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Abstract
In this work, we present the predictive modeling for ductile creep damage by implementing
the modified Robinson–Rousselier constitutive relations and extended finite element method
(XFEM) to treat creep rupture in the void-crack growth problem. We develop an attractive
new model, called the modified Robinson–Rousselier (MRR) model, to predict the creep
damage behavior in terms of micromechanical damage due to void growth in the ductile
materials. The MRR model interface executes an implicit integration scheme in the UMAT
subroutine of the Abaqus/Standard module. The radial return method is performed to in-
tegrate the viscoplastic constitutive equation in finite element formulation. The numerical
models in 2D and 3D elements are implemented to identify the developed subroutines’ cor-
rectness, and the results are compared with the exact solution for verification. Furthermore,
the tensile creep tests on the smooth bars specimen are modeled and tested at a constant tem-
perature of 625 ◦C with different stress levels. The results show that the maximum values of
stress, creep strain, and void damage are detected near the tensile specimen center, where the
necking process is formed. Furthermore, the results are compared with the literature to verify
and evaluate the developed model and show a reasonable agreement between both results.
Then this analysis is extended by introducing crack development in the specimen based on
the XFEM technique. As a result, a new model, called the modified Robinson–Rousselier
XFEM (MRRX) model is proposed, and the results are compared with the results found in
the literature, which showed the evolutions of void growth in the crack path. Therefore the
MRRX model solution is proven to have the potential to predict the creep damage behavior
in terms of the void-crack growth in the ductile material structures.
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1 Introduction

In recent years, much effort has been devoted to the development of design criteria for struc-
tural components operating under extreme mechanical, thermal, and environmental loading
conditions. Structural components, for example, in a nuclear power plant, piping, automo-
tive and aerospace applications, are exposed to the component material failure due to creep
damage during operation. Creep failure is the progressive time-dependent and permanently
deform of metals under load and elevated temperature conditions, and the rate of creep de-
termines the service life of given materials in engineering. Cavity growth mechanisms have
been used to model the damage resulting from the deformation of creep. The nucleation
and growth process of cavities varies under different applied loadings and temperatures.
The voids normally nucleate around second-phase particles and within the grains in cold
forming processes of metals.

Numerous works have been carried out previously that dealt with predictive modeling
of creep damage. For example, Becker et al. (2002) presented the damage behavior of uni-
axial, biaxial, triaxial, and multimaterial creep using a finite element formulation within
continuum damage mechanics (CDM) approach. Followed by Hyde et al. (2006), who per-
formed a finite element analysis on P911 pipes under creep damage conditions, an Abaqus
user subroutine was incorporated with the modified Kachanov–Rabotnov creep constitutive
damage equation to predict the damage and service life of 10CrMo910 heat-resistant steel
(Geng et al. 2009). Elsewhere, Roy et al. (2015) proposed a probabilistic model based on
discontinuous Markov process where the damage parameter of creep cavitation/voids has
been introduced for creep damage assessment.

In the early 1990s, the Robinson creep model was introduced, which represents the creep
damage theory for metallic composites with strong fibers. The creep rupture model has been
established as an extension of continuum damage mechanics and included an isochronous
damage function, which depends on the invariants specifying the local maximum transverse
tension and maximum longitudinal shear stress. The first application was made to a thin-wall
pressure vessel, and it was reported that the model has a potential as a means of optimizing
designs of composite structures where creep and creep rupture are life-limiting (Robinson
et al. 1992). After that, NASA Lewis Research Center and Pratt and Whitney Aircraft carried
out a test based on the model for estimating the failure pressure of SiC/ Ti test ring subjected
to a monotonically increasing pressure at 427 ◦C (Robinson and Pastor 1992). The Robinson
model has become a suitable benchmark for assessing the applicability accuracy of struc-
tural analysis and failure prediction methods for metallic composites. Some modification
has been made in the model to enhance the solution method such as extension formulation
with Bodner’s model, representing material anisotropy under hydrostatic stress (Robinson
et al. 2003) and with Norton model for predicting creep deformation in transversely isotropy
materials (Robinson and Binienda 2001).

To complete the calculations used to estimate the creep deformation and failure life of
load-bearing components, it is necessary to have constitutive equations that relate creep
strain rates to the potential function and the void damage state of the material. Thus, based
on the CDM approach to developing the solution model for a prediction on ductile frac-
ture, Rousselier (2001) proposed an application of linear stability analysis of a perturbation
to porous metal plasticity and thermoplasticity. Rousselier et al. (1988) explained in more
detail the Rousselier model methodology for ductile fracture analysis based on a local ap-

1P91 is a type of alloy steel widely used in power and chemical plant applications



Mechanics of Time-Dependent Materials (2023) 27:1069–1095 1071

proach of fracture and damage mechanics. They proved that this model has the potential to
characterize several structural sheets of steel and attempted to predict the effects of inclusion
content and temperature as well as crack initiation and growth. Azinpour et al. (2021) pro-
posed several extensions of the Rousselier model for using the phase-field diffusive crack
approach by predicting the crack evolution in materials containing voids. The Rousselier
model was calibrated against the ductile fracture behavior to predict ductile crack extension
under a combination of primary and residual weld stress in the bending test (Arun et al.
2017).

