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Abstract
There is a second frequency spectrum existing for the classic Timoshenko beam with hinged
supports at both ends. However, it is usually assumed that the second frequency spectrum
is unphysical. In this paper, the modified Timoshenko beam is studied. The modified Tim-
oshenko beam is mounted upon the viscoelastic foundation. The flexural wave propagation
and the free-vibration problem are investigated. The viscoelastic foundation is modeled by
the standard solid model or Zenner model with the fraction-order derivative. It is found
that there are two kinds of flexural waves that are not only dispersive but also attenuated.
In contrast to the classical Timoshenko beam, there is only one frequency spectrum in the
modified Timoshenko beam. Furthermore, complex-valued natural frequencies are induced
by the viscoelastic foundation. The imaginary part of the complex natural frequency reflects
the attenuation properties associated with time. The dispersion and attenuated curves of flex-
ural waves and the complex-valued natural frequency of the first three orders are provided
in the numerical results. The influences of the viscoelastic foundation are discussed based
on the numerical results.

Keywords Fraction-order viscoelasticity · Pasternak foundation · Modified Timoshenko
beam · Flexural waves · Dispersion and attenuation · Complex natural frequency

1 Introduction

The soil–structure interaction problems play an important role in the fields of structural and
foundation engineering, e.g., building, geotechnical, highway structures, railroad structures,
submerged pipes, etc. The static and dynamic analyses of beams are usually carried out by
using Bernoulli–Euler beam theory (Yu et al. 2017; Bogdanoff 2015; Awodola 2012; Gürgze
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1998; Gra and Ab 2020), for the case of slender beams, or Timoshenko theory for stocky
beams (Ozgumus and Kaya 2010; Han et al. 1999; Xiang and Yang 2008; Simsek 2010;
Krawczuk et al. 2003). Whether a Bernoulli–Euler beam or a Timoshenko beam is being
considered, the hypothesis of a plane cross section is adopted. However, the warping defor-
mation of a cross section is inevitable and the hypothesis of a plane cross section does not
hold, especially for stocky beams and laminated composite beams. Accordingly, the high-
order shear beam models have been proposed successively (Reddy 1985; Reddy et al. 1997;
Wang et al. 2000; Voyiadjis and Shi 1991; Shi 2007). These models realistically describe
the static and dynamic mechanical behavior of the beams, but the description of the subsoil
and its interaction with a beam resting on it is not easy.

For over a century, various physical and mathematical models about foundations were
formulated. The most frequently used model is the Winkler model. In the Winkler model, the
beam-supporting soil is modeled as a series of closely spaced, mutually independent, linear
elastic springs that provide the supporting force in direct proportion to the deflection of the
beam. The static and dynamical mechanical responses of finite and infinite beams mounted
on the Winkler foundation were also investigated (Thambiratnam and Zbuge 1996; Chen
2002; De Rosa 1989). The main drawback of the Winkler foundation is the noncontinuity
of deformation of the foundation soils, which is clearly inconsistent with the actual situa-
tion. Therefore, many researchers have devoted work to generalize and improve the Winkler
model. The most well-known and commonly used refined foundation model is the Pasternak
model. In the Pasternak model, there are two parameters. The first parameter represents the
stiffness of the vertical spring, as in the Winkler model, while the second parameter is intro-
duced to account for the coupling effect of the linear springs. It can be assumed that there is
a shear layer on the top of the vertical springs and the second parameter can also be consid-
ered as the shear stiffness of the shear layer. Naidu and Rao (1995a,b) studied the buckling
and the vibration behavior of the Bernoulli–Euler beam resting on the Pasternak foundation.
The effect of the elastic foundation on buckling loads for various end boundaries was ex-
amined. The finite-element technique was also used by Yokoyama (1995) to investigate the
vibration behavior of a Bernoulli–Euler and a Timoshenko beam mounted on the Pasternak
foundation. Mously (1999) derived an explicit formula for the natural vibration frequency
of Timoshenko beams mounted on the Pasternak foundation.

