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Abstract
The linear viscoelastic behaviour of an injection moulding grade polypropylene is studied
using theoretical and computational methods. Polypropylene has a variety of engineering ap-
plications as a component. However, it commonly exhibits viscoelastic deformations. This
paper analyses the creep and recovery responses of the BJ368MO polypropylene copolymer
using the Burgers and generalised Maxwell models. Within the linear viscoelastic regime,
an experimental creep strain at 20 MPa is used to determine the rheological constants of
the models. These constants (springs and dashpots) are determined using a nonlinear least-
squares curve fitting of the experimental creep. Then they are used to predict the creep and
recovery responses of the polymer at three different stresses, 10 MPa, 12.5 MPa and 15 MPa.
The experiments are made using tensile specimens designed according to the ASTM D638-
14standard. The theoretical evaluations are made using the creep and recovery equations de-
rived from their constitutive. Whereas COMSOL Multiphysics software is used during the
finite element (FE) analyses. The results of the theoretical and FE calculations are verified
using creep and recovery experiments. Based on the validation analyses, both viscoelastic
models showed lower deviations from the experimental results when a computational ap-
proach is used. In addition, the viscoelastic models are compared by evaluating the residuals
of the creep and recovery strain predictions. The theoretical analyses showed better pre-
dictions at 12.5 MPa and 15 MPa stresses when the generalised Maxwell model is used.
However, the improvements are attributed to the recovery predictions. When FE is used, the
Burgers model showed lower mean absolute percentage errors (MAPEs) in all creep and
recovery predictions. The model has a minimum of 6.37% error at the 10 MPa stress and a
maximum of 8.23% error at the 15 MPa. By comparison, the generalised Maxwell model
showed a minimum of 9.24% error at 12.5 MPa and a maximum of 12.8% error at 15 MPa
stresses. The novelty of this paper is on predicting the creep and recovery behaviour of
the polymer using the FE and theoretical approaches in the linear viscoelastic regime. The
findings suggest that the FE analyses using the Burgers viscoelastic material model provide
better predictions, with all calculated errors falling below 10%.
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1 Introduction

Polypropylene is a widely used polymer in engineering applications for its attractive physi-
cal properties including, low density, good toughness, and better fatigue resistance under el-
evated temperatures (Harutun 2003). These excellent properties make polypropylene widely
versatile for automotive interior, medical equipment, fluid transport systems, and commodity
applications (Moor 1996). Along with other smart and state-of-the-art materials, polypropy-
lene is currently a biomedical engineering solution as drug delivery systems and implantable
devices (Maddah 2016). The state-of-the-art in sustainable materials development focusses
on the synthesis of polypropylene based bio-composites and bio-nanocomposites. This has
enhanced the mechanical properties of the composites, increasing their applicability in au-
tomotive industries, structural reinforcements, and packaging (Visakh 2017). However, due
to the broad range of applications, the polymer experiences stress due to static, dynamic,
or thermal loadings leading to time-dependent deformations. Therefore, understanding the
creep and recovery behaviour of the polymer is essential in order to avoid failures caused by
different loadings.

There are a few studies that discuss the linear viscoelastic behaviour of engineering poly-
mers and their composites. Daver et al. (2016) used creep-recovery experiments to charac-
terise the viscoelastic responses of polyolefin-rubber nanocomposites developed for additive
manufacturing. Based on their experimental results, the authors used analytical and numer-
ical techniques to model the viscoelastic behaviours using extrapolations and intercepts on
creep curves. Martins et al. (2015) used curve-fitting on experimental creep data to deter-
mine the rheological constants for a polylactic acid (PLA) polymer blended with polycapro-
lactone. The authors determined the rheological constants using short-term experimental
data. Yang Yang et al. (2006) investigated the creep resistance of polyamide 66 with titanium
dioxide nanofillers. The long-term creep behaviours of Burgers and Findley power law ma-
terial models are determined using the nonlinear curve fitting function on OriginPro. They
set the initial values of the rheological parameters manually to study the simulated curve
asymptote to their experimental results. Dean and Broughton (Dean and Broughton 2007)
studied the influence of retardation time parameters casting nonlinear viscoelasticity on rect-
angular polypropylene samples under uniaxial tension and compression. Similarly, the creep
and relaxation behaviours of polypropylene are studied using finite element analyses (Resan
et al. 2015). In many cases, the viscoelastic parameters that are determined geometrically
from the creep curve by taking strain rates at t = 0 and t = ∞ lack accuracy. The linear
viscoelastic parameter analyses are discussed for different materials (Keenan et al. 2013;
Ngudiyono et al. 2019; Bharadwaj et al. 2017). The FE studies by Ngudiyono et al. (2019)
and Bharadwaj et al. (2017) used the Prony series to model the time-dependent shear moduli
of the materials.

The viscoelastic behaviour of polypropylene has been studied by taking into account
the different morphological compositions or additives for reinforcing specific mechanical
properties. Wang et al. (2018), have analysed the creep and recovery properties of injection
moulded isotactic polypropylene (iPP). They used the Burgers model for fitting the creep
behaviour and a Weibull distribution function for the recovery. Kurt and Kasgoz (2021)
have studied the effect of different molecular weight and their distributions on the creep
behaviour of the same composite. They used the four parameters Burgers model to fit the
creep. The effects of adding different crystals and porosities have been studied by Wu et al.
(2019). Furthermore, several reinforced polypropylene composites have been studied lately
using both experimental and complementary theoretical modelling, including materials such
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Fig. 1 The flowchart of methodology used to determine the suitable approach and model for predicting the
linear viscoelastic behaviour of BJ368MO polypropylene copolymer

as wood (Lee et al. 2004; Homkhiew et al. 2013), silica (Rosa et al. 2018), glass fibre (Berecz
et al. 2012) and e-glass (Zhai et al. 2018). The creep behaviour of polypropylene blended
with other polymers Dian et al. (2020), Houshyar et al. (2005), Banik et al. (2007), Martins
et al. (2015) and organic materials such as fibres (Militký and Jabbar 2015; Tiwari et al.
2021; Hao et al. 2014) and clay (Drozdova et al. 2009) are studied using experimental,
theoretical and computational methods.