The existence of crack growth in materials promotes a primary mode of material failure.
Questions on how crack growth affects the strength of the material structure need to be an-
swered. Much research efforts need to be dedicated to developing appropriate crack growth
studies of specific materials either by experimental work or mathematical representation
model. For example, the fracture mechanisms based on the crack in the aluminum sheet for
the gas-forming process were investigated using an experimental and FE simulation, and the
results were successfully compared between both approaches (Gohari et al. 2013). The ex-
tended finite element method (XFEM) was used as an effective model to provide advantages
in crack growth study for crack modeling (Sanchez-Rivadeneira et al. 2020). This technique
is implemented with the discontinuous Heaviside step function. The two-dimensional lin-
ear elastic asymptotic crack-tip displacement fields are used to account for the crack. This
enables the domain to be modeled by finite elements without explicitly meshing the crack
surfaces (Dimitri et al. 2021). This method is often chosen in the study of determining the
ductile fracture crack and also for the creep crack growth development. For example, the
XFEM solution was performed with Liu–Murakami damage model, which was capable of
evaluating the creep cracking propagation for various materials at different temperatures
(Pandey et al. 2019).

As a matter of fact, the connection between the Rousselier model and XFEM is fasci-
nating to explore, which can give a new contribution to a knowledge of ductile fracture
mechanics, especially for predicting the material behavior of the ductile materials in terms
of void-crack growth relation (Sprave and Menzel 2020). It has been proven by Ahmad et al.
(2019), who proposed a new model called the RuX model, which is capable to predict the
voids damage and cracks extension in the ductile materials. Further investigation has been
carried out to analyze the void-crack growth in three-dimensional purpose, where the alu-
minium wingbox aircraft structure was modeled to pursue the structural integrity assessment
based on the RuX model (Ahmad et al. 2018).

Furthermore, it is a good opportunity to take this advantage in solving the material
structure problems in creep failure behavior. Until now, there are no published findings
that promote the numerical solution of the void-crack growth relation in the creep dam-
age problem. Therefore this work presents a valuable contribution to engineering practice,
especially for ductile creep damage mechanics analysis, where the modified Robinson–
Rousselier (MRR) model is introduced to represent the creep damage behavior in void
growth form. The analysis is extended for solving the crack development in the material
where the XFEM is used to account for the crack existence, in which a new model called
the modified Robinson–Rousselier XFEM MRRX model has been proposed to complete
the investigation of void-crack growth mechanism in creep damage analysis. To the authors’
knowledge, this is the first contribution in ductile failure analysis where the micromechan-
ical damage of void-crack relation is used to represent the damage in the constitutive of
creep modeling solution, which can give some advantages for the development of engineer-
ing knowledge.
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2 General framework

2.1 Robinson creep model

In 1992, Robinson and Binienda (2001), Robinson et al. (2003), Haque and Steward (2019)
proposed the following viscoelasticity model for creep behavior:

ε̇T
ij = ε̇e

ij + ε̇c
ij , (1)

where ε̇T
ij denotes the total of strain rate, and ε̇e

ij and ε̇c
ij are the elastic and creep deformation

rates. The creep strain rate is given as

ε̇c
ij = 3

2
ε̇o

(
φ

σo

)n−1

Γij , (2)

Γij = ∂φ

∂σij

(3)

where Γij is the flow rule, φ is the dissipation potential function, σo is a reference stress, ε̇o

and n are the material parameters, and σij are the components of stress.

2.2 Rousselier’s damage model

To estimate the onset of yielding of the material point (Ganjiani 2018; Boyina et al. 2017;
Jin and Arson 2018), which shows the presence of the void volume fraction damage, the
Rousselier model is used to consider as an internal state variable in the material constitutive
model. Areias et al. (2013), Seidenfuss et al. (2011) proposed the classical plastic potential

φ = σeq

ρ
− R

(
εeq

) + B (β)De

(
σm
ρσ1

)
, (4)

where σeq and σm are the von Mises equivalent and mean stresses, respectively, D and σ1 are
Rousselier material parameters, ρ is the relative density, β is the internal variable describing
damage, and εeq is the equivalent plastic strain, which represents hardening of the material.