Usually, the foundation soil exhibits viscoelastic behavior. In order to reflect the history-
dependent mechanical behavior, the classic Winkler model and Pasternak model are im-
proved with consideration of viscoelasticity. There are two approaches to describe the
viscoelastic behavior, i.e., the integral-type constitutive relation and the differential-type
constitutive relation. In the differential model of viscoelasticity, the elasticity is reflected
by the spring elements, while the viscosity is introduced by the dashpot. The elastic ele-
ment abides by Hooke’s law, while the dashpot follows Newton’s law. The commonly used
viscoelastic models include the Maxwell model, the Kelvin model and the Zenner model.
These models are obtained by the different combinations of the elastic elements and the
dashpots. Recently, the static and dynamic behavior of a Bernoulli–Euler beam or a Timo-
shenko beam resting on the viscoelastic foundation were also investigated (Li et al. 2019;
Syngellakis et al. 2020). However, the rheology behavior of the foundation soil is usually
complicated. In order to realistically describe the rheology behavior of the foundation soil,
many model parameters are introduced that result in difficulty of characterization of these
model parameters from experiment data.

The fraction-order derivative is a natural generalization of the integer-order derivative.
The fraction-order derivative is usually defined by a generalized integral. Due to the non-
local properties, the physical phenomena associated with the space nonlocality or the time
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history-dependence are especially suitable to be described by the fraction-order derivative
(Bagley and Torvik 1986; Mainardi 2010). In the fraction-order viscoelastic model, the
history-dependence behavior of a dashpot described by the fraction-order derivative with
Newton’s law is only a special case. Zhang et al. (2019) proposed a fractional-order three-
element mode that accurately described the viscoelastic dynamic mechanical properties of
soil during vibratory compaction. However, investigations of the static and dynamic behav-
ior of a Bernoulli–Euler beam or a Timoshenko beam resting on the fraction-order viscoelas-
tic foundation are still rare.

In the present work, we aim to study the wave propagation and the free-vibration behav-
ior of a Timoshenko beam mounted on the fraction-order viscoelastic Pasternak foundation.
The modified Timoshenko beam and the classic Timoshenko beam are both considered and
compared. The dispersion and attenuation features of the traveling flexural waves are dis-
cussed. Moreover, the complex natural frequency due to the viscoelastic foundation and
the elimination of the second frequency spectrum of the classic Timoshenko beam by the
modified Timoshenko beam are also discussed.

2 Fraction-order viscoelastic Pasternak foundation

The sinking and deformation of a natural foundation under load has an obvious time dimen-
sion. The mechanical behavior of foundation soil is actually between an ideal solid and an
ideal fluid. The integer-order viscoelastic model has limitations in describing the complex
rheological behavior of foundation soil. The fractional derivative is a natural extension of
the integer-order derivative and can realize a smooth transition between two adjacent integer
derivatives. The viscoelastic model with fractional derivatives can describe the historical-
dependent behavior of a viscoelastic foundation more accurately. The fractional-order stan-
dard solid viscoelastic model or Zenner model is adopted in this paper.

The fraction-order derivative of Riemann–Liouville type is defined as:

Dα
[
f (t)

] =
{

1
�(1−α)

d
dt

∫ t

0 (t − τ)−αf (τ )dτ, 0 < α < 1,
d
dt

f (t), α = 1
(1)

where α (0 < α < 1) denotes the fractional order, and � is the Gamma function, i.e., �(z) =∫ +∞
0 t z−1e−t dt . The constitutive equation of the viscoelastic Zenner model can be expressed

as

σ + η

E1 + E2
σ̇ = E1E2

E1 + E2
ε + ηE1

E1 + E2
ε̇, (2)

where σ and ε are the stress and strain, respectively, E1 and E2 are the elastic moduli of the
elastic elements, and η is the viscosity coefficient of the viscous element. The constitutive
equation of the fraction-order viscoelastic Zenner model can be expressed as

σ + E1

E1 + E2
(τσ )αDα

[
σ(t)

] = E1E2

E1 + E2
ε + E2

1

E1 + E2
(τε)

αDα
[
ε(t)

]
, (3)

where τσ and τε are the relaxation times of stress and strain, respectively. It is assumed that
τσ = τε = η/E1 in the present work.

