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Abstract
In this paper, various shear- and normal-deformation theories with polynomial, hyperbolic
and integral functions of displacements are applied to examine thickness-stretching effects
on the free vibration of thick open-cell foam plates. Displacement functions include bending,
shear and thickness stretching of transverse deflection. The distribution of porosity through
the thickness is considered by a power-law relationship, while the separable kernel frame-
work and Boltzmann–Volterra superposition principles are used to describe the constitutive
relations. Also, a standard solid viscoelastic model is investigated as a special case. The
integropartial differential equations of motion with frequency-dependent coefficients based
on different deformation theories are derived using the Hamilton principle in the complex
domain, and they are solved via semianalytical and iterative numerical algorithms in the
spatial and frequency domains. The solution procedure is assessed for elastic functionally
graded plates and viscoelastic laminated plates. The effects of porosity distribution, thick-
ness stretching, different deformation theories and geometrical parameters on natural fre-
quencies and loss factors are investigated through parametric studies and it is revealed that
the results obtained from deformation theories with integral functions give the nearest loss
factors to the layerwise theory, the highest vibrational characteristics and are most affected
by the power index in comparison with other theories.

Keywords Functionally graded materials · Thickness-stretching effect · Shear and normal
deformation theory · Semianalytical solution · Open-cell foam

1 Introduction

The time and frequency dependency of functionally graded (FG) materials play a key role
in the analysis and design of plates in various fields like aerospace, mechanical, biome-
chanics to name but a few (Altenbach and Eremeyev 2008a,b,c). Functionally graded poly-
mers or foams may display time/frequency-dependent behavior under normal conditions,
complex loading circumstances or extreme thermal environments; however, the mentioned

� H.A. Zamani
zamani.h.a@aut.ac.ir

1 Mechanical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic),
424 Hafez Ave., Tehran, 15875-4413, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11043-021-09533-w&domain=pdf
http://orcid.org/0000-0002-6118-7652
mailto:zamani.h.a@aut.ac.ir


1274 Mechanics of Time-Dependent Materials (2023) 27:1273–1294

behavior, which is known as viscoelastic behavior (Brinson and Brinson 2008), may be
justified for FG viscoelastic (FGV) materials. Also, foams such as cellular materials may
be divided into closed-cell or no interconnected networks and open-cell or interconnected
networks (Ashby et al. 2000; Miracle et al. 2001; Taraz Jamshidi et al. 2015; Hedayati
and Sadighi 2016; Sadeghnejad et al. 2017). These foams, due to significant characteristics
such as low weight, high specific strength and inherent damping have attracted great atten-
tion (Altenbach and Eremeyev 2009; Al Jahwari et al. 2016; Montgomery et al. 2021). It
should be noted that FGV foam plates have the merits of FG and viscoelastic plates simul-
taneously. In fact, addition of the viscoelastic property to FG plates could enhance energy
dissipation, noise reduction and vibrational damping of FG plates that are used in various
industries, as mentioned previously. Moreover, FGV plates could be produced via adding a
constrained viscoelastic layer on the surfaces of FG materials or production of viscoelastic
foams in a specific manner. Hence, FGV plates may be considered as a candidate for FG
plates that face dynamic loads or viscoelastic foam plates, which demand graded proper-
ties.

Although viscoelastic behavior is mainly observed for polymeric matrix or composites
with polymeric elements, some studies considered viscoelastic behavior of whole FG plates
via a simple differentiation operator of the Kelvin–Voigt model. Gupta and Kumar (2008)
considered classical plate theory (CPT) and Levy-type boundary conditions of rectangular
plates with variable thickness, longitudinal nonhomogeneity and linear temperature/spatial-
dependent moduli. Their results demonstrated that nonhomogeneous plates have lower time
period and logarithmic decrement than homogeneous plates. Sofiyev et al. (2019) studied
dynamic buckling of simply supported plates on an elastic foundation using the Galerkin
method, Laplace transform and CPT. Hilton and Lee (2012) applied the Galerkin method
and generalized Kelvin model to derive long-term responses of simply supported plates un-
der simultaneous aerodynamic, creep, thermal, magnetic and electric loads. Shariyat and
Farzan Nasab (2014) applied the standard solid model, the Mori–Tanaka micromechanical
approach, a modified Hertz law, refined higher-order shear deformation theory (RHSDT)
and the differential quadrature method to study low-velocity impact responses of plates.
They concluded that the viscoelasticity of materials has a significant influence on the dy-
namic responses of plates after impact. Shariyat and Farrokhi (2019) extended the previous
study for the transient and forced vibrations of microplates via CPT, the Navier solution and
Runge–Kutta integration methods. Zhang and coauthors (Zhang and Wang 2006; Zhang and
Xing 2008) presented transient responses of thin FGV plates based on the Boltzmann super-
position integral and the Legendre–Ritz method. Zamani et al. (2018) used a physical neu-
tral surface, CPT, the Boltzmann–Volterra superposition integral and the Galerkin method
to achieve frequencies of open-cell foam plates resting on an orthotropic visco-Pasternak
medium under various boundary conditions. It is worth noting that the Boltzmann–Volterra
superposition integral is more suitable than the differential operator in the complex do-
main. Recently, Shariyat and Jahangiri (2020) applied a 3-dimensional Zener viscoelas-
tic model, nonlinear Hertz law and finite-element method to achieve impact responses of
partially supported porous viscoelastic plates under bending-induced fluid-flow loads. Fur-
thermore, from the practical and theoretical points of view, thick and very thick FG and
laminated composite plates have significant impact and numerous applications, therefore,
to achieve an accurate analysis, both shear and normal deformations should be considered
in kinematic relations (Carrera et al. 2011). Fortunately, higher-order shear and normal de-
formation theory (HSNDT) may meet the required accuracy and functionality (Thai et al.
2020b; Thai and Phung-Van 2020; Phung-Van and Thai 2021; Phung-Van et al. 2021; Ja-
fari and Kiani 2021), whereas the considered studies of FGV plates place an emphasis on
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CPT and RHSD, which neglect shear and normal deformations in the thickness direction,
respectively.