By substituting ρ = 1 − f and B (β) = σ1f into Eq. (4) the Rousselier plastic potential
can be written as

φ = σeq

1 − f
− R

(
εeq

) + Dσ1f e

(
σm

(1−f )σ1

)
, (5)

where f is the void volume fraction damage.
The void growth can be obtained as

fn+1 = fn + 
fn, (6)


fn+1 = 
fn + (1 − fn)
εv − 
fn

1 + 
εv

, (7)

where 
f is the void volume fraction increment, 
εv is the volumetric creep strain incre-
ment, and n is the number of iteration.
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2.3 Modified Robinson–Rousselier creep damage model

Firstly, the dissipation potential function φ in the Robinson model needs to be replaced with
the potential function, which represents the behavior of ductile materials. In the modified
Robinson–Rousselier (MRR) model equation, the parameter φ in the Robinson model is
substituted with the dissipation potential function of the Rousselier damage model to acquire
the correlation between both models. The general form of the parameter φ is given by

φ = σeq

1 − f
− R

(
εeq

) + Dσ1f e

(
σm

(1−f )σ1

)
, (8)

where D and σ1 are the material properties of the Rousselier model.
The associated flow rule Γij is derived according to volumetric and deviatoric parts as

Γij = ∂φ

∂σij

=
(

∂φ

∂p̃

∂p̃

∂σij

)
V

+
(

∂φ

∂q̃

∂q̃

∂σij

)
D

(9)

= 1

3
dεp̃δij + dεq̃nij , (10)

where dεp̃ and dεq̃ are the variables corresponding to the volumetric and deviatoric creep
strain increments.

By substituting Eqs. (8) and (9) into Eq. (2) the creep strain rate for the modified
Robinson–Rousselier model equation is defined as

ε̇c
ij = 3

2
ε̇o

[
1

σo

(
σeq

1 − f
− R

(
εeq

) + Dσ1f e

(
σm

(1−f )σ1

))]n−1 [
1

3
dεp̃δij + dεq̃nij

]
, (11)

where nij = 3
2

Sij

q̃
and ε̇T

ij = ε̇e
ij + ε̇c

ij .
Equation (11) illustrates the relationship of the Rousselier damage model in a creep con-

dition, where the parameter f of the void volume fraction will influence the existence of
creep strain rate in the modeling of structural materials. This is the first contribution in
ductile fracture damage analysis that introduced the void volume fraction f as a damage
parameter in the creep modeling.

3 Creep crack growth modeling

Creep crack growth (CCG) is a principal failure mechanism of components operating at el-
evated temperature, thus requiring safe and accurate methods to predict such a reliability
of components. The CCG analysis is performed to predict crack deformations and evaluate
lifetime on the structural or component response. Nikbin et al. (1984) proposed the NSW
model for the CCG based on the size of creep zone, which exists ahead of the crack tip dam-
age accumulates, and creep damage was measured in terms of creep ductility exhaustion.
This model considered that the material first experiences creep damage when it enters the
process zone and the crack extends when the creep ductility exhausts at the crack tip. Nev-
ertheless, the stress state ahead of the crack tip during the crack propagation was ignored in
this model, which led to a conservative prediction. Therefore a modified NSW model was
proposed, which considers the dependence of creep strain on both the crack tip angle Θ and
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the creep stress exponent n, in addition to the stress state of the crack tip (Yatomi et al. 2008;
Zhao et al. 2012).

The crack tip opening displacement (CTOD) method was implemented in compact-
tension (CT) specimens for CCG for a Ni-base superalloy at 700 ◦C (Xia et al. 1996), Alloy
718 at 923 K, and austenitic stainless steel 0Cr18Ni9 at 550 ◦C (Chen et al. 2011). This
method was used to control the crack extension when the CTOD value becomes equal to the
critical values. The crack tip was allowed to advance by one element, and the stepwise was
repeated until it reached maximum crack length. This method was capable of measuring at
a specific distance from the crack tip and the amount of crack growth.

A special algorithm called the “Breakable element” was employed for the prediction of
the crack growth in a solid subject to combined thermoelastic-plastic-creep load (Hsu and
Zhai 1984). The versatility of this concept provides detailed stress and strain distributions,
the kinematics of the inelastic zones, and the profile of the crack growth. Moreover, a mod-
ified creep ductility exhaustion model called the Manjoine multiaxial creep was conducted
for numerical analysis of CCG in 316 stainless steel at 600 ◦C (Wen et al. 2013). This model
crack growth was calculated by adding up the length of each completely damaged element
ahead of the crack tip.

In the last decade, XFEM was used as an effective model to provide advantages in creep
crack growth study, which has been discussed in the next section. From the previous ap-
plication, the XFEM was used to simulate the creep crack growth in CT and CTS for P91
steel and 316 stainless steel at high temperature (Pandey et al. 2019). Also, the XFEM was
implemented to model crack and crack growth behavior in the power-law of creep materi-
als (Meng and Wang 2014). In XFEM, with the enrichment of the crack tip, the basic FE
element may get converted into a tip element before it is converted into a split element.
Therefore the element type may change as the crack grows (Kanth et al. 2020).