The Fourier transformation of a function f (t) is defined as

F
{
f (t)

} = f̄ (ω) =
∫ +∞

−∞
e−iωτ f (τ )dτ. (4)



1212 Mechanics of Time-Dependent Materials (2023) 27:1209–1223

For the integer-order derivative and the convolution integral, there are the following proper-
ties

F
{
f (n)(t)

} = (iω)nF
{
f (t)

}
, (5)

F
{
f (t) ∗ g(t)

} = F
{
f (t)

}
F

{
g(t)

}
, (6)

where f (n)(t) denotes the integer-order derivative and the symbol ∗ denotes the convolution
integral.

The definition of a fractional-order derivative of Riemann–Liouville type can also be
expressed as

Dαf (t) =
[
h+(t) ∗ d

dt
f (t)

]
, (7)

where h+(t) is defined as

h+(t) =
{

t−α

�(1−α)
, t > 0,

0, t ≤ 0.
(8)

The Fourier transformation of h+(t) is

F
{
h+(t)

} =
∫ +∞

−∞
h+(t)e−iωt dt =

∫ +∞

0

t−α

�(1 − α)
e−iωtdt. (9)

Let iωt = x, then, t = x/(iω). Inserting these into Eq. (9) leads to

F
{
h+(t)

} = 1
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∫ +∞

0

(
x

iω

)−α

e−xd

(
x

iω
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∫ +∞

0
(x)−αe−xdx

= (iω)α−1

�(1 − α)
�(1 − α) = (iω)α−1. (10)

By the application of Eqs. (5), (6), (8), the Fourier transformation of the fraction-order
derivative can be obtained:

F
{
Dαf (t)

} = (iω)F
{
h+(t)

}
F

{
f (t)

} = (iω)αF
{
f (t)

}
. (11)

Performing the Fourier transformation of Eq. (3), we obtain the complex modulus of the
fractional-order Zenner model

K∗ = σ̄ (ω)

ε̄(ω)
= q0 + q1(iω)α

1 + q2(iω)α

= q0 + q1q2ω
2α + (q1 + q0q2)ω

α cos απ
2

1 + 2q2ωα cos απ
2 + q2

2ω2α
+ (q1 − q0q2)ω

α sin απ
2

1 + 2q2ωα cos απ
2 + q2

2ω2α
i, (12)

where q0 = E1E2
E1+E2

, q1 = E2
1

E1+E2
(τε)

α , q2 = E1
E1+E2

(τσ )α .
It is assumed that the pressure p on a certain point on the foundation surface is propor-

tional to the settlement displacement w at that point, namely,

p(x, t) = Kw(x, t) (13)
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in the Winkler foundation model. The deformation of soil under the action of a beam is
discontinuous according to the Winkler foundation model. In order to make up for the short-
comings of the Winkler foundation model, the Pasternak foundation model considers the
existence of a shear layer on the basis of the Winkler foundation model. A compressible
layer and a shear layer act together to provide a constrained reaction force on the beam,
namely,

p(x, t) = Kw(x, t) − Gp · ∇2w(x, t), (14)

where K is the foundation reaction coefficient, also known as the foundation compressibility
coefficient, GP is the foundation shear coefficient, and ∇2 = ∂2

∂x2 is the Laplace differential
operator. If the compressible layer of the foundation is regarded as viscoelastic, the shear
layer of the foundation is still elastic. Then, the supporting force of the fractional viscoelastic
Pasternak foundation can be expressed as

p(x, t) = K∗

H
w(x, t) − GP · ∇2w(x, t). (15)

3 Modified Timoshenko beam mounted on the fraction-order
viscoelastic Pasternak foundation

The motion equations of a classic Timoshenko beam are

κAG

(
∂w

∂x
− ϕ

)
= −EI

∂2ϕ

∂x2
+ ρI

∂2ϕ

∂t2
, (16a)

κAG

(
∂2w

∂x2
− ∂ϕ

∂x

)
− p(x, t) = ρA

∂2w

∂t2
. (16b)

The modified Timoshenko beam ignores the moment of inertia due to shear deformation and
the motion equations can be modified as:

κAG

(
∂w

∂x
− ϕ

)
= −EI

∂2ϕ

∂x2
+ ρI

∂3w

∂x∂t2
, (17a)

κAG

(
∂2w

∂x2
− ∂ϕ

∂x

)
− p(x, t) = ρA

∂2w

∂t2
, (17b)

where, κ is the cross section correction coefficient. ϕ is the rotation angle of the cross sec-
tion, I is the moment of inertia of the cross section, A is the cross-sectional area, E is the
elastic modulus, G is the shear modulus, ρ is the volume density, and p(x, t) is the sup-
porting force of the foundation. After elimination of ϕ, the motion equations with respect to
transverse displacement w can be obtained as

EI
∂4w

∂x4
− ρI

∂4w

∂x2∂t2
− EI

κAG

∂2

∂x2

(
p(x, t) + ρA

∂2w

∂t2

)
= −p(x, t) + ρA

∂2w

∂t2
, (18)

EI
∂4w

∂x4
− ρI

∂4w

∂x2∂t2
− EI

κAG

∂2
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(
p(x, t) + ρA

∂2w

∂t2

)

+ ρI

κAG

∂2

∂t2

(
p(x, t) + ρA

∂2w

∂t2

)
= −p(x, t) + ρA

∂2w

∂t2
. (19)
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Comparing the equations of motion of the classical Timoshenko beam (corresponding to
Eq. (19)) with those of the modified Timoshenko beam (corresponding to Eq. (18)), it is
noted that the first three terms on the left of the equals sign are the same. The first term
corresponds to the basic theory of Euler beams. The second term is the additional shear stress
corresponding to the moment of inertia caused by bending deformation. The third term is
the additional shear stress caused by shear deformation. It can be seen that the fundamental
difference between the two models is whether the moment of inertia caused by the shear
deformation of the beam element is considered. The extra term in Eq. (19) results from

replacing the term ρI
∂2ϕ

∂t2 in Eq. (16a) by the term ρI ∂3w

∂x∂t2 .
Inserting Eq. (15) into Eqs. (18) and (19) leads to the motion equations of the classic and

modified Timoshenko beam mounted on a fraction-order viscoelastic Pasternak foundation:
(

1 + GP

κAG

)
∂4w

∂x4
− ρ

E

(
1 + E

κG

)
∂4w

∂x2∂t2
−

(
K∗

HκAG
+ GP

HEI

)
∂2w

∂x2

+ ρA

EI

∂2w

∂t2
+ K∗

HEI
w = 0, (20)

(
1 + GP

κAG

)
∂4w

∂x4
+ ρ2

κEG

∂4w

∂t4
− ρ

E

(
1 + E

κG
+ GP

κAG

)
∂4w

∂x2∂t2

−
(

K∗

HκAG
+ GP

EI

)
∂2w

∂x2
+ ρA

EI

(
1 + K∗I

HκA2G

)
∂2w

∂t2
+ K∗w

HEI
= 0. (21)

4 Wave solutions of Timoshenko beams on a fractional viscoelastic
Pasternak foundation

Assume the wave solution of a beam

w(x, t) = A1e
i(kx−ωt), (22)

where k is the wavenumber, and A1 is the amplitude of polarization. Inserting Eq. (22) into
Eq. (20) leads to

ak4 + (
b − dω2

)
k2 − sω2 + g = 0, (23)

where a = (1 + GP

κAG
), b = ( K∗

HκAG
+ GP

EI
), d = ρ

E
(1 + E

κG
), s = ρA

EI
, g = K∗

HEI
.

From Eq. (23), two groups of complex wavenumbers for the modified Timoshenko beam
are obtained as

k1 = −k2 =
√

−(b − dω2) + √
(b − dω2)2 − 4a(g − sω2)

2a
= kr

1 + ikm
1 , (24a)

k3 = −k4 =
√

−(b − dω2) − √
(b − dω2)2 − 4a(g − sω2)

2a
= kr

3 + ikm
3 . (24b)

The wave solution can be expressed as

w(x, t) = (
C1e

−km
1 xeikr

1x + C2e
km

1 xe−ikr
1x + C3e

−km
3 xeikr

3x + C4e
km

3 xe−ikr
3x

)
e−iωt . (25)
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The wave speeds of the two traveling flexural waves are

c1 = ω

kr
1

, c2 = ω

kr
3

. (26)

The real part of the complex wavenumber is actually the wavenumber, while the imaginary
part of the complex wavenumber reflects the attenuation properties, namely, the attenuation
coefficient associated with distance.

