of CC beams. In
other words, the discrepancies of linear and nonlinear values of the mentioned parameters
of CC beams are not increased, as the amplitude increases. Secondly, CS beams are more
sensitive to the amplitude rather than CC beams, which show an ascending trend, as the
amplitude increases. These remarks are similar to those observed in the first comparative
example of elastic beams.

4.2.2 Medium coefficients

In order to scrutinize the influences of the medium, simply supported FGV foam beams on a
nonlinear medium are studied. The considered parameters are P = 2, γ = 2, ρp/ρs = 0.65,
β = 0.5, K̄w = 10, K̄s = 5, K̄nl = 10. The effects of the Winkler coefficient on the BLRs and
frequency ratios are depicted in Fig. 2. As depicted, the considered ratios of beams resting on
a soft Winkler medium show significant variations as the amplitude increases, while for the
case of a stiff Winkler medium, these ratios display smooth variations. In other words, as the
Winkler coefficient increases, the sensitivity of beams to the amplitude diminishes. Also, the
effect of the medium comes to the fore, while the impact of geometrical nonlinearity wanes,
as the Winkler coefficient increases. In spite of the same manner of BLRs, the frequency ra-
tios represent smoother treatment than BLRs, as the amplitude increases. Indeed, they reach
2.269, while BLRs reach 5.864 with K̄w = 0. It should be noted that beams resting on media
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Fig. 2 The effect of the Winkler coefficient on the frequency and the buckling load ratios.

Fig. 3 The effect of the Pasternak coefficient on the frequency and the buckling load ratios.

with various Winkler coefficients show similar behaviors, while the shear (Pasternak) coef-
ficient leads to the distinctive discrepancies of the frequency ratios and BLRs, as depicted in
Fig. 3. In other words, the mentioned ratios demonstrate more sensitivity to the shear coeffi-
cients than the Winkler coefficient. These discrepancies are remarkable especially for beams
with K̄s = 0,10. Furthermore, by the increment of Winkler and Pasternak coefficients, the
rates of increment of the mentioned ratios reduce significantly.

The nondimensional nonlinear coefficients of a medium result in a different treatment of
beams, as demonstrated in Fig. 4. As can be observed, the studied ratios with high values of
this coefficient represent remarkable variation, as the amplitude increases. Also, the curves
of the frequency ratios and the BLRs of beams without nonlinear coefficients locate at the
bottom of graphs; significantly, which is in clear contrast to the Winkler and Pasternak coef-
ficients in Figs. 2 and 3. Furthermore, the ratios of beams with various nonlinear coefficients
show smooth behaviors, but they are not similar to those displayed by beams with various
Winkler coefficients. The nonlinear coefficients have significant influences on the BLRs so
that the highest values of ratios reach 16.32 for K̄nl = 100, a = 5, whereas the maximum
values for K̄s = K̄w = 0, are 7.64 and 5.86, as depicted in Fig. 3 and Fig. 2, respectively.

4.2.3 Boundary conditions

The influences of boundary conditions and the amplitude on the frequency ratios and BLRs
of CC and CS beams are illustrated in Fig. 5. In this example, FGV foam beams with
β = 0, P = 3, K̄w = 50, K̄s = 20, K̄nl = 50 are investigated. The sensitivity of the ratios
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Fig. 4 The effect of the nonlinear coefficient of the medium on the frequency and the buckling load ratios.

Fig. 5 The effect of the edge condition on the frequency and the buckling load ratios.

of CS beams to the amplitude is more than clamped edge conditions so that the relevant
curves of clamped beams locate under CS beams. The same behavior of beams is observed
previously in Tables 7 and 8.

The effects of the amplitude on the frequency ratios versus the critical buckling load of
beams are depicted in Fig. 6. For this example, ωref refers to a = 0, P = 0 and the zero
frequency ratio relies on the critical buckling load. As can be observed, first, CC beams
have the highest values of the critical buckling loads in comparison with CS and SS beams,
in other words, the fully clamped beams are the most resistant beams against the mechani-
cal buckling load. Secondly, CS and SS beams show the highest and the lowest frequency
ratios, respectively. Thirdly, the critical buckling loads and the frequency ratios show incre-
ments, as the amplitude increases. This behavior is approximately similar to the curves of
the frequency ratios versus the critical buckling load with various amplitudes. Indeed, the
maximum frequency ratios are 2.22, 2.51, and 2.04 for CC, CS, and SS edge conditions,
respectively. Furthermore, the minimum and the maximum nondimensional buckling loads
refer to a = 0,5, and their relevant values are 64.75 and 405.26 for CC beams, 44.99 and
363.89 for CS beams, and 34.93 and 183.26 for SS beams.

5 Conclusions

In this paper, a multiple-step semianalytical approach consisting of decoupling of PDEs,
the BG and the He variational methods together with an iterative numerical algorithm are
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Fig. 6 The effect of amplitude on the frequency ratio–buckling load of FGV foam beams with various edge
conditions.

implemented to analyze nonlinear mechanical buckling and vibrations of FGV foam beams
resting on nonlinear elastic foundations. The separable kernel and power-law relationships
are adapted for constitutive relations. After verification, the influences of edge conditions,
material, and geometrical properties on the nonlinear frequency and buckling trend are scru-
tinized via numerical studies and some of the conclusions are expressed concisely. First, the
viscoelasticity of foams intensifies discrepancies of the linear and nonlinear parameters of
CC beams. Also, as the amplitude increases, the ratios of the frequency, buckling load, and
loss factor ratios of CC beams display increases, while the latter show a smoother trend.
Moreover, the buckling load ratios show a high level of sensitivity to the nonlinear coef-
ficients of the medium so that the maximum value is 16.32 for a = 5, K̄nl = 100, while
the maximum values for K̄s = 0 and K̄w = 0 are 7.64 and 5.86, respectively. In addition,
the minimum critical buckling loads refer to a = 0 and their corresponding values for CC,
CS, and SS beams are 64.75, 44.99, and 34.93, respectively. The maximum critical buck-
ling loads of beams at a = 5 are 405.26, 363.89, and 183.26, respectively. Furthermore, as
the Winkler coefficient increases, the impact of the medium comes to the fore, while the
influences of nonlinear geometry wane. Eventually, the nonlinear, Pasternak, and Winkler
coefficients are the most influential coefficients of a medium, respectively.
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