3.1 XFEM technique

This technique is numerical modeling of crack propagation where special functions are
added to the finite element approximation using the partition of unity framework (Wang
et al. 2016). The approximation for a displacement vector function u with the partition of
unity enrichment is (Karmakov et al. 2020)

u =
n∑

i=1

Ni (x)ui +
m∑

j=1

Nj (x)H (ξ) aj +
mt1∑
k=1

Nk (x)

mf∑
α=1

F 1
α (x) b

α1
k

+
mt2∑
k=1

Nk (x)

mf∑
α=1

F 2
α (x) b

α2
k , (12)

where Ni (x) is the nodal shape function, Nj (x) and Nk (x) are the new set of shape func-
tions associated with the enrichment part of the approximation, ui is the nodal displacement
vector associated with the continuous part of the finite element solution, H(ξ) represents
a discontinuous jump function across the crack surfaces, aj , b

α1
k , and b

α2
k are the enriched

nodal degree of freedom vector for modeling crack faces and two crack tips, respectively, n

is the number of nodes for each finite element, and m is the set of nodes that have the crack
face (but excludes the crack tip) in their support domain, whereas mt1 and mt2 are the sets
of nodes associated with crack tips 1 and 2 in their influence domain, and F i

α (x) , i = 1,2,
represent mf as the crack tip enrichment functions. Theoretically, the first term applies to all
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nodes in the model, and the second term is for nodes whose shape functions support cross
by the crack faces. Meanwhile, the third and fourth terms are only for nodes crossing at the
crack tip.

The Heaviside function H(ξ) across the crack surfaces can be defined as a sign function:

H (ξ) =
{

1 if ξ ≥ 0,

−1 otherwise,
(13)

where ξ = n.(x − x∗), is the local axis perpendicular to the crack growth direction, x is a
Gauss point, x∗ is the point on the crack closest to x, and n is the unit outward normal to the
crack at x. Moreover, the isotropic asymptotic crack tip function Fα (r, θ) is given as

Fα (x) = √
r

[
sin

Θ

2
, cos

Θ

2
, sinΘ sin

Θ

2
, sinΘ cos

Θ

2

]
, (14)

where (r,Θ) is the polar coordinate system with its origin at the crack tip.
It should be noted that for XFEM elements, the location and the number of Gauss points

between load increments may be changed as the crack propagates. Hence the material state
variables must be updated consistently until the end of the load increment. However, in crack
propagation problems, the crack crosses over a whole element allowing it to work on plane
problems with a reduced integration element, so that the stresses and strains are calculated
in the center of the element (on the integration point). Also, if the crack tip is not within an
element, then the singularity of the stresses does not need to be considered in the definition
of the elemental displacements (Serna Moreno et al. 2015). Therefore the crack must prop-
agate across an entire element to avoid the need to model the stress singularity. Thus in the
crack propagation of plane problem the XFEM discontinuous displacement approximation
becomes

u =
n∑

i=1

Ni (x)ui +
m∑

j=1

Nj (x)H (ξ) aj . (15)

In the computational simulation of the XFEM formulation, the initiation and direction of
the crack extension have to be defined to simulate the degradation and eventual failure of
an enriched element. The failure mechanism consists of two notions, a crack initiation cri-
terion and a damage evolution law. A crack process begins when the stresses or the strains
(based on the damage of traction-separation law) satisfy specified crack initiation criteria.
After that, the damage evolution law (based on the displacement or energy release rate cri-
terion) describes the rate at which the cohesive stiffness is degraded once the corresponding
initiation criterion is reached.

4 Numerical framework

Since the last half-century, the finite element method is among the computational technique
that has successfully been used to analyze structures either in linear or nonlinear inelastic
behavior. The selection of the integration scheme is necessary for the accuracy and stability
of a solution, especially for nonlinear problems. Among many algorithms proposed in the
literature, the return mapping method is effective, robust, unconditionally stable, and the
most widely used for the problems involving plane strain and three-dimensional classical J2

elastoplasticity.
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This algorithm is based on the elastic predictor–plastic corrector, initially introduced in
1969 by Wilkins (1969). After several decades, Aravas (1987) proposed a framework of
the radial return algorithm with Gurson’s constitutive model by including the first invariant
for the hydrostatic stress into the corrector part. Furthermore, he also provided a formula
for calculating the consistent tangent moduli (CTM). Zhang (1995a,b) continued the mod-
ification by developing an explicit expression for the linearization moduli, which is close
to the point return mapping algorithm. Resulting from this solution, no matrix inversion is
therefore required to formulate the CTM expression. Arun et al. (2017) continues this sig-
nificant work by implementing the return mapping method with a continuum damage model
for a large-scale bending test on a welded steel pipe. Besides, Ahmad et al. proposed a new
constitutive model based on the return mapping method algorithm for predicting the void
damage-crack (Ahmad et al. 2019) and 3D model for aluminum wingbox aircraft structure
(Ahmad et al. 2018).