Similarly, the dispersion equation of a classic Timoshenko beam is obtained as

ak4 + (
b − d1ω

2
)
k2 + mω4 − s1ω

2 + g = 0. (27)

The complex wavenumbers are

k1 = −k2 =
√

−(b − d1ω2) + √
(b − d1ω2)2 − 4a(mω4 + g − s1ω2)

2a
, (28a)

k3 = −k4 =
√

−(b − d1ω2) − √
(b − d1ω2)2 − 4a(mω4 + g − s1ω2)

2a
, (28b)

where, d1 = ρ

E
(1 + E

κG
+ GP

κAG
), s1 = ρA

EI
(1 + K∗I

HκA2G
), m = ρ2

κEG
.

5 Vibration solution of a Timoshenko beam on a fractional viscoelastic
Pasternak foundation

Assume the vibration solution

w = W(x)e−iωt . (29)

Consider the simply supported boundary conditions at both ends, namely,

w(x)|x=0 = 0,

(
∂2w(x)

∂x2

)∣
∣∣
∣
x=0

= 0 (30a, b)

w(x)|x=l = 0,

(
∂2w(x)

∂x2

)∣∣
∣∣
x=l

= 0. (30c, d)

Let Wn(x) = sin nπ
l
x (n = 1,2,3, . . . ). In order to reflect the attenuation properties of free

vibration of a Timoshenko beam on a viscoelastic foundation, assume the natural frequency
is complex valued, i.e., ωn = ωr

n + iωm
n . The real part of the complex-valued natural fre-

quency is actually the natural frequency, while the imaginary part is the attenuation coeffi-
cient associated with time. Therefore, the vibration solution can be expressed as

w(x, t) = sin

(
nπ

l
x

)
e−iωnt . (31)

Inserting Eq. (31) into Eq. (20) leads to the frequency equation

[
−d

(
nπ

l

)2

− s

]
ω2

n +
[
a

(
nπ

l

)2

+ b

](
nπ

l

)2

+ g = 0. (32)
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From Eq. (32), we obtain the natural frequency of a modified Timoshenko beam on a vis-
coelastic Pasternak foundation

ωn =
√

a( nπ
l
)4 + b( nπ

l
)2 + g

d( nπ
l
)2 + s

. (33)

Similarly, the natural frequency of a classic Timoshenko beam can be obtained as

ωn =

√√√
√ [d1(

nπ
l
)2 + s1] ±

√
[d1(

nπ
l
)2 + s1]2 − 4m[a( nπ

l
)4 + b( nπ

l
)2 + g]

2m
. (34)

By comparison of the expressions of natural frequency of modified and classic Timo-
shenko beams, i.e., Eqs. (33) and (34), it is noted that the classic Timoshenko beam has the
second frequency spectrum, while the modified Timoshenko beam has only one frequency
spectrum. Therefore, the appearance of the second frequency spectrum is due to the fact
that the moment of inertia caused by the shear deformation is taken into account. In fact,
there are two kinds of vibration mode, i.e., longitudinal shear mode and bending mode, for
the hinged–hinged Timoshenko beam. The two vibration modes interfere and result in two
distinct spectra of frequency, where the bending mode dominates in the first spectrum of fre-
quency, while the longitudinal shear mode dominates in the second spectrum of frequency.
Furthermore, deformations due to shear and bending are of the same phase for the first spec-
trum but antiphase for the second spectrum. The modified Timoshenko beam model can
eliminate the second frequency spectrum. It should be pointed out that only the hinged–
hinged boundary condition is considered in the present work. The end-boundary condition
can be hinged, clamped, elastic and free and different combinations of them at the two ends.
Moreover, the boundary conditions from the foundation soil are also not taken into account.
The boundary conditions from the foundation soil are much more complicated and in gen-
eral, include the contact region, the lift-off region and free soil region, and were studied in
Nobili (2012) in detail.