Higher-order shear and normal deformation theories consider transverse normal strain or
the thickness-stretching effect, which has inevitable roles in the reliable and accurate kine-
matic relations of thick and moderately thick FG plates and shells (Carrera et al. 2011).
As mentioned, applications of HSNDTs of FGV plates have received less attention from re-
searchers, although there are numerous investigations on applications of HSDT and HSNDT
for FG elastic plates (Thai et al. 2013, 2016a,b, 2020a). Indeed, the thickness-stretching ef-
fect could be applied through the governing equations of motion considering normal strain in
the thickness direction. This strain extends the number of unknown variables in the displace-
ment field and kinematic relations and eventually it provides some complexity to solve the
coupled governing equations of motion (Carrera et al. 2011). This remark may be modified
by separation of transverse displacement into shear, bending, thickness-stretching parts and
the implementation of stress-free boundary conditions on the top and bottom surfaces of the
plate. Therefore, the total number of unknowns remains at four or five regarding the assumed
elements of displacement fields. Among the presented theories, one may refer to five un-
knowns HSNDT with polynomial functions (HSNDT-Poly) (Thai and Choi 2014), HSNDT
with hyperbolic functions (HSNDT-Hyp) (Belabed et al. 2014), quasithree-dimensional
with trigonometric functions (Quasi-3D-Tri) (Abualnour et al. 2018), Quasi-3D with in-
tegral variables (Quasi-3D-Int) (Zaoui et al. 2019). Also, there are six to nine unknown
theories such as Quasi-3D sinusoidal shear deformation theory (Quasi-3D-SSDT) (Neves
et al. 2012b), Quasi-3D hyperbolic shear deformation theory (Quasi-3D-HYP) (Neves et al.
2012a) and Quasi-3D HSDT (Neves et al. 2013). Recently, Karamanli and Aydogdu (2020)
used the HSNDT, finite-element method and modified coupled stress theory to obtain the
frequencies of porous microplates. For completeness, one may refer to other papers that
investigated vibrations of FG elastic plates and beams with thickness-stretching effect, see
for instance (Meksi et al. 2015; Allam et al. 2020; Bendenia et al. 2020; Menasria et al.
2020; Tahir et al. 2021a,b; Zaitoun et al. 2021). Obviously, the main concentration of the
mentioned theories is located on the thickness stretching of FG elastic plates whereas the
application of thickness-stretching effects on the dynamics of FGV foam plates appears to
be missing from the literature.

Based on a literature survey, it is observed that the investigations of free vibration of
FGV plates are merely assigned to plates with CPT (Zhang and Wang 2006; Zhang and
Xing 2008; Gupta and Kumar 2008; Hilton and Lee 2012; Zamani et al. 2018; Sofiyev
et al. 2019; Shariyat and Farrokhi 2019), RHSDT (Shariyat and Farzan Nasab 2014) and
3D theory (Shariyat and Jahangiri 2020). In addition, the effects of thickness stretching on
the vibrations of FG plates are only taken into account in the elastic domain (Thai et al.
2020b; Thai and Phung-Van 2020; Phung-Van and Thai 2021; Phung-Van et al. 2021; Jafari
and Kiani 2021; Thai et al. 2013, 2016a,b, 2020a; Carrera et al. 2011; Thai and Choi 2014;
Belabed et al. 2014; Abualnour et al. 2018; Zaoui et al. 2019; Neves et al. 2012b; Neves
et al. 2012a, 2013; Karamanli and Aydogdu 2020; Tahir et al. 2021a,b; Zaitoun et al. 2021).
Furthermore, viscoelastic behaviors of FGV plates are generally simulated via a simple dif-
ferential operator, while the application of the Boltzmann–Volterra superposition integral
of vibrations of FGV plates is limited to classical (Zamani et al. 2018) and 3D (Shariyat
and Jahangiri 2020) plate theories. Therefore, there is no study on the vibrations of FGV
foam plates considering thickness-stretching effects via polynomial, hyperbolic, integral
displacement functions and Boltzmann–Volterra superposition principles of the viscoelas-
tic model.
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Fig. 1 The geometry and
coordinates of a functionally
graded viscoelastic plate (a),
schematic of a polymeric
open-cell foam (b) (Altenbach
and Eremeyev 2008c)

In this study, the impacts of thickness stretching on the vibrational characteristics of sim-
ply supported viscoelastic foam plates with FG distributions of properties are investigated.
The Boltzmann–Volterra superposition integral, separable kernels and three different dis-
placement fields are applied to establish constitutive and kinematic relations, respectively.
The five-coupled integropartial differential equations (PDEs) of motion based on polyno-
mial, hyperbolic and integral displacement functions are derived using the Hamilton prin-
ciple. The Galerkin method and iterative eigenvalue solver are implemented in the spatial
and frequency domains, respectively. The present method is verified for both FG elastic
and viscoelastic composite plates. The effects of aspect ratio, thickness parameter, power
index, kinematic model and higher modes on natural frequency and modal loss factor are
investigated by parametric studies.

2 Basic formulation

Consider a rectangular FGV foam plate as illustrated in Fig. 1. Parameters a, b and h denote
length, width and thickness, respectively. Also, the origin point of the Cartesian coordinate
system is located at the corner of the midsurface of the plate.
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2.1 Constitutive relations

In this paper, the linear viscoelastic behavior of an open-cell foam plate is assumed based
on the Boltzmann–Volterra superposition integral as (Brinson and Brinson 2008):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σxx
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dt ′ (1)

where σ , ε, t , t ′ and “,” denote stress, strain, time, Boltzmann integral variable and differ-
ential operator, respectively. Also, λ, λ1 and μ stand for Lame coefficients that are defined
in the viscoelastic domain as (Brinson and Brinson 2008; Zamani 2021a):

λ(z,ω) = K(z,ω) − 2

3
G(z,ω)

λ1(z,ω) = K(z,ω) + 4

3
G(z,ω)

μ(z,ω) = G(z,ω)

(2)

where K and G denote bulk and shear moduli, respectively. Moreover, the introduced mod-
uli are related to other constants in the elastic domain as (Brinson and Brinson 2008):

λ = νE

(1 − 2ν) (1 + ν)

λ1 = (1 − ν)

v
λ

μ = E

2(1 + ν)

(3)

where ν and E denote the Poisson ratio and Young’s modulus, respectively. It should be
noted that the mentioned properties in Eq. (3) could be derived in the viscoelastic domain
in terms of time or frequency using the Alfrey correspondence principle (Alfrey 1944). Fur-
thermore, the effective mechanical properties of FGV open-cell foam plates are expressed as
(Srinivas and Rao 1971; Hatami et al. 2008; Altenbach and Eremeyev 2008a,b,c; Hosseini-
Hashemi et al. 2015; Zamani et al. 2018; Zamani 2021b):

ρ(z,ω) = ρsV (z) (4)

K(z,ω) = K0V
2(z) (5)
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G(z,ω) = G0
1 + ic1ω

1 + iβc1ω
V 2(z), c1 = h

√
ρ

G0
(6)

V (z) = ρp

ρs

+ (1 − ρp

ρs

)(
1

2
− z

h
)p (7)

where ρ, ρs , ρp/ρs , p, β , K0 and G0 denote density, minimum density, minimal relative den-
sity, power index, parameter of constitutive relation, elastic dilatation and distortion moduli,
respectively. It is worth noting that β = 0.5,1 refers to the standard solid and elastic model,
respectively. Also, p = 0,1,2 refer to homogeneous, linear and quadratic distributions of
porosity through thickness, respectively.