In this study, the numerical integration of the constitutive model relations is performed
using the Aravas–Zhang formulation (Bensaada et al. 2016; Zhang and Niemi 1995). In the
subroutine the integration scheme uses the radial return algorithm, and an implicit solution
method is formulated in the finite element method. The mathematical technique that im-
plements the stress update algorithm is reviewed for the pressure-dependent viscoplasticity
model based on the radial return method concept. For introducing the yield potential based
on the formation of void growth, the Rousselier model is used in the analysis. Meanwhile,
for creep material behavior, the Robinson model is revealed. Therefore the combination of
both models generates a new modification called the MRR model, which is able to pre-
dict the creep damage behavior of the material with respect to void growth formation as a
damage parameter.

The MRR model is implemented using an Abaqus UMAT subroutine, which acts as
an interface. To revise the algorithm process involved, the schematic flow diagram for the
MRR model is presented in Fig. 1. The UMAT subroutine is the user-defined material of the
ABAQUS/Standard module, which implements the implicit integration scheme to update
the model state. For integration of the viscoplastic constitutive equation, the radial return
algorithm (Aravas 1987; Zhang 1995a) is implemented involving two main parts, the elas-
tic predictor part and the plastic corrector part. By exact linearization of the algorithm and
decomposition of stresses into hydrostatic and deviatoric parts, a radial return mapping al-
gorithm has been developed for generalized pressure-dependent viscoplasticity models. To
solve the nonlinear equations of the increment of the stress tensor and the evolution of the
internal variables model, the Newton–Raphson method based on Taylor series expansion
is suggested (the derivations are shown in Appendix G). An implicit method has been for-
mulated for finite element solution from static equilibrium, and the solution is determined
iteratively until a convergence criterion is satisfied for each increment.

5 Data availability statement

The data supporting the findings of this study are available on request from the correspond-
ing author, [etheses online submission: https://etheses.whiterose.ac.uk/23930/]. The data are
not publicly available due to the contained information that could compromise the privacy
of research findings.

https://etheses.whiterose.ac.uk/23930/
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Fig. 1 Schematic flow diagram
of UMAT subroutine algorithm
for MRR model
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Fig. 2 2D-element under tension
problem

Table 1 Mechanical properties
and Rousselier parameters of 22
NiMoCr 3 7 steel material at
220 ◦C (Bass et al. 1993; Arun
et al. 2017)

Young modulus E (GPa) 198

Poisson ratio v 0.3

Yield strength σy (MPa) 495

Rousselier parameter σ1 (MPa) 578

Rousselier parameter D 2.62

Initial void volume fraction fo 0.0005

6 Numerical verification of subroutines

6.1 A single 2D-plane strain element under tension

To verify the correctness of the MRR formulation in the subroutine codes, a simple uniaxial
test is conducted based on a plane strain element with an element size of 0.4 × 0.4 mm2. A
four-node linear element is used in the FE analysis, and the loading and boundary condition
are shown in Fig. 2. The mechanical properties of the tested material are given in Table 1.
The exact solution of the problem is numerically obtained by Arun (2015) based on the
suggestion from Aravas (1987) and Zhang (1994). The forward Euler integration is used in
the solution, and the related differential equations for describing this problem are shown in
Appendix E. To ensure the accuracy of the exact solution, the integration is performed from
the initial yield strain to a strain of 1.0 using 200,000 increments (Arun 2015).

The results between the MRR subroutine solution and the exact solution are obtained
and plotted as shown in Figs. 3 and 4. From these figures the results data are compared
in terms of the values of the stresses and the void volume fractions as functions of the
logarithmic strains. Both results follow the same patterns of the graphs, thus proving that the
calculation in subroutine codes formulation is in correct condition and capable of solving
the FE analysis problem.

6.2 A single 3D-solid element under tension

The verification test for the MRR subroutine is continued by considering a solid element
in tension with an element size of 0.4 × 0.4 × 0.4 mm3. An eight-node solid element is
used to model this test, and the loading and boundary condition are shown in Fig. 5. The
mechanical properties are taken to be the same as those used in the previous problem (as
shown in Table 1).

The integrated equations involve a numerically similar approach to the previous section
and is reviewed in Appendix F. The results between the Rousselier subroutine and exact
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Fig. 3 Stress in y-direction as a function of total strain in y-direction

Fig. 4 Void volume fraction as a function of total strain in y-direction

solution for the stresses, the equivalent plastic strain and void volume fraction as functions of
the logarithmic strain are plotted in Figs. 6 and 7, respectively. Thus these results show that
a good agreement has been achieved between both solutions. Therefore the formulation of
the subroutine codes is successfully verified for the development of the nonlinear numerical
framework in the MRR model.