6 Results and discussions

Consider a steel beam whose mechanical and geometric parameters are as follows: cross-
sectional area A = 7.64 × 10−3 m2, elastic modulus E = 2.06 × 1011 N/m2, shear modulus
G = 0.75 × 1011 N/m2, mass density ρ = 7.85 × 103 Kg/m2, shear correction coefficient
κ = 5/6, moment of inertia I = 1.579×10−4 m2, and thickness of foundation H = 1 m. The
viscoelastic coefficients of the foundation are: E1 = 3.5 × 107 N/m2, E2 = 2.5 × 107 N/m2,
η = 2.0 × 104 N · s/m2, and the shear coefficient of the foundation is GP = 1 × 107 N/m2.

6.1 The complex modulus of the fraction-order viscoelastic foundation

It is noted from Fig. 1 that the viscoelastic foundation has different moduli in the lower
and higher frequency regions. The modulus is obviously dependent upon the frequency in
a special frequency region. Outside of this frequency region, the modulus is nearly inde-
pendent of the frequency. We can call the special frequency region the frequency-sensitive
region. The attenuation coefficient shows a dramatic increase within the frequency-sensitive
region and can largely be ignored outside of the frequency-sensitive region. The fraction
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Fig. 1 The real part and imaginary part of the complex modulus of a fractional-order viscoelastic foundation
(fractional-order Zenner model) for different fraction orders. (a) The real part; (b) The imaginary part

Fig. 2 The real part and imaginary part of the complex modulus of a fractional-order viscoelastic foundation
(fractional-order Zenner model) for different viscosity coefficients. (a) The real part; (b) The imaginary part

order has an obvious influence not only on the amplitude of the modulus and attenuation
but also on the range of the frequency-sensitive region. This is why the fraction-order vis-
coelastic model is better than the integer-order viscoelastic model. Hence, the fraction-order
viscoelastic model can model the history-dependent mechanical behavior more elaborately
by adjusting the fraction order. The integer-order viscoelastic model is only a limiting case
of the fraction-order viscoelastic model and can be recovered by the fraction-order model.
From Fig. 2, it is observed that the viscosity coefficient mainly influences the central lo-
cation of the frequency-sensitive region. Therefore, we will mainly discuss the influences
of the fraction order and the viscosity coefficient on the wave propagation and vibration
characteristic in the following sections.

6.2 Dispersion and attenuation of flexural waves

There are two traveling flexural waves in the Timoshenko beam. The propagation speed of
the first traveling flexural wave is not dependent upon the frequency monotonously, while
the propagation speed of the second traveling flexural wave is nearly monotonously de-
pendent upon the frequency. There is a critical frequency existing for the first traveling
flexural wave. The propagation speed of the first traveling flexural wave reaches a local
peak at the critical frequency. The critical frequency can be estimated by nω = √

g/s.
It is noted from Fig. 3 that the fraction order of the viscoelastic model has an obvious
influence upon the local peak of the first traveling flexural wave. After the critical fre-
quency, the propagation speed of the second traveling flexural wave becomes clearly de-
pendent upon the fraction order. The influences of the viscosity coefficient are shown in
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Fig. 3 Dispersion curves of
traveling flexural waves in the
modified Timoshenko beam
mounted on a fraction-order
viscoelastic Pasternak foundation
with different fractional orders.
(a) The first traveling wave;
(b) The second traveling wave

Fig. 4 Dispersion of traveling
flexural waves in the modified
Timoshenko beam on a
fractional-order viscoelastic
Pasternak foundation with
different viscosity coefficients.
(a) The first traveling wave;
(b) The second traveling wave

Fig. 5 Attenuation coefficients of
traveling flexural waves in the
modified Timoshenko beam on a
fraction-order viscoelastic
Pasternak foundation with
different fractional orders.
(a) The first traveling wave;
(b) The second traveling wave