2.2 Kinematic relations considering thickness stretching

In the present study, the effects of thickness stretching of FGV foam plates are taken into
consideration using three different HSNDTs with polynomial, hyperbolic and integral dis-
placement functions. For the first case, HSNDT-Poly is considered as (Thai and Choi 2014):

u1(x, y, z, t) = u(x, y, t) − zwb,x − f (z)ws,x

u2(x, y, z, t) = v(x, y, t) − zwb,y − f (z)ws,y

u3(x, y, z, t) = wb(x, y, t) + ws(x, y, t) + g(z)wz(x, y, t)

f = − z

4
+ 5z3

3h2

g = 1 − f,z

(8)

where u, v and w denote displacements in the x, y and z directions, respectively. In addition,
wb , ws and wz refer to the bending, shear and thickness-stretching components of transverse
displacement, respectively. As can be seen, cubic functions are considered for f (z) and
g(z), which are obtained using stress-free edge conditions on the top and bottom surfaces
of the plate (Thai and Choi 2014). Although thickness stretching is implemented through
the displacement field, the number of unknowns remains at five, which is similar to HSDT
of Reddy and FSDT (Reddy 1984). The relevant linear strain-displacement components are
expressed as (Thai and Choi 2014):

⎧
⎨
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⎧
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⎫
⎬

⎭
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{
γyz
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}
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{
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}

(9)

where εi (i = x, y, z) and γi (i = xy, yz, xz) denote normal and shear strains, respectively.
As can be seen, the normal strain in the thickness direction is proportional to the compo-
nents of displacement in the thickness direction and differentiation of function g(z) with
respect to thickness coordinate. For the second case, the same strains and similar inplane
displacement fields are considered, while hyperbolic functions are assumed as (Mantari and
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Guedes Soares 2013; Belabed et al. 2014):
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)

g = 1 − f,z

(10)

For the last case, hyperbolic shape functions with the integration form of inplane and
transverse displacements are assumed as (Zaoui et al. 2019):

u1(x, y, z, t) = u(x, y, t) − zw0,x +
(mπ

a

)2
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(nπ

b

)2
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∫
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u3(x, y, z, t) = w0(x, y, t) + g(z)φz(x, y, t)
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e
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π

(
π2 sin(

πz

h
) + h2 cos(

πz

h
)
)

− h2
)

, g = f,z

(11)

where θ and φz denote rotations of the normal to the midplane. Also, m and n refer to
half-waves in the x and y directions, respectively. Like previous theories, the number of
unknowns is five, while the shape function of g(z) is different from previous HSNDTs. The
linear strain-displacement relations of this theory can be written as (Zaoui et al. 2019):
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⎫
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εz = g,zφz
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γyz

γxz

}

= g(z)

{
(−θ + wz),y

(−θ + wz),x

}

(12)

As can be seen, the introduced kinematic relations have the same numbers of unknowns
and eventually they will result in the same number of governing equations of motion. To
complete this section, it is worth mentioning that there are other kinds of integral functions
of displacements that are used for dynamic analysis of FG elastic, laminated composites and
sandwich plates, see for instance (Allam et al. 2020; Menasria et al. 2020; Bendenia et al.
2020; Tahir et al. 2021a,b; Zaitoun et al. 2021).

3 Governing equations

In this section, the main aim is to derive the governing equations of FGV open-cell foam
plates with thickness stretching using three different HSNDTs in the complex domain. First,
the procedure of the first introduced HSNDT is thoroughly explained and then the governing
equations of motion are extended for other HSNDTs that have different shape functions of
g(z) and f (z).
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3.1 HSNDT with polynomial function

In order to derive the governing equations of motion, the dynamic version of virtual dis-
placement, which is known as the Hamilton principle is applied as (Reddy 2004):

∫ t2

t1

(δU − δT )dt = 0

δU =
∫

A

∫ h/2

−h/2

(
σxx(ω)δεx + σyy(ω)δεy + σzz(ω)δεz

+σxy(ω)δεxy + σyz(ω)δεyz + σxz(ω)δεxz

)

dzdA

δT =
∫

A

∫ h/2

−h/2
ρ(z,ω)(u1,t δu1,t + u2,t δu2,t + u3,t δu3,t )dzdA

δui = 0, (ui = u,v,w0,wb,ws,wz, θ,φz)

(13)

where A, t1, t2, δui , δU and δT denote area, initial time, terminal time, virtual displacement,
virtual strain energy and virtual kinematic energy, respectively. By substitution of Eqs. (8)
and (9) and Eqs. (1)–(7) in Eqs. (13), plus integration through thickness and integration by
parts to derive the virtual displacements, the governing equations of motion can be expressed
based on HSNDT-Hyp as:

δu : N̄x,x(ω) + N̄xy,y(ω) = I0(ω)u,tt − I1(ω)wb,xtt − J1(ω)ws,xtt (14)

δv : N̄xy,x(ω) + N̄y,y(ω) = I0(ω)v,tt − I1(ω)wb,ytt − J1(ω)ws,ytt (15)

δwb : M̄b
x,xx(ω) + 2M̄b

xy,xy(ω) + M̄b
y,yy(ω) = I0(ω) (wb + ws),tt

+J0(ω)wz,tt + I1(ω)
(
u,x + v,y

)

,t t
− I2(ω)∇2wb,tt − J2(ω)∇2ws,tt

(16)

δws : M̄s
x,xx(ω) + 2M̄s

xy,xy(ω) + M̄s
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I0(ω) (wb + ws),tt + J0(ω)wz,tt + J1(ω)
(
u,x + v,y

)

,t t
− J2(ω)∇2wb,tt − K2(ω)∇2ws,tt

(17)