Traditionally, rheological constants that characterise viscoelastic deformations are de-
termined by finding the slopes at instantaneous elasticity, long-term creep, and recovery.
However, it is impossible to find the tangents to creep curves (Findley et al. 1976; Riande
et al. 2000). This paper aims to predict the creep and recovery behaviour of the BJ368MO
polypropylene copolymer at different stresses within the linear viscoelastic regime. Two
comparable viscoelastic models, the Burgers and the generalised Maxwell models, will
be used to estimate the creep and recovery behaviour of the polymer theoretically and
computationally. In order to predict the behaviour, the rheological constants of the vis-
coelastic models will be determined first by fitting creep equations to experimental data.
The regression analyses will be made using the nonlinear least-squares curve fitting on
MATLAB. Finally, the creep and recovery estimations will be compared with the experi-
mental findings to identify the approach and viscoelastic model that predict the phenom-
ena better. The flowchart in Fig. 1 summarises the methodology we followed in this pa-
per.
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2 Linear viscoelasticity

2.1 Linear viscoelastic models

Engineering components made from polymers are widely used in constant stress environ-
ments. Even if under constant loading, the components experience time-dependent defor-
mation due to their viscoelastic properties. This time-dependent deformation is referred to
as creep (Findley et al. 1976). The linear viscoelasticity approach can be used to analyse
the strain response of viscoelastic materials under constant stresses. This strain response
can be modelled using constitutive equations which govern the exhibited viscous and elastic
natures (Riande et al. 2000). For a linear viscoelastic material, the stress-strain relations in
the elastic (spring) and dashpot components are presented as (Brazel and Rosen 2012)

σ = Eε,

σ = ηε̇. (1)

E and η are the elastic and dashpot constants that are generally referred to as rheolog-
ical constants. Analytically, the strain responses of polymers are evaluated using a vari-
ety of spring-dashpot configurations. Some of the basic viscoelastic models are Maxwell,
Kelvin/Voigt, or Zener (Standard Linear Solid) (Gutierrez-Lemini 2014; Kelly 2013). How-
ever, these models are inadequate to predict the materials’ creep, recovery, or relaxation
behaviours under constant or step loading profiles (Crawford and Martin 2020). A better
viscoelastic representation can be made using complex viscoelastic models. In this regard,
the Burgers and generalised Maxwell models are mostly used to analyse the creep and re-
covery behaviour of the materials (Maddah 2016).

The stress-strain constitutive equation of a linearly viscoelastic material under constant
loading in shear or uniaxial tension is presented as (Findley et al. 1976)

n∑

i=0

pr

∂r

∂tr
σ =

m∑

i=0

qr

∂r

∂tr
ε. (2)

The coefficients, pr and qr , are varying combinations of material’s rheological constants.
The subscripts m and n are interrelated and represent the number of combinations of the
viscoelastic models, whereas r denotes the order of differential. Equation (2) is the constitu-
tive equation that can be modified to fit viscoelastic models, such as Burgers and generalised
Kelvin-Voigt.

The Burgers viscoelastic model has instantaneous and delayed elasticities in which a
single Maxwell model is connected in series with one Kelvin-Voigt; see Fig. 1. As it is a
four-parameter model, the constitutive equation of the Burgers model can be given as

poσ + p1σ̇ + p2σ̈ = q1ε̇ + q2ε̈. (3)

The creep of the Burgers viscoelastic model under a step loading can be derived from Eq. (3).
The step loading is given using the Heaviside function as

σ = σoH (t) . (4)

The total strain of the Burgers viscoelastic model presented in Fig. 2 is given as the algebraic
sum of strains from the individual element.
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Fig. 2 The Burgers viscoelastic
model represented with a Kelvin
and a Maxwell model connected
in series

The total strain is

ε = ε1 + ε2 + ε3. (5)

The strains can be presented as functions of the material’s rheological constants and applied
stress. That is,

ε1 = σ

E1
, ε̇2 = σ

η1
, ε̇3 + E2

η2
ε3 = σ

η2
. (6)

The Laplace transform of stress-strain relations in Eq. (6) can be replaced in Eq. (5) to de-
termine the coefficients of the constitutive form presented in Eq. (3). With the substitutions,
Eq. (3) becomes

σ + 1

E1E2
(η1E2 + η1E1 + η2E1) σ̇ + η1η2

E1E2
σ̈ = η1ε̇ + η1η2

E2
ε̈. (7)

The strain response of the Burgers model is determined by solving the above second-order
differential equation using the appropriate stress and strain initial conditions (Appendix A).
The creep of the Burgers viscoelastic model is given as

ε (t) = σo

[
1

E1
+ 1

η1
t + 1

E2

(
1 − e

− E2
η2

t

)]
. (8)

In Eq. (8), the first term on the right-hand side is the instantaneous elasticity, whereas the
last one shows the delayed elasticity.