7 Computational test

7.1 Smooth tensile bar specimen

Tensile creep tests on smooth bars are modeled and replicated from the experimental work
by Gaffard et al. (2005). A material selected for the specimen is a tempered martensitic
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Fig. 5 3D-element under tension
problem

Fig. 6 Stress in y-direction as a function of total strain in y-direction

stainless steel of type 9Cr1Mo-NbV (P/T91) with a diameter of 10 mm and a gauge length
of 50 mm. The specimens are tested at a constant temperature of 625 ◦C with different stress
values of 100, 110, and 120 MPa, respectively. Due to the symmetrical geometry of the spec-
imen, only one-quarter dimension has been considered for the analysis, and the geometry
representation of the specimen can be referred to as shown in Fig. 8. Moreover, detailed
information about the mechanical properties, the Robinson and Rousselier parameter con-
stants of the material specimen are listed in Table 2, and hardening properties of the material
are given in Table 3.

As a result, the contour distributions in the tensile specimen exerted by 120 MPa load are
shown in Figs. 10, 11, and 12 with respect to the contour of von Mises stress, creep strain,
and void volume fraction, respectively. Notice that in Figs. 10 the maximum value of stress
concentration appeared near the center of the tensile specimen where the necking process
takes place. A similar situation is in Fig. 11, in which the maximum creep strain value is
stated around 12% near the center of the tensile specimen, where the strain is localized in
this necking region. In addition, the contour distribution of void volume fraction f is also
presented in Fig. 12, which indicates a critical value of void volume fraction of 0.01 near
the center of the tensile specimen. This critical value is reportedly similar to the significant
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Fig. 7 Void volume fraction as a function of total strain in y-direction

Fig. 8 Geometry representation
for smooth tensile bar specimen

value mentioned in the literature (Samal et al. 2010). The decomposition of the void volume
fraction is contributed to the overall damage growth in the tensile specimen and based on the
experimental evidence that damage does not occur before the onset of necking (Gaffard et al.
2005). Again, as the stress concentration is maximum at the center of the tensile specimen,
void growth also tends to be maximum in this region.

For further analysis, an element is chosen based on a critical position during a test, as
illustrated in Fig. 9. Thus Fig. 13 displays the creep strain component as a function of
void volume fraction at different stresses. The void growth that represents the creep damage
growth of the tensile specimen enhanced the creep strain development promptly. The highest
applied stress might also influence the existence of voids growth with the formation of the
creep strain. A creep damage structure initially incurs void damage in regions of relatively
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Fig. 9 Element position for a
detailed analysis

Table 2 Mechanical properties
and Rousselier parameters of
tempered martensitic stainless
steel, 9Cr1Mo-NbV (P/T91) at
625 ◦C (Gaffard et al. 2005;
Tvergaard and Needleman 1984)

Young modulus E (GPa) 145

Poisson ratio v 0.3

Yield strength σy (MPa) 340

Rousselier parameter σ1 (MPa) 238

Rousselier parameter D 2

Initial void volume fraction fo 0.0002

Reference stress σo (MPa) 100

Robinson creep parameter ε̇o (s−1) 0.0011

Robinson creep parameter n 11

Table 3 Hardening data of
tempered martensitic stainless
steel, 9Cr1Mo-NbV (P/T91) at
625 ◦C (Gaffard et al. 2005;
Tvergaard and Needleman 1984)

True strain εT True stress σT (MPa)

0.257 345.5

0.286 350

0.343 354.5

0.457 363.6

0.571 372.7

0.686 381.8

0.829 400

1.029 409.1

high strain, leading to local softening and subsequent redistribution of strain as the damage
zone spreads throughout the structure.

The structure analysis is continued by identifying the evolution of void volume fraction
with time in different applied stresses, as shown in Fig. 14. It can be seen in the graph that the
highest value of applied stress (120 MPa) influences the time period of loading to a shorter
time for the specimen to reach a critical void damage growth of the tensile specimen. As
mentioned before, the specimen shows a maximum value of the voids damage fraction at the
center of the specimen that is in the necking region. Critical damage is only observed after
a necking process and induced due to increased stress triaxiality and creep strain effects.
To make sure that the MRR model well describes the void damage growth in creep flow,
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Fig. 10 Contour of von Mises stress in the specimen of loading 120 MPa at (a) t = 300 h, (b) t = 600 h, and
(c) t = 886 h

Fig. 11 Contour of creep strain of specimen of loading 120 MPa at (a) t = 300 h, (b) t = 600 h, and
(c) t = 886 h

the result has been compared to the other solution of the Norton-GTN model by Samal
et al. (2010) at 110 MPa. This validation strategy has proven that a good agreement has
been achieved between both models to estimate the void damage growth and satisfactorily
predicts the time to failure.