δwz : Q̄xz,x(ω) + Q̄yz,y(ω) − R̄z(ω) = J0(ω) (wb + ws),tt + K0(ω)wz,tt (18)

where N̄ , M̄ , Q̄ and R̄ denote the frequency-dependent stress resultants plus Ii , Ji and
Ki (i = 0,1,2) stand for frequency-dependent mass inertia, which are all defined as (Thai
and Choi 2014):
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For the introduced variables of the displacement field, the harmonic functions are as-
sumed as (Rao 2004):

u(x, y, t) = u(x, y)eiωt

v(x, y, t) = v(x, y)eiωt

wb(x, y, t) = wb(x, y)eiωt

ws(x, y, t) = ws(x, y)eiωt

wz(x, y, t) = wz(x, y)eiωt

w0(x, y, t) = w0(x, y)eiωt

θ(x, y, t) = θ(x, y)eiωt

φz(x, y, t) = φz(x, y)eiωt

(20)

Substitution of the harmonic displacement fields and the constitutive relation in the
frequency-dependent stress resultants, Eqs. (14)–(18) are rewritten as:

Â11u,xx + Â66u,yy + (Â12 + Â66)v,xy − B̂11wb,xxx − (B̂12 + 2B̂66)wb,xyy

− B̂s
11ws,xxx − (B̂s

12 + 2B̂s
66)ws,xyy + X̂13wz,x = I0(ω)u,tt − I1(ω)wb,xtt − J1(ω)ws,xtt

(21)

Â22v,yy + Â66v,xx + (Â12 + Â66)u,xy − B̂22wb,yyy − (B̂12 + 2B̂66)wb,xxy − B̂s
22ws,yyy

− (B̂s
12 + 2B̂s

66)ws,xxy + X̂23wz,y = I0(ω)v,tt − I1(ω)wb,ytt − J1(ω)ws,ytt

(22)

B̂11u,xxx + (B̂12 + 2B̂66)(u,xyy + v,xxy) + B̂22vyyy − D̂11wb,xxxx − D̂22wb,yyyy

− 2(D̂12 + 2D̂66)wb,xxyy − D̂s
11ws,xxxx − D̂s

22ws,yyyy

− 2(D̂s
12 + 2D̂s

66)ws,xxyy + Ŷ13wz,xx + Ŷ23wz,yy

= I0(ω)(wb + ws),tt + J0(ω)wz,tt + I1(ω)(u,x + v,y),tt − I2(ω)∇2wb,tt − J2(ω)∇2ws,tt

(23)

B̂s
11u,xxx + (B̂s

12 + 2B̂s
66)(u,xyy + v,xxy) + B̂s

22vyyy − D̂s
11wb,xxxx − D̂s

22wb,yyyy

− 2(D̂s
12 + 2D̂s

66)wb,xxyy − Ĥ s
11ws,xxxx − Ĥ s

22ws,yyyy − 2(Ĥ s
12 + 2Ĥ s

66)ws,xxyy + Âs
55ws,xx

+ Âs
44ws,yy + (Ŷ s

13 + Âs
55)wz,xx + (Ŷ s

23 + Âs
44)wz,yy = I0(ω)(wb + ws).tt + J0(ω)wz,tt

+ J1(ω)(u,x + v,y),tt − J2(ω)∇2wb,tt − K2(ω)∇2ws,tt

(24)

− X̂13u,x − X̂23v,y + Ŷ13wb,xx + Ŷ23wb,yy + (Ŷ s
13 + Âs

55)ws,xx + (Ŷ s
23 + Âs

44)ws,yy

+ Âs
55wz,xx + Âs

44wz,yy − Ẑ33wz = J0(ω)(wb + ws),tt + K0(ω)wz,tt

(25)

where the frequency-dependent coefficients are described as:

(Âij , Â
s
ij , B̂ij , B̂

s
ij , D̂ij , D̂

s
ij , Ĥ

s
ij ) =

∫ h/2

−h/2
Ĉij (ω, z)

(
1, g2, z, f, z2, f z, f 2

)
dz
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(X̂ij , Ŷij , Ŷ
s
ij , Ẑij ) =

∫ h/2

−h/2
Ĉij (ω, z)g,z

(
1, z, f, g,z

)
dz (26)

Ĉij (ω, z) = ω

∫ ∞

0
Cij (ξ, z)e−ωξdξ

where Cij and ξ denote the general form of stiffness coefficient and time variable of the
Boltzmann integral, respectively. As mentioned in Eq. (2), the frequency-dependent stiffness
coefficients of plates are related to each other as (Brinson and Brinson 2008):

λ(ω, z) + 2μ(ω, z) = λ1(ω, z)

Ĉ12(ω) + 2Ĉ66(ω) = Ĉ11(ω)

Ĉ11(ω) = Ĉ22(ω) = Ĉ33(ω)

Ĉ13(ω) = Ĉ23(ω) = Ĉ12(ω)

Ĉ44(ω) = Ĉ55(ω)

(27)

These relations can be applied through Eqs. (21)–(25) so that the modified version of the
governing equations of motion may be expressed as:

Â11u,xx + Â66u,yy + (Â12 + Â66)v,xy − B̂11∇2wb,x − B̂s
11∇2ws,x + X̂13wz,x

= I0(ω)u,tt − I1(ω)wb,xtt − J1(ω)ws,xtt

(28)

Â22v,yy + Â66v,xx +
(
Â12 + Â66

)
u,xy − B̂22∇2wb,y − B̂s

22∇2ws,y + X̂23wz,y

= I0(ω)v,tt − I1(ω)wb,ytt − J1(ω)ws,ytt

(29)

B̂11∇2
(
u,x + v,y

)− D̂11∇4wb − D̂s
11∇4ws + Ŷ13∇2w,z = I0(ω) (wb + ws),tt

+ J0(ω)wz,tt + I1(ω)
(
u,x + v,y

)

,t t
− I2(ω)∇2wb,tt − J2(ω)∇2ws,tt

(30)

B̂s
11∇2

(
u,x + v,y

)− D̂s
11∇4wb − Ĥ s

11∇4ws + Ŷ s
13∇2wz + Âs

44∇2 (ws + wz)

= I0(ω) (wb + ws),tt + J0(ω)wz,tt + J1(ω)
(
u,x + v,y

)

,t t
− J2(ω)∇2wb,tt − K2(ω)∇2ws,tt

(31)

− X̂13

(
u,x + v,y

)+ Ŷ13∇2 (wb + w)s + Âs
44∇2 (ws + wz) − Ẑ33wz

= J0(ω) (wb + ws),tt + K0(ω)wz,tt

(32)

∇2 ( ) = ( ),xx + ( ),yy

∇4 ( ) = ∇2
(∇2 ( )

) = ( ),xxxx + 2 ( ),xxyy + ( ),yyyy

(33)

where ∇2 () and ∇4 () are the Nabla and biharmonic operator, respectively.