The generalised Maxwell model is another viscoelastic representation of materials with
a number of Maxwell models connected in parallel; see Fig. 3.

The viscous (fluid) or elastic (solid) behaviours of a viscoelastic material are alterna-
tively represented by connecting an isolated dashpot or spring to the generalised Maxwell
model. The generalised Maxwell model presented in Fig. 3 shows the instantaneous and
delayed elasticities with multiple retardation times. The stress-strain relation for the gener-
alised Maxwell model is given as (Gutierrez-Lemini 2014)

σ =
[

N∑

i=1

Eiηi
∂
∂t

Ei + ηi
∂
∂t

]
ε. (9)

Equation (9) is further manipulated to get the constitutive in a standard form. This can be
approached by multiplying both sides of Eq. (9) by the minimum common denominator of
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Fig. 3 The generalised Maxwell
viscoelastic model with Maxwell
branches connected in parallel

the right-hand side expression. This leads to

[
N∏

i=1

(
Ei + ηi

∂

∂t

)]
σ =

⎡

⎣
N∑

i=1

(
Eiηi

∂

∂t

) N∏

j=1

(
Ej + ηj

∂

∂t

)⎤

⎦ ε, i �= j. (10)

For a four-parameter model, the above constitutive equation reduces to

σ +
(

η1

E1
+ η2

E2

)
σ̇ + η1η2

E1E2
σ̈ = (η1 + η2) ε̇ + η1η2

(
1

E1
+ 1

E2

)
ε̈. (11)

The second-order differential form presented in Eq. (11) is solved using the Laplace trans-
form with appropriate initial conditions (Appendix A). The creep of the four-element gen-
eralised Maxwell model is

ε (t) = σ0

[
t

η1 + η2
+ e−at

E1 + E2
+ 1

η1 + η2

(
η2

E2
+ η1

E1
− 1

a

)(
1 − e−at

)]
. (12)

In Eq. (12), the coefficient a is the inverse of the retardation time, a = (η1+η2)E1E2
η1η2(E1+E2)

.

2.2 Viscoelastic material model on COMSOL

Nowadays, FE software provides possibilities to define mechanical behaviours of materials
that contribute to accurate material models in computational analyses. Our previous work
on the influence of stiffener geometry on flexural properties of additive manufactured beams
used the COMSOL structural mechanics for modelling and analyses (Silas et al. 2020).
COMSOL has suitable features to define viscoelastic material models, such as generalised
Maxwell, Burgers and standard linear solids (SLS). In the FE calculations, the rheologi-
cal constants are used in the governing equations. For the generalised Maxwell model, the
viscoelastic deformation is treated using constitutive equations of the individual Maxwell
branches (COMSOL 2019). The relationship in terms of the total strain, ε, the mth branch
strain, εm and its strain rate, ε̇m is

τmε̇m + εm = ε. (13)
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In Eq. (13), τm is a relaxation time measured in the frequency domain and is further given
as the ratio of

τm = ηm

Gm

. (14)

In Eq. (14), ηm is the dashpot, and Gm is the stiffness of the branch. The viscoelastic stress
of the generalised Maxwell model, σq , is the sum of the stresses in each Maxwell branch,
σm. That is,

σq =
N∑

m=1

σm. (15)

Similarly, a second-order ODE is used as a governing constitutive equation to relate the
stress and strain tensors in the Burgers model (COMSOL 2019).

For a viscoelastic material model under normal loading, the stiffnesses are defined us-
ing elastic moduli instead of the shear ones (Lopes et al. 2014). In addition, in linear vis-
coelasticity, Hooke’s law can be modified to include the viscoelastic stresses to govern the
behaviour of materials (COMSOL 2019; Ward and Sweeney 2004).

2.3 Curve fitting

The curve fitting function in MATLAB is used to perform the regression analysis. The fit
function can be used to perform linear or nonlinear regressions to fit curves to experimen-
tal data. A parametric curve fitting to specific data is also possible by introducing custom
equations that define the fit. The curve fitting accuracy can be enhanced by assessing and
improving the goodness-of-fit and confidence intervals. The code for the curve fitting func-
tion can be automatically generated and exported to a workstation for the manipulations
(MATLAB 2004). In this paper, MATLAB codes will be used for the nonlinear least-square
fits. The regression analyses will be made on the experimental creep results to determine the
rheological constants of the two viscoelastic models.

3 Experimental methods

The creep experiments are made using injection moulded tensile test specimens prepared
from the BJ368MO polypropylene. The specimens were produced on IntElect 100 injection
moulding machine that has the state-of-the-art control features for high precision manu-
facturing. During the sample manufacturing, the nozzle temperature was kept at 220 °C.
The temperatures at the different zones and the mould were set as; zone 3 = 220 °C, zone
2 = 215 °C, zone 1 = 210 °C, feed = 30 °C and mould = 30 °C. These temperature pro-
files are digitally controlled with tight tolerances of ±1 °C. The injection speed is set at
13 mm/s. For this injection speed, the injection pressure readings range between the max-
imum and minimum values of 500 bar and 183 bar. The holding switchover is controlled
via screw position. When the screw stroke reaches 8 ccm, the injection profile changes to
packing by applying a constant pressure of 300 bar for 3 seconds. After packing, the screw
plasticises at 50 rpm until it reaches the screw-back position of 32 ccm. A two-cavity mould
is used to manufacture the samples with a cycle time of 18 seconds.