Fig. 6 Attenuation coefficients of
traveling flexural waves in the
modified Timoshenko beam on a
fraction-order viscoelastic
Pasternak foundation with
different viscosity coefficients.
(a) The first traveling wave;
(b) The second traveling wave

Fig. 4. It is noted that the viscosity coefficient mainly affects the location of the local
peak. In other words, the critical frequency is mainly determined by the viscosity coef-
ficient. Figures 5 and 6 show the influences of the fraction order and the viscosity co-
efficient upon the attenuation coefficient. It is noted that the fraction order has differ-
ent influences compared with the viscosity coefficient. This observation indicates that the
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Fig. 7 Waveforms of the first
traveling wave in the modified
Timoshenko beam mounted on a
fractional-order viscoelastic
Pasternak foundation with
different fractional orders and
viscosity coefficients. (a) The
influences of fractional orders;
(b) The influences of viscosity
coefficients

Fig. 8 Comparison of dispersion
curves of the classical and
modified Timoshenko beams on
the fractional-order viscoelastic
Pasternak foundations. (a) The
first traveling wave; (b) The
second traveling wave

attenuation feature can also be described elaborately by adjusting the fraction order. In
order to illustrate the attenuation feature of wave propagation, Fig. 7 shows the wave-
form of the first traveling flexural wave at different fraction order and viscosity coeffi-
cients.

Figure 8 shows the comparison of propagation speeds of two traveling flexural waves
in the modified and classic Timoshenko cases. It is noted that the differences are evident
only at higher frequencies. At lower frequencies, the propagation speeds predicted by the
two beam models are nearly the same. There is a local peak for the first traveling wave for
the two beam models. The corresponding critical frequencies are determined by ω = √

g/s

for the modified Timoshenko beam and by ω =
√

(s1 +
√

s2
1 − 4mg)/(2m) for the classic

Timoshenko beam.

6.3 Complex natural frequency of a Timoshenko beam

Tables 1 and 2 show the complex-valued natural frequencies of modified and classic Timo-
shenko beams with simple support at both ends. It is observed that the real part decreases,
while the imaginary part increases, when the fraction order increases. This implies that the
natural frequency decreases and the attenuation coefficient increases for increasing fraction
order. There is a second frequency spectrum existing for the classic Timoshenko beam. It
is found that the natural frequencies of the second spectrum are not sensitive to the fraction
order but the attenuation coefficients are still sensitive to the fraction order.

Tables 3 and 4 show the influences of viscosity coefficients on the complex-valued natural
frequency of modified and classic Timoshenko beams with simple supports at both ends. It
is observed that both the natural frequencies and the attenuation coefficients increase when
the viscosity coefficients increase. The natural frequencies of the second spectrum are also
not sensitive to the viscosity coefficients.
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Table 1 Complex-valued natural
frequency of simply supported
modified Timoshenko beams on
the fractional-order viscoelastic
Pasternak foundation (rad/s)

Fraction order First order Second order Third order

α = 0.2 616.4 + 19.6i 709.3 + 16.9i 946.0 + 12.6i

α = 0.5 601.1 + 48.5i 695.7 + 41.6i 935.6 + 30.7i

α = 0.8 577.2 + 76.2i 674.6 + 64.8i 919.6 + 47.1i

Table 2 Complex-valued natural frequency of simply supported classic Timoshenko beams on the fractional-
order viscoelastic Pasternak foundation (rad/s)

n α

α = 0.2 α = 0.5 α = 0.8

1 First spectrum 616.4 + 19.7i 601.1 + 48.5i 577.4 + 76.2i

Second spectrum 1.97e+04 + 1.24e−03i 1.97e+04 + 2.98e−03i 1.97e+04 + 4.50e−03i

2 First spectrum 709.4 + 17.0i 695.8 + 41.6i 674.7 + 64.8i

Second spectrum 2.00e+04 + 4.67e−03i 2.00e+04 + 1.13e−02i 2.00e+04 + 1.70e−02i

3 First spectrum 946.5 + 12.6i 936.1 + 30.7i 920.0 + 47.1i

Second spectrum 2.04e+04 + 9.59e−03i 2.04e+04 + 2.31e−02i 2.04e+04 + 3.49e−02i

Table 3 Complex-valued natural
frequency of simply supported
modified Timoshenko beams on
the fractional-order viscoelastic
Pasternak foundation (rad/s)