3.2 HSNDT with hyperbolic functions

For HSNDT with hyperbolic functions of f (z) and g (z), the same computational approach
and simplifying relations are used to derive the governing equations so that the final forms
of equations are similar to HSNDT with polynomial functions, although different functions
of f (z) and g(z) are used (Mantari and Guedes Soares 2013; Belabed et al. 2014).
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3.3 HSNDT with integration functions

To derive the governing equations of motion, the same computational approach in conjunc-
tion with Eqs. (19) and (20) is used. The five coupled PDEs of motions based on HSNDT
with integral (HSNDT-Int) functions (Zaoui et al. 2019) are obtained as:

δu : N̄x,x(ω) + N̄xy,y(ω) = I0(ω)u,tt − I1(ω)w0,xtt − J1(ω)θ,xtt (34)

δv : N̄xy,x(ω) + N̄y,y(ω) = I0(ω)v,tt − I1(ω)w0,ytt − J1(ω)θ,ytt (35)

δwb : M̄b
x,xx(ω) + 2M̄b

xy,xy(ω) + M̄b
y,yy(ω) = I0(ω)w0,t t + J0(ω)φz,tt

+I1(ω)
(
u,x + v,y

)

,t t
− I2(ω)∇2w0,t t − J2(ω)∇2θ,tt

(36)

δθ : −(mπ
a

)2M̄s
x(ω) + M̄s

xy,xy(ω) − ( nπ
b

)2M̄s
y(ω) − Q̄xz,x(ω)

−Q̄yz,y(ω) = J1(ω)
(
u,x + v,y

)

,t t
− J2(ω)∇2w0,t t − K2(ω)∇2θ,tt

(37)

δφ : Q̄xz,x(ω) + Q̄yz,y(ω) − R̄z(ω) = J0(ω)w0,t t + K0(ω)φz,tt (38)

Where the stress resultant, moment of inertia and coefficients have similar definitions to the
previous counterparts. Using the linear strains in Eq. (12), the displacement field in Eq. (11)
and the stiffness coefficients in Eq. (26), the governing equations of motion in terms of
displacements can be presented as:

Â11u,xx + Â66u,yy +
(
Â12 + Â66

)
v,xy − B̂11∇2w0,x +

(
(mπ

a
)2B̂s

11 + ( nπ
b

)2B̂s
12

)
θ,x

−2B̂s
66θ,xyy + X̂13φz,x = I0(ω)u,tt − I1(ω)w0,xtt − J1(ω)θ,xtt

(39)

Â22v,yy + Â66v,xx + (Â12 + Â66)u,xy − B̂22∇2w0,y +
(
(mπ

a
)2B̂s

12 + ( nπ
b

)2B̂s
22

)
θ,y

−2B̂s
66θ,xxy + X̂23φz,y = I0(ω)v,tt − I1(ω)w0,ytt − J1(ω)θ,ytt

(40)

B̂11∇2(u,x + v,y) − D̂11∇4w0 +
(
(mπ

a
)2D̂s

11 + ( nπ
b

)2D̂s
12

)
θ,xx

+
(
(mπ

a
)2D̂s

12 + ( nπ
b

)2D̂s
22

)
θ,yy − 4D̂s

66θ,xxyy + Ŷ13∇2φz

= I0(ω)w0,t t + J0(ω)φz,tt + I1(ω)(u,x + v,y),tt − I2(ω)∇2w0,t t − J2(ω)∇2θ,tt

(41)

−
(
(mπ

a
)2B̂s

11 + ( nπ
b

)2B̂s
12

)
u,x −

(
(mπ

a
)2B̂s

12 + ( nπ
b

)2B̂s
22

)
v,y

+2B̂s
66(u,y + v,x),xy +

(
(mπ

a
)2D̂s

11 + ( nπ
b

)2D̂s
12

)
w0,xx +

(
(mπ

a
)2D̂s

12 + ( nπ
b

)2D̂s
22

)
w0,yy

−4D̂s
66w0,xxyy −

({
(mπ

a
)2 + ( nπ

b
)2
}
Ĥ s

11 + 2(mπ
a

)( nπ
b

)Ĥ s
12

)
θ + Âs

55∇2θ − 4Ĥ s
66θ,xxyy

− (
(mπ

a
)2 + ( nπ

b
)2
)
Ŷ13φz − Âs

55∇2φz = J1(ω)
(
u,x + v,y

)

,t t
− J2(ω)∇2w0,t t

−K2(ω)∇2θ,tt

(42)

−X̂13(u,x + v,y) + Ŷ13∇2w0 + (
(mπ

a
)2 + ( nπ

b
)2
)
(Âs

44 − Ŷ13)θ

+Âs
44∇2φz − Ẑ33φz = J0(ω)w0,t t + K0(ω)φz,tt

(43)

where the definitions of the frequency-dependent coefficients and five unknown elements of
displacement are similar to the expressed definitions in Eqs. (26) and (11), respectively. It is
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worth noting that the presented equations, (21)–(25), (28)–(33), (34)–(38) and (39)–(43) are
derived explicitly in the complex domain for the first time, here.

4 Semianalytical solution

In this section, the introduced equations are solved via a combination of a semianalytical and
numerical algorithm to achieve the natural frequencies and modal loss factors of plates under
simply supported edge conditions. First, the Galerkin weighed residual method is applied to
discretize the five-coupled PDEs of motion in the spatial domain. Suitable shape functions
that satisfy movable simply supported edge conditions are written as (Thai and Choi 2014;
Belabed et al. 2014; Zaoui et al. 2019):

u(x, y) = cos(
mπ

a
x) sin(

nπ

b
y)

v(x, y) = sin(
mπ

a
x) cos(

nπ

b
y)

wb(x, y) = sin(
mπ

a
x) sin(

nπ

b
y)

ws(x, y) = sin(
mπ

a
x) sin(

nπ

b
y)

wz(x, y) = sin(
mπ

a
x) sin(

nπ

b
y)

w0(x, y) = sin(
mπ

a
x) sin(

nπ

b
y)

θ(x, y) = sin(
mπ

a
x) sin(

nπ

b
y)

φz(x, y) = sin(
mπ

a
x) sin(

nπ

b
y)

(44)

The application of the Galerkin weighted residual method degrades the PDEs of mo-
tion to a system of algebraic equations with complex frequency-dependent coefficients. The
resultant algebraic equations take a novel form as:

(
C(ω) − ω2M(ω)

)
q = 0 (45)

where C, M and q denote square matrices of the frequency-dependent stiffness, inertia and
vector of displacement, respectively. To solve the algebraic equations in the complex do-
main, the QZ eigenvalue solver (Golub and Van Loan 2013) is used. Eventually, the com-
plex roots are expressed as (Zamani and Aghdam 2016):