The test specimens are designed and manufactured according to the ASTM D638-14
standard for type I samples (ASTM D638-14 2014). The creep and recovery experiments
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Fig. 4 Experimental setup of the creep and recovery experiments. The tests are made using the X350-20
machine from Testometric. The strains are measured using higher precision clip-on extensometer, TE3542

are made on recently developed X-series high precision and digitally controlled tester by
Testometric. The X350-20 tester has a controllable test speed range between 0.0001–1000
mm/s. The strain is carefully measured using the TE3442 digital extensometer acquired
from Epsilon technology. Figure 4 shows the sample gripping and extensometer attachment
during testing.

In order to apply the theoretical and computational methods, the creep and recovery re-
sponses should be within the linear viscoelastic regime. The linear viscoelastic creep and
recovery responses of polypropylene composites have been experimentally studied in the
past (Wang et al. 2018; Kurt and Kasgoz 2021; Wu et al. 2019; Lee et al. 2004; Homkhiew
et al. 2013; Rosa et al. 2018). However, the experimental studies vary on the testing meth-
ods, the equipment used, and the testing conditions. Using the universal testing machines,
uniaxial tension (Wu et al. 2019; Lee et al. 2004; Zhai et al. 2018; Houshyar et al. 2005;
Drozdova et al. 2009) and flexural (Militký and Jabbar 2015; Tiwari et al. 2021) tests are
made to study creep of polypropylene composites. Nano-indentation tests (Rosa et al. 2018;
Dian et al. 2020), a dynamic oscillatory rheometer (Kurt and Kasgoz 2021) and a dynamic
mechanical analyser (Wang et al. 2018; Houshyar et al. 2005) are used to study the effects
of chemical modification on the mechanical performance of polypropylene. Similarly, the
creep and recovery behaviours of the polypropylene composites are studied at different tem-
peratures (Wang et al. 2018; Banik et al. 2007; Militký and Jabbar 2015). The different
experimental approaches followed by the different authors have produced a wide range of
values for the rheological constants.

We conducted several creep and recovery experiments before the curve fitting and the
viscoelastic evaluations. The material’s viscoelastic responses are experimentally investi-
gated at different stresses ranging between 10 MPa and 35 MPa. Figure 5 presents the linear
and nonlinear viscoelastic responses observed during the creep and recovery experiments.
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Fig. 5 Experimentally studied
creep and recovery responses of
the BJ368MO polypropylene at
different stresses. The creep load
function is defined for
σ = 20 MPa whereas, the creep
& recovery load function is
defined for the other stresses

The nonlinear viscoelastic responses are exhibited at higher stresses, leading to failures at
early stage of the creep. Thus, the study focusses on the responses at 20 MPa and below. The
creep response that is used for the curve fitting is made at the 20 MPa loading; see Fig. 5.
Each creep experiment is made for a length of time, t = 3600 seconds. During each exper-
iment, the load function was defined using the step tensile testing method. The machine is
programmed with the load sequence defined as σ = 20 MPa at t = 0 and σ = −20 MPa
at t = 3600 seconds. Practically, it is not possible to apply the instantaneous stress changes
during the experiments. Therefore, we used a higher travel speed of 350 mm/s during initial
loading in the step load sequence. As a result, it took below 0.5 seconds for the tester to
reach the constant stress. This stress was maintained with a 25 mm/s holding speed until
the end of the creep experiment.

The initial loading conditions of the creep and recovery experiments for the other stresses
are defined similarly to the 20 MPa creep test. During the recovery, the loads are removed,
and the strain recoveries are studied for 1200 seconds. Each experiment is repeated five
times, and the arithmetic mean of the responses is used for the viscoelastic analyses.

3.1 Curve fitting for rheological parameters

The rheological constants of the Burgers and generalised Maxwell models are determined
using a custom equation fit on MATLAB. The creep of the two viscoelastic models presented
in Eqs. (8) and (12) are used for fitting the experimental data. Figure 6 (a) and (b) present the
fittings made that correlate the models with the experiment. The nonlinear least-squares fit
showed good agreement with acceptable goodness-of-fit characteristics. The details of these
fits are given. See Appendix B.

The values of the rheological constants determined for the viscoelastic models are pre-
sented in Table 1.

3.2 Viscoelastic modelling analyses on COMSOL

Based on the rheological constants presented in Table 1, the material’s creep and recovery
behaviour is studied computationally using COMSOL. The responses of the Burgers and
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Fig. 6 Curve fitting of the linear viscoelastic models on the experimental creep obtained at stress, σ = 20 Mpa
a) Burgers model fit. b) Generalised Maxwell model fit

Table 1 Rheological constants determined by curve fitting

Elastic constants [Gpa] Viscous constants [Gpa s]

E1 E2 η1 η2

Burgers 1.32 7.28 20124 3317.9

Generalised Maxwell 0.211 1.19 32.7 14500

generalised Maxwell viscoelastic material models are studied for the 10 MPa, 12.5 MPa
and 15 MPa stress loadings. From the solid mechanics physics, the Burgers and generalised
Maxwell viscoelastic material models are selected during the analyses. The rheological con-
stants and other physical properties from the manufacturer’s data are used to define the mate-
rial model (Borealis 2019). The loads are defined using a piecewise function, which follows
the experimental step tensile load sequence. The step loading introduces nonlinearity lead-
ing to nonconverging solutions due to the residuals between successive iterations. In order to
avoid this, the piecewise load function is smoothed using a continuous second-order deriva-
tive. The modelling and analyses started with building the ASTM D 368-14 type I sample
using the geometry tool on the 3D space dimension. Tetrahedral mesh with a user-controlled
meshing sequence is assigned to the model. The minimum element size is set at 0.1 mm,
which generated closer to half a million degrees of freedom to be solved. In each study,
boundary loads are applied for the first 3600 seconds and removed during the next 1200
seconds. Time-dependent studies are conducted, and the mesh refinements are approached
by sequentially decreasing the element size until the solutions showed convergences. Fig-
ure 7 shows the mesh and boundary settings of the FE model.