Viscosity coefficient
(N · s/m2)

First order Second order Third order

η = 2 × 104 516.1 + 21.8i 624.5 + 17.9i 884.8 + 12.5i

η = 5 × 104 525.6 + 52.4i 631.8 + 43.3i 889.5 + 30.5i

η = 8 × 104 541.3 + 78.1i 644.1 + 65.3i 897.6 + 46.4i

Table 4 Complex-valued natural frequency of simply supported classic Timoshenko beams on the fractional-
order viscoelastic Pasternak foundation (rad/s)

n η

η = 2 × 104 η = 5 × 104 η = 8 × 104

1 First spectrum 516.1 + 21.8i 525.6 + 52.4i 541.3 + 78.1i

Second spectrum 1.97e+04 + 1.15e−03i 1.97e+04 + 2.82e−03i 1.97e+04 + 4.32e−03i

2 First spectrum 624.6 + 17.9i 631.9 + 43.3i 644.2 + 65.3i

Second spectrum 2.00e+04 + 4.35e−03i 2.00e+04 + 1.06e−02i 2.00e+04 + 1.63e−02i

3 First spectrum 885.2 + 12.6i 890.0 + 30.5i 898.0 + 46.4i

Second spectrum 2.04e+04 + 8.94e−03i 2.04e+04 + 2.18e−02i 2.04e+04 + 3.35e−02i

In order to illuminate the influences of the fraction order and viscosity coefficients on
the natural frequency and attenuation coefficient more clearly, Fig. 9 shows the first three
natural frequencies at different fraction orders and viscosity coefficients.
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Fig. 9 Natural frequencies of the
first three orders of the
Timoshenko beam on a fractional
viscoelastic Pasternak foundation
with different fractional orders
and viscosity coefficients.
(a) Influences of fraction order;
(b) Influences of viscosity
coefficients

7 Conclusions

The rheological behavior of foundation soil is usually very complicated due to the history-
dependent feature and we need to introduce many parameters to describe the mechanical
behavior of the foundation. The fraction-order viscoelastic model is more flexible than the
integer-order viscoelastic model because the definition of the fraction-order derivative in-
cludes the convolution integral of time, which is consistent with the history-dependent fea-
ture of rheological behavior. The fraction-order Zenner model is used in the present work
to study the wave propagation and the free vibration of a Timoshenko beam on the frac-
tional viscoelastic Pasternak foundation. Numerical examples are also provided and param-
eter studies are performed to show the influences of the fraction order. Based upon the
analytic formulation and the numerical results, the following conclusions can be drawn:

(1) There is a frequency-sensitive region for the fraction-order Zenner model. When the
frequency falls within the frequency-sensitive region, the imaginary part of the complex
modulus increases drastically. The fraction-order viscoelastic foundation will show ev-
ident dissipation behavior. Outside of the frequency-sensitive region, the dissipation
effects can be ignored.

(2) There are two traveling flexural waves existing in both classic and modified Timoshenko
beams. The complex-valued wavenumbers are caused by the dissipation effects of the
viscoelastic foundation and the two traveling flexural waves display dispersion and at-
tenuation features.

(3) The dissipation effects of the viscoelastic foundation also result in the complex-valued
natural frequency. The real part of the complex natural frequency is the real natural
frequency, while the imaginary part is actually the attenuation coefficient associated
with time.

(4) There is a second frequency spectrum existing in the classic Timoshenko beam with
simple supports at both ends. The second frequency spectrum is caused by the moment
of inertial due to shear deformation and can be removed by the modified Timoshenko
beam model that ignores the moment of inertial due to shear deformation and retains
only the moment of inertial due to bending deformation.

(5) Except for the viscosity coefficient, the fraction order has evident influences upon the
dispersion and the attenuation of flexural waves and the complex-valued natural fre-
quency. This indicates that the fraction-order viscoelastic foundation model is more
flexible than the integer-order model to describe the viscoelastic behavior.
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