ω = ωRe + iωIm

ωmn = ωRe

η = 2ωReωIm

(ωRe)2 − (ωIm)2

(46)

where η and superscripts Re, Im denote the modal loss factor, real part and imaginary parts
of the frequencies, respectively.
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5 Results and discussion

In this section, the accuracy of the computations is assessed, and the effects of various pa-
rameters on frequencies are taken into consideration. First, the results of the present method
are compared with other available results for an elastic Al/Al2O3 plate (Belabed et al. 2014;
Abualnour et al. 2018; Zaoui et al. 2019; Matsunaga 2008; Thai and Kim 2013), a Al/ZrO2

plate (Thai and Choi 2014; Belabed et al. 2014; Vel and Batra 2004; Neves et al. 2012b;
Neves et al. 2012a, 2013; Ferreira et al. 2006) and a viscoelastic laminated composite plate
(Alam and Asnani 1986). The influences of geometrical and constitutive parameters on vi-
brational characteristics are investigated via comprehensive parametric studies. In the fol-
lowing computations, the material and mechanical properties of FGV open-cell foam plates
are assumed as: ρp/ρs = 0.65, ρs = 200 kg/m3, G0 = 2 GPa, K0 = 2G0, h = 1, β = 0.5,
b/a = 1, a/h = 10, p = 1, (m,n) = (1,1).

5.1 Comparative studies

In this section, the first two nondimensional frequency parameters of elastic Al/Al2O3 plates
are compared with available results in the literature for Quasi-3D by Matsunaga (2008),
RHSDT by Thai and Kim (2013), HSNDT-Hyp by Belabed et al. (2014), Quasi-3D with
trigonometric functions (Quasi-3D-Tri) by Abualnour et al. (2018), and Quasi-3D with inte-
gration functions (Quasi-3D-Int) by Zaoui et al. (2019). For this case, the considered prop-
erties and parameters are assumed as (Matsunaga 2008; Thai and Kim 2013; Belabed et al.
2014; Abualnour et al. 2018; Zaoui et al. 2019):

ω̂ = ωh
√

ρc/Ec, a/b = 1, a/h = 2,5,10, p = 0,0.5,1,4,10, (m,n) = (1,1), (1,2).

Aluminum (Al-metal): Em = 70 GPa, ρm = 2702 kg/m3.

Alumina (Al2O3-ceramic): Ec = 380 GPa, ρm = 3800 kg/m3, νc = 0.3.

The results of this example are given in Table 1. As can be seen, for very thick plates
(a/h = 2), the present method predicts more values than those obtained by Quasi-3D (Mat-
sunaga 2008), RHSDT (Thai and Kim 2013), HSNDT-Hyp (Belabed et al. 2014), Quasi-
3D-Tri (Abualnour et al. 2018) and Quasi-3D-Int (Zaoui et al. 2019). The main reason for
this may be that the weighted residual methods generally and the Galerkin method as a spe-
cial case predict higher values than exact or Navier solutions. Also, among the considered
theories in this work, HSNDT-Hyp results in more values than other used theories. For thick
plates (a/h = 5), the discrepancies of the present methods with other HSNDTs diminish as
the power index increases, so that the discrepancies approximately disappear for p = 10.
However, for moderately thick plates (a/h = 10), the results of the present methods show
excellent correlation with other HSNDTs, regardless of power index. In other words, the
effects of the solution method on natural frequencies of very thick plates come to the fore,
while for moderately thick plates, the effects of the solution procedure clearly wane. The
same behavior is also observed for the natural frequencies of the second modes.

The next example investigates the fundamental frequency parameters of Al/ZrO2 plates
in comparison with those reported based on the 3-D exact solution (Vel and Batra 2004),
Quasi-3D-SSDT (Neves et al. 2012b), Quasi-3D-HYP (Neves et al. 2012a), Quasi-3D-
HSDT (Neves et al. 2013), third-order shear deformation theory with meshless method
(TSDT-MLM) (Ferreira et al. 2006), refined plate theory (RPT) (Thai and Choi 2014),
HSNDT-Poly (Thai and Choi 2014) and HSNDT-Hyp (Belabed et al. 2014), as presented in
Table 2. For this comparison, the considered geometry and parameters are assumed as (Vel
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Table 1 A comparison of the fundamental frequency parameter ω̂ for Al/Al2O3 plates