4 Results

The linear viscoelastic deformation of the BJ368MO polypropylene copolymer is studied
using experimental, computational and theoretical methods. The rheological constants de-
termined via regression analyses are used to evaluate the creep and recovery of the material
at different stresses. The responses are studied using theoretical, and FE approaches. The
Burgers and generalised Maxwell viscoelastic models are alternatively assigned to the ma-
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Fig. 7 Finite element modelling and boundary conditions. a) Tetrahedral mesh. b) Boundary load in a uniax-
ial direction

terial during the analyses. The results of the theoretical and FE evaluations are compared to
the experimental findings.

4.1 Theoretical results

The creep and recovery responses of the two viscoelastic models are theoretically calcu-
lated. Employing the superposition principle, Eqs. (8) and (12) are modified to evaluate the
recovery strain after the load removal (Riande et al. 2000). The evaluations are made for the
10 MPa, 12.5 MPa and 15 MPa stresses. Figure 8 (a) – (c) present the results of the creep
and recovery evaluations compared to the experimental ones.

The instantaneous deformation of the material is closely similar in all cases. However,
with the increase in time, the creep predictions by the models deviated from the experimen-
tal results. In contrast, the recovery predictions of the models showed variations for each
loading. Generally, the rheological constants can be attributed to the deviations observed.
The creep and recovery of the two viscoelastic models have constant, linear and exponen-
tial terms with different combinations of rheological constants. The retardation times of the
two models have similar orders of magnitude. Therefore, the exponent terms of the mod-
els in Eqs. (8) and (12) behave similarly during the creep. However, at each viscoelastic
branch, the dashpots of the Burgers model are higher than the generalised Maxwell ones.
These influence the linear terms of the creep strains predicted by the models. Similarly, the
recovery strains predicted by the models have terms related to previous load histories and
exponentially decaying expressions which depend on the rheological constants. In addition,
unlike the practical experimentations, the theoretical models exhibit instantaneous recover-
ies which are derived from the principles of their constitutive.

Comparing the theoretical estimations, the Burgers model predicts the creep and recovery
of the material better at σo = 10 MPa. However, when the stress increases to 12.5 MPa and
15 MPa, the generalised Maxwell becomes a better model. The improvements of the model’s
accuracy arise from the long-term strain recovery. Considering only the creep, the theoretical
prediction by the Burgers model is better in all stress loadings.

4.2 Finite element analyses results

The creep and recovery analyses of the polymer are made on COMSOL using the Burgers
and the generalised Maxwell viscoelastic material models. The viscoelastic analyses pre-
dicted the material’s response for the 10 MPa, 12.5 MPa, and 15 MPa stress loadings. The
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Fig. 8 Theoretically calculated creep and recovery strains of the Burgers and generalised Maxwell mod-
els presented in comparisons with the experimental results at a) σo = 10 MPa, b) σo = 12.5 MPa,
c) σo = 15 MPa

Fig. 9 Surface strain in the local x-axis for the 15 MPa stress. a) Burgers viscoelastic material model. b) Gen-
eralised Maxwell viscoelastic material model

time-dependent strains in the loading direction are studied for the length of time, t = 4800
seconds, with a 1 second increment. From the graphic window, the average surface strains
of both viscoelastic models for the 15 MPa stress are presented as examples; see Figs. 9 (a)
and (b).

The FE creep and recovery predictions by the two models and the experimental investi-
gations are compared; see Figs. 10 (a) – (c).



Mechanics of Time-Dependent Materials (2022) 26:791–814 803

Fig. 10 FE creep and recovery predictions of the Burgers and generalised Maxwell models presented in
comparison with the experimental findings at, a) σo = 10 MPa, b) σo = 12.5 MPa, c) σo = 15 MPa

The creep and recovery results of the FE analyses generally showed similar responses
during the instantaneous and long-term creep. However, higher deviations from the experi-
mental results are locally observed at initial loadings. During the creep and recovery exper-
iments, the initial loadings were made at a test speed of 350 mm/s. With this travel speed,
the tester reached the constant load sequence within 0.5 seconds in all cases. However, in FE
analyses, abrupt changes in boundary load lead to nonlinearly, resulting in nonconvergence
(Lopes et al. 2014). In order to resolve this, the piecewise load functions are smoothed at
loading and unloading transitions. A second-order continuous in time smoothing function
is used to modify the step loadings slightly. The initial creep responses of the FE analyses
deviated from the experimental ones due to this load smoothing. During the recovery, the re-
turn speed of the tester was reasonably lowered in the experiments. As a result, the recovery
of the instantaneous elasticity in both experimental and FE analyses are similar. However,
the models exhibited quick recovery predictions for the 12.5 MPa and 15 MPa loadings.
Comparing the models, the Burgers model showed good agreement with the experimental
results in all loadings. The generalised Maxwell model comparatively has higher deviations
in creep. However, the recovery predictions of the model are better.