Last but not least, Fig. 15 illustrates the creep strain curves over time along with exper-
imental data (Gaffard et al. 2005) in different stresses. We can see from Fig. 15 that the
creep damage model developed in this work was able to successfully predict the creep strain
behavior from the experimental for all kinds of stresses. As expected, the creep strain curves
are found dominantly by the tertiary creep stage, which involves the material rupture life,
and it is mostly due to softening effects. The MRR model has a lot of potentials to predict
the long-term creep damage behavior of the materials. As long-term creep tests are expen-
sive and time-consuming, this solution model can fill the gap for solving complex structural
problems in the engineering field.
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Fig. 12 Contour of void volume fraction of specimen of loading 120 MPa at (a) t = 300 h, (b) t = 600 h,
and (c) t = 886 h

Fig. 13 Creep strain vs void volume fraction f for the tensile specimen at different stresses

8 MRR model with crack development based on XFEM

This structural analysis is extended by introducing the tensile specimen crack development
based on the XFEM technique. The XFEM and MRR models are used in the numerical
modeling of creep damage, which works to establish the connection between the tensile
specimen void and crack growth by inventing a new model called the modified Robinson–
Rousselier XFEM (MRRX) model. The developed MRRX model promises a proper solution
technique for predicting the creep damage behavior in terms of the micromechanical damage
due to void and crack development in the material structure.

Figures 16 and 17 show the contour distribution of the stress in the y-direction and void
volume fraction damage along with the crack propagation near the center of the tensile
specimen. We can observe from Fig. 17 that the voids damage grows at zones of high stress
(as shown in Fig. 16), which is at the crack tip region. Damage results in softening of the
material and fracture proceed from the competition between hardening and damage. When
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Fig. 14 Evolution of void volume fraction f in MRR model loaded at different stresses and comparison with
Norton-GTN model results at 110 MPa

Fig. 15 Comparison of experimental and simulation results of creep strain curves for the tensile specimen at
different stresses

damage overcomes the hardening of the material at the tip of a crack, there is strain localiza-
tion, which rapidly results in tremendous strains and damage. The stresses decrease abruptly
and vanish, and the zone of strain and damage localization can be assimilated to a crack.

Furthermore, the evolution of crack growth is visualized in some detail with the formation
of voids growth in the crack path as shown in Fig. 18, and the results are compared with the
results found in the literature (Tvergaard and Needleman 1984), which is shown in Fig. 19.
By considering a similar pattern of the crack growth behavior between both techniques
(Figs. 18 and 19) the characterization of crack starts with (a) the initiation of the crack
and formation of void damage in the crack-tip of the specimen; (b) and (c) specimen forms
a yield plastically due to increasing of stress and damage formation near to the crack-tip,
and the void forms a shear band due to the influence of shear localization; (d) and (e) the
evolution is extended as the voids coalesce along with the shear bands and the crack growth
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Fig. 16 Contour distribution of stress in the y-direction along the crack near the center of the tensile specimen
at (a) t = 13 h, (b) t = 22 h, (c) t = 84 h, and (d) t = 129 h

Fig. 17 Contour distribution of void volume fraction, f along the crack near the center of the tensile specimen
at (a) t = 13 h, (b) t = 22 h, (c) t = 84 h, and (d) t = 129 h

continues along the surface; (f) the strength of the structure is lost due to a final crack or
called the ultimate fracture mode. Note that the degree of necking observed on a specimen
is a function of the nucleation and failure laws for the particular material, since necking
essentially stops when the crack initiates.

In addition, it is mentioned in Tvergaard and Needleman (1984) that from the calculation
it was not able to conclude whether the zig-zag of the crack propagation exhibited in Fig. 19
is real or it is just a mesh effect. They also claimed that this scenario is due to the feature
of the cup-cone fracture process of the tensile specimen. However, these statements create
some arguments with the current results in this analysis, as shown in Fig. 18. There are no
zig-zag signs of the crack appear in Fig. 18, and only the crack propagates across the center
of the tensile specimen parallel to the crack tip area. Thus we believe that the zig-zag formed
in the previous results is due to the effect of the mesh in FE and is not because of the features
of the bifurcation or cup-cone fracture. This statement can be strongly supported and well
explained by the previous literature (Ahmad et al. 2019).
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Fig. 18 Evolution of cracks
growth near the center of tensile
specimen based on XFEM
technique

9 Conclusion

In this study, we developed a micromechanical creep damage model to simulate the de-
formation and damage development of the creep ductile materials. The proposed solution
model, called the MRR model, has the potential to predict the creep behavior at different
load levels with the existence of void growth for representing the damage parameter in this
analysis. Some points need to be highlighted here:

– The MRR model formulation interface was implemented in the UMAT subroutine of
the Abaqus/Standard module, which exhibits the implicit integration scheme to update
the state of the model and the consistent tangent modulus required for developing the
mechanical constitutive model. The radial return mapping method was executed for in-
troducing the integration of the elastoplastic constitutive relations. The Newton–Raphson
method based on Taylor series expansion was suggested to solve the nonlinear equations
of the increment of the stress tensor and the evolution of the internal variable model. The
algorithms were addressed by an iterative method, and the static implicit was formulated
as a solution method in this study.