Mode (m, n) a/h Method p

0 0.5 1 4 10

1 (1, 1) 2 Quasi-3Da 0.9400 0.8233 0.7477 0.5997 0.5460

RHSDTb 0.9297 0.8110 0.7356 0.5924 0.5412

HSNDT-Hypc 0.9414 0.8248 0.7516 0.6056 0.5495

Present-Poly 0.9420 0.8253 0.7520 0.6057 0.5497

Present-Hyp 0.9691 0.8457 0.7614 0.6117 0.5685

Present-Int 0.9474 0.8281 0.7546 0.6094 0.5508

5 Quasi-3Da 0.2121 0.1819 0.1640 0.1383 0.1306

RHSDTb 0.2113 0.1807 0.1631 0.1378 0.1301

HSNDT-Hypc 0.2121 0.1825 0.1659 0.1409 0.1318

Quasi-3D-Trid 0.2126 0.1829 0.1663 0.1411 0.1320

Quasi-3D-Inte 0.2126 0.1829 0.1663 0.1411 0.1320

Present-Poly 0.2122 0.1825 0.1659 0.1409 0.1318

Present-Hyp 0.2143 0.1841 0.1674 0.1440 0.1354

Present-Int 0.2129 0.1829 0.1661 0.1414 0.1321

10 Quasi-3Da 0.0578 0.0492 0.0443 0.0381 0.0364

RHSDTb 0.0577 0.0490 0.0442 0.0381 0.0364

HSNDT-Hypc 0.0578 0.0494 0.0449 0.0389 0.0368

Quasi-3D-Trid 0.0579 0.0495 0.0450 0.0390 0.0369

Quasi-3D-Inte 0.0579 0.0495 0.0450 0.0390 0.0369

Present-Poly 0.0578 0.0494 0.0449 0.0389 0.0368

Present-Hyp 0.0579 0.0495 0.0450 0.0391 0.0371

Present-Int 0.0579 0.0494 0.0449 0.0390 0.0369

2 (1, 2) 2 Quasi-3Da 1.7406 1.5425 1.4078 1.1040 0.9847

RHSDTb 1.7233 1.5192 1.3844 1.0919 0.9807

HSNDT-Hypc 1.7512 1.5798 1.4164 1.1147 0.9958

Present-Poly 1.7534 1.5514 1.4180 1.1155 0.9969

Present-Hyp 1.8131 1.5984 1.4620 1.1943 1.0789

Present-Int 1.7676 1.5582 1.4238 1.1238 0.9990

5 Quasi-3Da 0.4658 0.4040 0.3644 0.3000 0.2790

RHSDTb 0.4623 0.3989 0.3607 0.2980 0.2771

HSNDT-Hypc 0.4659 0.4041 0.3676 0.3047 0.2811

Quasi-3D-Trid 0.4674 0.4052 0.3687 0.3052 0.2817

Quasi-3D-Inte 0.4674 0.4052 0.3687 0.3052 0.2817

Present-Poly 0.4660 0.4042 0.3677 0.3047 0.2811

Present-Hyp 0.4748 0.4106 0.3738 0.3168 0.2947

Present-Int 0.4681 0.4052 0.3685 0.3061 0.2818
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Table 1 (Continued)

Mode (m, n) a/h Method p

0 0.5 1 4 10

10 Quasi-3Da 0.1381 0.1180 0.1063 0.0905 0.0859

RHSDTb 0.1376 0.1174 0.1059 0.0903 0.0856

HSNDT-Hypc 0.1381 0.1184 0.1077 0.0923 0.0868

Quasi-3D-Trid 0.1383 0.1186 0.1078 0.0924 0.0868

Quasi-3D-Inte 0.1383 0.1186 0.1078 0.0924 0.0868

Present-Poly 0.1380 0.1184 0.1076 0.0922 0.0867

Present-Hyp 0.1390 0.1191 0.1083 0.0936 0.0884

Present-Int 0.1385 0.1186 0.1078 0.0925 0.0869

aMatsunaga (2008); bThai and Kim (2013); cBelabed et al. (2014); dAbualnour et al. (2018); eZaoui
et al. (2019)

and Batra 2004; Neves et al. 2012b; Neves et al. 2012a, 2013; Ferreira et al. 2006; Thai and
Choi 2014; Belabed et al. 2014):

ω̄ = ωh
√

ρm/Em, a/b = 1, a/h = √
10,5,10,20, p = 0,1,2,3,5, (m, n) = (1, 1).

Aluminum (Al-metal): Em = 70 GPa, ρm = 2702 kg/m3.

Zirconia (ZrO2-ceramic): Ec = 200 GPa, ρc = 5700 kg/m3, νc = 0.3.

As can be seen, the present method demonstrates an acceptable correlation with HSNDTs
based on the Navier solution. Similar to the previous example, the discrepancies between the
present methods and other solutions of moderately thick plates are negligible. Moreover, the
maximum correlations refer to the plates with a/h = 10, p = 0, a/h = 20, p = 1, a/h = 5,
p = 2,5. In other words, combinations of low thickness ratio with high power index or high
thickness ratio with low power index demonstrate significant correlations.

The last comparative example compares the natural frequencies and loss factors of lam-
inated composite plates with those reported by Alam and Asnani (1986) based on complex
moduli and layerwise theory, as tabulated in Table 3. The geometrical properties, lamination
scheme and complex moduli of carbon fiber-reinforced plastic are considered as (Alam and
Asnani 1986):

a/h = 150, b/a = 1, [0]4T , E11 = 211 GPa, E22 = 5.3(1 + 0.5i) GPa,

G23 = 1.3(1 + 0.5i) GPa, G12 = G13 = 2.6(1 + 0.5i) GPa, ν12 = 0.25, ρ = 1524 kg/m3

As tabulated, the present results display lower frequencies than other theories due to more
flexibility or normal deformations in the thickness direction. Although three theories predict
different loss factors with infinitesimal differences, the fundamental frequencies are more
sensitive to the thickness-stretching effect rather than loss factors.

5.2 Parametric studies

In this subsection, the effects of various parameters such as aspect ratio (b/a), thickness
parameter (H ′ = h/a), power index and different HSNDTs on complex frequencies are
investigated.
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Table 2 A comparison of the fundamental frequency parameter ω̄ for Al/ZrO2 plates

Method p = 0 p = 1 a/h = 5

a/h = √
10 a/h = 10 a/h = 5 a/h = 10 a/h = 20 p = 2 p = 3 p = 5

3D-Exacta 0.4658 0.0578 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225

Quasi-3D-SSDTb - - 0.2193 0.0596 0.0153 0.2198 0.2212 0.2225

Quasi-3D-HYPc - - 0.2193 0.0596 0.0153 0.2201 0.2216 0.2230

Quasi-3D-HSDTd - - 0.2193 - - 0.2200 0.2215 0.2230

TSDT-MLMe - - 0.2188 0.0592 0.0147 0.2188 0.2202 0.2215

RPT-Navierf 0.4623 0.0577 0.2169 0.0592 0.0152 0.2178 0.2193 0.2206

HSNDT-Polyf 0.4661 0.0578 0.2192 0.0597 0.0153 0.2201 0.2214 0.2225

HSNDT-Hyp.g 0.4659 0.0578 0.2192 0.0597 0.0153 0.2201 0.2214 0.2225

Present

HSNDT-Poly 0.4660 0.0578 0.2192 0.0597 0.0153 0.2201 0.2214 0.2224

HSNDT-Hyp 0.4748 0.0579 0.2218 0.0599 0.0153 0.2230 0.2236 0.2221

HSNDT-Int 0.4681 0.0579 0.2306 0.0624 0.0159 0.2196 0.2217 0.2221

aVel and Batra (2004); bNeves et al. (2012b); cNeves et al. (2012a); dNeves et al. (2013); eFerreira et al.

(2006); fThai and Choi (2014); gBelabed et al. (2014)

Table 3 The fundamental
frequency and loss factor of
composite plates

aAlam and Asnani (1986)

Method ω′ ηs

Series solutiona 0.108 0.036

HSNDT-Poly 0.101 0.038

HSNDT-Hyp 0.101 0.037

HSNDT-Int 0.100 0.035

For the first case, the fundamental frequencies and loss factors of FGV foam plates with
different shear-deformation theories, p = 1,2, and b/a = 1 up to 5 are depicted in Fig. 2.
As can be observed, both vibrational characteristics show a decrease as aspect ratio in-
creases. In other words, long, moderately thick FGV foam plates demonstrate less stiffness
and damping capability. Also, HSNDT-Int presents the maximum values of frequencies and
loss factors. Moreover, it is observed that the vibrational characteristics of square plates with
HSNDT-Int, HSNDT-Poly and HSNDT-Hyp depict the most sensitivity to the variation of
power index, respectively. Indeed, the fundamental frequencies of the mentioned theories
demonstrate 41.54%, 26.90% and 25.29% augmentation, respectively, as the power index
decreases from 2 to 1. Furthermore, the counterpart variations of fundamental loss factors
are 49.13%, 33.90% and 32.25%, respectively.