The mean absolute percentage errors (MAPE) of the theoretical and FE analyses are
further investigated. These deviation analyses determine the margins of acceptability of the
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Table 2 Mean absolute percentage errors of the viscoelastic models using analytical and FE

Viscoelastic
analyses

Loading
(MPa)

MAPE of Burgers
model (%)

MAPE of generalised
Maxwell’s model (%)

Theoretical
estimations

10 13.11 19.51

Creep and
recovery

12.5 14.23 12.16

15 18.31 14.56

Finite
element
analyses

10 6.37 10.39

Creep and
recovery

12.5 7.3 9.24

15 8.23 12.8

results predicted by the two viscoelastic models. The MAPE is calculated as

MAPE = 1

n

n∑

t=0

∣∣∣∣
εext − εt

εext

∣∣∣∣ ∗ 100%. (16)

In Eq. (16), n is the number of data points used, εext is the experimental strain, and εt is
the calculated strain using either the theoretical or FE methods. Table 2 presents percentage
errors of the two viscoelastic models as compared to the experimental approach.

The MAPEs in Table 2 show the deviations of the theoretical and FE strain predictions by
the models. The residual analyses indicate that the theoretical creep and recovery estimation
by the Burgers model has its smallest deviation of 13.11% for the 10 MPa stress loading.
The prediction errors showed increments when the load changes to 12.5 MPa and 15 MPa;
see Table 2. However, the majority of the model’s prediction errors came from the recovery
strain response. Considering only the creep, the model’s prediction error reduced to approx-
imately 7.45% in all loading cases. Unlike the Burgers model, the generalised Maxwell
theoretical creep and recovery prediction errors do not show proportional increments with
the loading. The lowest prediction error of the model is 12.16% for the 12 MPa loading.
Relatively, the model showed lower prediction errors for the 12.5 MPa and 15 MPa loading.
The improvements are due to lower deviations during strain recovery. The creep prediction
of the model showed a range of MAPE between 8% and 9%.

The deviations of the FE creep and recovery analyses are also evaluated. The percent-
age error of creep and recovery prediction by the Burgers model is below 10% in all three
cases. Like the theoretical analyses, the model exhibited increments in percentage deviation
with the load increments. On the other hand, the generalised Maxwell showed a higher per-
centage deviation in all the cases. This model has a maximum deviation of 12.8% for the
15 MPa loading. Unlike the Burgers, the percentage deviations of the generalised Maxwell
model do not have a linear correlation to the stress increments. With minimum residuals,
the FE approach represents the linear viscoelastic behaviour of the polymer better than the
theoretical counterpart.

Two viscoelastic models are used to predict the creep and recovery behaviours of the
polymer theoretically and computationally. The evaluations are compared with the results
of the experimental investigation; see Figs. 8 and 10. The experimental approach is used
for validating the analyses by the methods. The MAPEs of all analyses are computed to
compare and identify the better approach and model that predicts the viscoelastic behaviour
of the material. Based on the results of all analyses, the Burgers viscoelastic model showed
good agreement with experimental results when the FE method is used.
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5 Conclusion

The linear viscoelastic behaviour of the BJ368MO polypropylene copolymer is studied us-
ing theoretical and FE methods. In both methods, the material’s viscoelastic deformation
is predicted using the Burgers and generalised Maxwell models. The rheological constants
of the two viscoelastic models are determined using nonlinear curve fitting of the exper-
imental creep made at 20 MPa stress. The determined rheological constants are used in
theoretical and FE approaches to predict the creep and recovery of the material at different
stresses. Generally, the results of the FE analyses are better than the theoretical ones for both
viscoelastic models. Furthermore, the FE creep and recovery prediction using the Burgers
viscoelastic model showed minimum percentage errors for all stress loadings.

The comparison between the models’ theoretical creep and recovery results indicated that
the Burgers model was better at the 10 MPa loading. For the 12.5 MPa and 15 MPa load-
ings, the generalised Maxwell model became the better model. If the comparison is made
solely on the creep, the Burgers model predicts better, with deviation errors falling close to
7.45% for all stress loadings. For both models, the errors in recovery prediction contributed
highly to the increment of the overall prediction errors. One of the reasons for the higher de-
viations is the models’ instantaneous recovery during load removal. Experimentally, abrupt
load removal is not possible.

The results of the FE creep and recovery analyses showed improved predictions by the
viscoelastic models. The Burgers model showed the smallest deviation errors falling below
10% in all stress loadings. The maximum deviation error of the model is 8.23% at 15 MPa
stress. The FE calculations using the generalised Maxwell model showed smaller prediction
errors than its theoretical counterpart. However, it exhibited higher prediction errors at all
stress loadings when compared with the Burgers FE results. The higher prediction errors of
the model are attributed to the values of its rheological constants as well as its spring-dashpot
layout. Even if both models have four elements, their layouts are different. This affects the
material’s creep and recovery predictions. The generalised Maxwell model is suitable for
modelling the relaxation behaviour of materials. Using parallel Maxwell branches, materi-
als’ viscoelastic relaxation at different times can be determined (Baumgaertel and Winter
1992; Jalocha et al. 2015).