– Tensile creep tests on smooth bars were carried out to identify the capability of the MRR
model to predict the creep damage behavior of P91 steel. The specimen was loaded in
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Fig. 19 Evolution of cracks
growth near the center of tensile
specimen based on the
element-vanish technique
(Tvergaard and Needleman 1984)

different stress levels (100–120 MPa) to see the variations of the results and recognize
the effect of applied stress in the formation of damage, creep strain, and lifetime of the
specimen. The results found that the maximum value of stress, creep strain, and void
damage was detected near the center of the tensile specimen where the necking process
was formed. Then the simulation results were compared with the experimental data and
showed that a good reasonable agreement was achieved between both results. The MRR
model has successfully estimated the void damage growth, the creep strain curve, and
the time to failure of the material. The influences of the applied stresses toward the time
period for reaching a critical void damage growth were also stated in this analysis. In
addition, the authors claimed that this is the first work contribution that introduces the re-
lation of void damage growth toward the formation of creep strain behavior in the material
through the constitutive modeling.

– The MRR model analysis was extended for the crack development based on the XFEM
technique. As a result, a new model, called the MRRX model, was introduced for predict-
ing the creep damage behavior in terms of the micromechanical damage due to void and
crack development in the material structure. The simulation results were compared with
the literature solution with respect to the evolutions of the crack growth with void dam-
age. A good comparison was achieved between both techniques, proving the potential of
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the MRRX model to predict the creep damage behavior in terms of the void-crack growth
in the ductile material structures.

For further investigation, the MRR model will be tested in the 3D-modeling problem,
which involves a high degree of freedom and a complex integration solution in the analysis.

Appendix A: Coefficients of the correction value for volumetric and
deviatoric creep strain

A11d
εp̃ + A12d
εq̃ = b1, (16)
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εq̃ = b2, (17)
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A21 = K
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A22 = −3G
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∂H 2
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, (21)

b1 = −
εp̃P̃ − 
εq̃Q̃, (22)

b2 = −φ, (23)

where 
εp̃ and 
εq̃ are the volumetric and deviatoric creep strain increments, and Hi is the
hardening of internal state variable.

Appendix B: Coefficients of the CTM expression
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)
B11 − (
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)
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]
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) (
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) (
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)
, (28)

where G and K are the elastic shear and bulk modulus.
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Appendix C: Coefficient of the linearization of the flow and yield
condition

Ā11∂
εp̃ + Ā12∂
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Appendix D: Five constants for the CTM explicit expression

d0 = 2G
q̃

q̃tr
, (38)

d1 = K − 2G

3

q̃

q̃ tr
− 3K2C11, (39)

d2 = 4G2

q̃ tr

εq̃ − 4G2C22, (40)

d3 = −2GKC12, (41)

d4 = −6GKC21. (42)

Note that Dijkl is symmetric if C12 = 3C21.
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Appendix E: The differential equations for a single 2D-plane strain
element
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where E, v, and φ are Young’s modulus, Poisson’s ratio, and the plastic potential, εy , ε
p̃
y ,

and ε
p̃
z are the total strain and creep strains in the y- and z-directions, and σy and σz are the

components of stress in the y- and z-directions, respectively.

Appendix F: The differential equations for a single 3D-solid element
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where E is Young’s modulus, εy and ε
p̃
y are the total and creep strains in the y-direction,

and σy is the component of stress in the y-direction.

Appendix G: Integrating of nonlinear equation

Following to the Newton–Raphson method based on Taylor series expansion, 
εp̃ and 
εq̃

are used to formulate the internal variables of the model as (Aravas 1987)
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where P̃ = ∂φ

∂q̃
and Q̃ = ∂φ
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, whereas ∂
εp̃ and ∂
εq̃ are defined as the correction values

for 
εp̃ and 
εq̃ , respectively. Moreover, the values of dH 1 and dH 2 can be determined as
follows:
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where G1 and G2 are the functions made by regrouping the implicit function as

G1 = 
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)
. (64)

Implementing Eq. (57) into Eq. (56) leads to the reduced form of the Newton–Raphson
equation:
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b1 = −
εp̃P̃ − 
εq̃Q̃, (70)

b2 = −φ. (71)

Then the values of 
εp̃ and 
εq̃ are updated by


εn+1
p̃

= 
εn
p̃ + cp̃, (72)


εn+1
q̃

= 
εn
q̃ + cq̃ (73)

where n is the iteration number.
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