The next example considers the thickness parameter and its impacts on the first eight fre-
quencies and loss factors of square plates, as demonstrated in Fig. 3. It should be noted that
modes of (1, 2), (1, 3), (1,4), (2, 3) and (2, 4) are equal to (2, 1), (3, 1), (4,1), (3, 2) and (4,
2), respectively. In other words, these modes depict the behavior of the 13 natural frequen-
cies and loss factors of square plates. As can be seen, both vibrational characteristics show
a reduction as the thickness ratio increases from 2 up to 30. Actually, the first eight frequen-
cies of plates with HSNDT-Poly show 51.96%, 47.57%, 45.53%, 45.17%, 44.30%, 44.29%,
43.83%, and 43.82% reductions, respectively. The counterpart values of modal loss factors
depict 51.15%, 46.77%, 44.70%, 44.33%, 43.43%, 43.39%, 42.92%, and 49.27% reduc-
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Fig. 2 Fundamental frequencies and loss factors of FGV plates with various power indices and HSNDTs
versus aspect ratio

tions, respectively. Moreover, the first eight frequencies of plates with HSNDT-Int display
54.53%, 51.73%, 49.17%, 48.55%, 47.23%, 44.14%, 45.63%, and 44.41% decreases, re-
spectively. The counterpart values of reductions of modal loss factors are 53.17%, 49.03%,
47.41%, 45.99%, 45.78%, 44.86%, 43.90%, and 45.10%, respectively. Furthermore, the first
eight frequencies of plates with HSNDT-Hyp depict 56.63%, 58.69%, 56.66%, 56.50%,
54.37%, 53.56%, 50.82%, and 47.79% reductions, respectively. The modal loss factors
of plates with HSNDT-Hyp display 52.04%, 58.01%, 55.89%, 55.73%, 52.46%, 51.05%,
48.83%, and 48.84%, reductions, respectively. Based on these values, four remarks can be
derived. First, fundamental modes are more sensitive to the thickness parameter rather than
other modes, except the (1, 2) and (2, 2) modes of HSNDTs-Hyp. Hence, the thickness
parameter plays a crucial role in the design of FGV foam plates that vibrate in their funda-
mental mode. Secondly, frequencies display more variations than modal loss factors, except
the (2, 4) mode of HSNDT-Poly, (1, 4) and the (2, 4) modes of HSNDT-Int, and the (2,
4) mode of HSNDT-Hyp. However, the reduced trends of both vibrational characteristics
are not far from each other, regardless of deformation theories. Thirdly, for the constant
modes, HSNDT-Hyp demonstrates the most sensitivity to the thickness ratio. Fourthly, as
the thickness parameter increases, its impacts on both frequencies and loss factors diminish
significantly.

The last example scrutinizes the effects of power indices and HSNDTs on the variation
of frequencies and loss factors versus thickness parameter, as demonstrated in Fig. 4. In
this example, p = 1,2, a/h = 10, b/a = 1 are assumed. As can be observed, for p = 1,
the maximum values of frequencies refer to HSNDTs-Int, while the maximum reductions
of frequencies are 55.04%, 51.40% and 49.56% for plates with HSNDT-Hyp, HSNDT-
Int and HSNDT-Poly, respectively. The relevant reductions of fundamental loss factors are
50.34%, 50.11% and 48.77%, respectively. In other words, the frequency characteristics
of FGV foam plates with linear variation of porosity distribution and HSNDT-Hyp show
more dependency on variation of the thickness parameter than other deformation theories.
However, for p = 2 or a quadratic distribution of porosity, a different pattern is observed so
that the maximum reductions of fundamental frequencies are 49.19%, 39.45% and 18.37%,
which refer to HSNDT-Poly, HSNDT-Int and HSNDT-Hyp, respectively. Furthermore, the
maximum reductions of fundamental loss factors are 50.43%, 37.91%, and 36.74% for plates
with HSNDT-Poly, HSNDT-Int and HSNDT-Hyp, respectively. Therefore, for the case of
a quadratic distribution of porosity, plates with HSNDT-Hyp demonstrate more resistance
than other theories against thickness variations, especially fundamental frequencies, which
only display a 18.37% reduction.
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Fig. 3 The first eight frequencies and loss factors of square FGV plates with different theories versus thick-
ness ratio

6 Conclusions

The free-vibration analysis of a functionally graded viscoelastic open-cell foam plate is ful-
filled using HSNDTs with polynomial, hyperbolic and integral functions of displacements
in order to consider thickness-stretching effects. The Boltzmann superposition principle,
a separable kernel framework and a simple power law are applied to achieve constitutive
relations, while the Hamilton principle is used to derive the integro-PDEs of motion. The
Galerkin method with eigenvalue solver is used to achieve vibrational characteristics. In
comparative studies, an acceptable correlation is observed for both FG elastic and viscoelas-
tic composite plates. Through parametric studies, new results are derived and some remarks
are presented concisely as:

• HSNDT-Int predicts more values of fundamental frequencies and loss factors than other
theories.
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Fig. 4 Fundamental frequencies and loss factors of square FGV plates with various power indices and
HSNDTs versus thickness ratio

• By variation of the power index from 1 to 2, the fundamental frequencies of square
plates with HSNDT-Int, HSNDT-Poly and HSNDT-Hyp experience 41.54%, 26.90%
and 25.29% reduction, while the fundamental loss factors display 49.13%, 33.90% and
32.25% decreases, respectively.

• The fundamental mode is the most affected mode, as the thickness parameter varies. Also,
plates with linear variations of porosity and HSNDT-Hyp are more sensitive to the varia-
tion of the thickness parameter than other theories.

• For quadratic variations of porosity, HSNDT-Poly and HSNDT-Hyp are the most sen-
sitive and the most resistant to the thickness parameter, respectively; indeed, fundamen-
tal frequencies based on polynomial, integral and hyperbolic functions display 49.19%,
37.86% and 18.37% reductions, respectively, while their counterpart loss factors with
polynomial, hyperbolic and integral functions demonstrate 44.48%, 36.74%, and 33.12%
reductions, respectively.

• The greater the aspect ratio, the less is the stiffness and damping capability of moderately
thick FGV foam plates.

• The greater the thickness parameter, the less is its influence on vibrational characteristics.
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