Characterisation studies of the creep behaviour of polypropylene polymer are made in
Dean and Broughton (2007) and Resan et al. (2015). However, the studies generally fo-
cus on the creep and relaxation responses using a smaller number of spring-dashpot el-
ements. Kasgoz et al. (2018) studied temperature-dependent creep and relaxation of iso-
tactic polypropylene. However, the study solely focussed on predicting the creep of the
polymer using time-temperature superposition. Other works have focussed on the mix of
polypropylene with additives such as polymers (Houshyar et al. 2005; Banik et al. 2007;
Martins et al. 2015), organic materials (Homkhiew et al. 2013; Militký and Jabbar 2015;
Tiwari et al. 2021; Hao et al. 2014) and many others (Drozdova et al. 2009; Loghman and
Shayestemoghadam 2016). This work proposed a method for predicting the creep and re-
covery behaviour of polypropylene using two different viscoelastic models and approaches.
With minimum residuals, the FE analysis using the Burgers model is better in represent-
ing the viscoelastic behaviour of the polymer. Using the proposed method, the creep and
recovery behaviour of the polymer in the linear viscoelastic regime can be estimated with
acceptable accuracies. This will avoid the long-term creep and recovery experimentations,
which are often costly. Finally, this work will open the door to further research on new
polymeric materials or blends in the linear and nonlinear viscoelastic regimes.
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Appendix A

Creep of a Burgers viscoelastic model for an applied constant stress:

Boundary load information,

σ = σo, σ̇ = σ̈ = 0.

The constitutive equation of the Burgers model is first derived using the Laplace transform
and its inverse on Eqs. (4) and (5) (Kelly 2013). The strain solution follows a similar ap-
proach; however, it utilises the initial conditions given above.

Laplace transforms of the individual strains in Eq. (5) are

L (ε1) = ε1 (s) = 1

E1
σ (s)

L (ε2) = ε2 (s) = 1

η1

σ (s)

s

L (ε3) = ε3 (s) = 1

η2

σ (s)

(s + E2/η2)

Replacing individual Laplace transformed strains in Eq. (4) in Laplace form,

ε = ε1 (s) + ε2 (s) + ε3 (s)

ε (s) = σ (s)

E1
+ σ (s)

sη1
+ σ (s)

η2 (s + E2/η2)

The total strain and stress are related in Laplace form. Rearranging,

ε(s)
[
E1η1η

2
2s

2 + E1η1E2η2s
] = σ (s) [η1η

2
2s

2 + (
η1E2η2 + E1η

2
2 + E1η1η2

)
s + E1E2η2]

Taking the Laplace inverse of the above expression,

L−1
(
ε(s)

[
E1η1η

2
2s

2 + E1η1E2η2s
]) = E1η1η

2
2 ε̈ + E1η1E2η2ε̇

L−1
(
σ (s)

[
η1η

2
2s

2 + (
η1E2η2 + E1η

2
2 + E1η1η

2
2

)
s + E1E2η2

])

= η1η
2
2σ̈ + (

η1E2η2 + E1η
2
2 + E1η1η2

)
σ̇ + E1E2η2σ

Putting the above inverse in standard form,

η1η2

E2
ε̈ + η1ε̇ = η1η2

E1E2
σ̈ +

(
η1

E1
+ η2

E2
+ η1

E2

)
σ̇ + σ

In order to solve the creep, the initial conditions and the boundary stress are considered, see
given data, we consider the instantaneous response,

εo = σ0

E1

The initial strain rate can be found by integrating the constitutive equation at the instant of
load application. That is,

σ = 0, t = 0−; σ = σo, t = 0+
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Integrating between the time range,

∫ 0+

0−

η1η2

E2
ε̈ +

∫ 0+

0−
η1ε̇ =

∫ 0+

0−

η1η2

E1E2
σ̈ +

∫ 0+

0−

(
η1

E1
+ η2

E2
+ η1

E2

)
σ̇ +

∫ 0+

0−
σdt

η1η2

E2
ε̇0 + η1ε0 = η1η2

E1E2
σ̇0 +

(
η1

E1
+ η2

E2
+ η1

E2

)
σ0 + σ0t |0+

0−

The initial strain rate becomes

ε̇0 = σo

η1η2
(η1 + η2)

The Laplace transform of the constitutive form given in Eq. (6) is

L
(

η1ε̇ + η1η2

E2
ε̈

)
= L (σ0)

η1η2

E2

(
s2ε (s) − sε0 − ε̇0

) + η1 (sε (s) − ε0) = σ0

s

Replacing the initial conditions and the boundary stress,

η1η2

E2

(
s2ε (s) − s

σ0

E1
− σo

η1η2
(η1 + η2)

)
+ η1

(
sε (s) − σ0

E1

)
= σ0

s

Collecting similar terms,

η1η2

E2
s2ε (s) + sη1ε (s) = σ0

[
1

s
+ s

η1η2

E2E1
+ η1 + η2

E2
+ η1

E1

]

Factoring out and simplifying,

η1η2

E2
ε (s) s(s + E2

η2
) = σ0

[
1

s
+ s

η1η2

E2E1
+ η1 + η2

E2
+ η1

E1

]

η1η2

E2
ε (s) = σ0

[
1

s2(s + E2
η2

)
+ η1η2

E2E1

1

(s + E2
η2

)
+

(
η1E1 + η2E1 + η1E2

E2E1

)
1

s(s + E2
η2

)

]

η1η2

E2
ε (s) = σ0

[
1

s2(s + E2
η2

)
+ η1η2

E2E1

1

(s + E2
η2

)
+

(
η1η2E1 + η2

2E1 + η1η2E2

E2
2E1

) E2
η2

s(s + E2
η2

)

]

Taking the inverse Laplace,

η1η2

E2
ε = σ0

[
η2

E2
t −

(
η2

E2

)2 (
1 − e−E2/η2t

) + η1η2

E2E1
e−E2/η2t

+ η1η2E1 + η2
2E1 + η1η2E2

E2
2E1

(
1 − e−E2/η2t

)]

ε = σ0

[
1

η1
t − η2

η1E2

(
1 − e−E2/η2t

) + 1

E1
e−E2/η2t +

(
1

E2
+ η2

η1E2
+ 1

E1

)(
1 − e−E2/η2t

)]
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Simplifying the creep becomes

ε = σ0

[
1

E1
+ 1

η1
t + 1

E2

(
1 − e−E2/η2t

)]

Creep of four element generalised Maxwell model under constant stress:

Initial and boundary load information,

σ = σo, σ̇ = σ̈ = 0.

The constitutive of the generalised Maxwell model given in Eq. (9) is customised for a
four-element model. That is,
[(

E1 + η1
∂

∂t

)(
E2 + η2

∂

∂t

)]
σ =

[
η1E1

∂

∂t

(
E2 + η2

∂

∂t

)
+ η2E2

∂

∂t

(
E1 + η1

∂

∂t

)]
ε

[(
E1E2 + (E1η2 + E2η1)

∂

∂t
+ η1η2

∂2

∂t2

)]
σ

=
[
η1E1E2

∂

∂t
+ E1η1η2

∂2

∂t2
+ η2E2E1

∂

∂t
+ η1η2E2

∂2

∂t2

]
ε

E1E2σ + (E1η2 + E2η1) σ̇ + η1η2σ̈ = (η1E1E2 + η2E2E1) ε̇ + (E1η1η2 + η1η2E2) ε̈

Putting in standard form,

σ +
(

η2

E2
+ η1

E1

)
σ̇ + η1η2

E1E2
σ̈ = (η1 + η2) ε̇ + η1η2

(
1

E1
+ 1

E2

)
ε̈

In order to solve the creep, the initial conditions and the boundary stress are considered, see
given data, we consider the instantaneous response,

εo = σo

(E1 + E2)

The initial strain rate can be found by integrating the constitutive equation at the instant of
load application. That is,

σ = 0, t = 0−;σ = σo, t = 0+

Integrating between the time range,

∫ 0+

0−
η1η2

(
1

E1
+ 1

E2

)
ε̈ +

∫ 0+

0−
(η1 + η2) ε̇

=
∫ 0+

0−

η1η2

E1E2
σ̈ +

∫ 0+

0−

(
η2

E2
+ η1

E1

)
σ̇ +

∫ 0+

0−
σdt

η1η2

(
1

E1
+ 1

E2

)
ε̇o + (η1 + η2) εo = η1η2

E1E2
σ̇o +

(
η2

E2
+ η1

E1

)
σo + σ0t |0+

0−
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The initial strain rate becomes

ε̇o = σo

[(
η2

E2
+ η1

E1

)
− η1 + η2

E1 + E2

](
E1E2

η1η2 (E1 + E2)

)

The Laplace transform of the constitutive form given in Eq. (11) is

L
(

(η1 + η2) ε̇ + η1η2

(
1

E1
+ 1

E2

)
ε̈

)
= L (σ0)

(η1 + η2) (sε (s) − ε0) + η1η2 (E1 + E2)

E1E2

(
s2ε (s) − sε0 − ε̇0

) = σ0

s

Replacing the initial conditions,

(η1 + η2)

(
sε (s) − σ0

E1 + E2

)
+ η1η2 (E1 + E2)

E1E2

(
s2ε (s) − s

σ0

E1 + E2
− σo

[(
η2

E2
+ η1

E1

)

− (η1 + η2)

(E1 + E2)

](
E1E2

η1η2 (E1 + E2)

))
= σ0

s

Collecting similar terms,

sε (s)

[
(η1 + η2) + s

η1η2 (E1 + E2)

E1E2

]

= σ0

[
1

s
+ s

η1η2

E1E2
+ η1 + η2

E1 + E2
+

(
η2

E2
+ η1

E1

)
− η1 + η2

E1 + E2

]

sε (s)

[
(η1 + η2) + s

η1η2 (E1 + E2)

E1E2

]
= σ0

[
1

s
+ s

η1η2

E1E2
+

(
η2

E2
+ η1

E1

)]

Solving for the strain in Laplace form,

ε (s) = σ0

η1η2 (E1 + E2)

⎡

⎣E1E2 + s2η1η2 + s (η1E2 + η2E1)

s2
(
s + (η1+η2)E1E2

η1η2(E1+E2)

)

⎤

⎦

The strain in Laplace form can be arranged for computing the inverses individually.
Let

a = (η1 + η2)E1E2

η1η2 (E1 + E2)

Hence the strain in Laplace form can be expressed as

ε (s) = σ0

[
1

η1η2 (E1 + E2)

[(
E1E2

1

s2 (s + a)

)
+

(
η1η2

1

s + a

)]

+
η2
E2

+ η1
E1

η1 + η2

(
a

s (s + a)

)]
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Taking the inverse of Laplace on the above expression,

L−1 (ε (s)) = L−1

(
σ0

[
1

η1η2 (E1 + E2)

[(
E1E2

1

s2 (s + a)

)
+

(
η1η2

1

s + a

)]

+
η2
E2

+ η1
E1

η1 + η2

(
a

s (s + a)

)])

The creep becomes

ε (t) = σ0

[
t

η1 + η2
+ e−at

E1 + E2
+ 1

η1 + η2

(
η2

E2
+ η1

E1
− 1

a

)(
1 − e−at

)]

Appendix B

Matlab Script of curve fitting for a Burgers viscoelastic model (color online):
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Matlab Script of curve fitting for a four-element generalised Maxell viscoelastic model
(color online):
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