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Abstract
The prime concern of this study is to analyze the generalized time-dependent magnetohy-
drodynamic (MHD) slip transport of an Oldroyd-B fluid near an oscillating upright plate.
The plate is nested in a porous media under the action of ramped heating and nonlinear ther-
mal radiation. Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC) derivatives are utilized
to constitute fractional partial differential equations that establish slip flow, shear stress,
and heat transfer phenomena. Primarily, Laplace transformation is applied to dimensionless
fractional models, and later Stehfest’s numerical algorithm is invoked to anticipate solutions
of momentum and heat equations in principal coordinates. Moreover, computed solutions
of velocity and energy fields are authenticated by Durbin’s and Zakian’s Laplace inversion
algorithms. The relations for skin friction and Nusselt number are evaluated in terms of ve-
locity and temperature gradients to efficiently anticipate shear stress and rate of heat transfer
at the solid–fluid interface. The respective outcomes are manifested through tables. A critical
examination of the current model is carried out and repercussions of variation in implanted
parameters on temperature and momentum profiles are graphically elucidated. For the sake
of comparison, three limiting fractional models, named second grade, Maxwell, and viscous
models, are proposed for the isothermal and ramped temperature cases. Consequently, the
observed outcomes affirm that under the isothermal condition, a generalized Maxwell fluid
performs the swiftest slip transport compared to other models. Inversely, a second grade
fluid specifies the highest velocity profile under ramped temperature case.

Keywords Slip flow · CF and ABC derivatives · Oscillating plate, Oldroyd-B model ·
MHD · Ramped heating · Porous medium

1 Introduction

Traditionally, two types of limitation on the fluid at the boundary surface are implemented
to efficiently model the fluid flow problems. These limit conditions are acknowledged as
zero slip flow and nonzero slip flow. The zero slip flow condition indicates that a fluid in
the immediate vicinity of the boundary and the boundary itself express no relative motion.
In other words, an imbalance between cohesive and adhesive forces at the fluid–boundary
interface leads to bringing down the fluid velocity to zero. Despite a few coupled constraints,
this zero slip limitation is widely applied as it contributes to contract the intricacy of flow

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11043-021-09495-z&domain=pdf
https://orcid.org/0000-0002-4071-752X
https://orcid.org/0000-0002-5463-4581


432 Mechanics of Time-Dependent Materials (2022) 26:431–462

dynamics. For some sufficiently smooth boundaries, cohesive forces marginally suppress
the attractive forces between solid boundary and fluid particles, and consequently fluid slips
away from the boundary walls. In such scenarios, the zero slip condition is unable to provide
reliable results. For instance, the zero slip limitation fails to accurately predict the blood flow
in capillary tubes (Zhu and Granick 2002). However, Navier proposed the idea of a nonzero
slip condition to overcome this obstacle more adequately, and therefore this condition is also
regarded as the Navier condition (Navier 1823). The practical implications of the nonzero
slip flow are found in industrial adhesives, medical fields, protrusion, specifically in the
washing of fabricated heart valves, transportation of nanofluids and biological fluids via
permeable closures, and soil degradation by erosion (Blake 1990; Pit et al. 1999).

In recent times, many researchers and scientists are interested in evaluating the physi-
cal and computational features of industrial fluids due to their growing critical utilization
in mechanical and industrial sciences. These industrial fluids are generally recognized as
non-Newtonian fluids and they involve whipped cream, silicone oils, drilling mud, clay,
and lubricants as their subclassifications. The traditional Navier–Stokes model fails to ac-
curately forecast the behavior of non-Newtonian fluids due to their rheological attributes
and an additional nonlinear association of shear rate and shear stress. Therefore, several
models are advised to suitably perceive the rheological properties of non-Newtonian fluids.
Among them are Maxwell model (Farooq et al. 2019), Burgers viscoelastic model (Raza
et al. 2019), Jeffery’s model (Kahshan et al. 2019), second grade fluid model (Haq et al.
2020), Sisko’s model (Khan et al. 2019), and Oldroyd-B model (Tanner 1962). Oldroyd-B
model specifies the relaxation and retardation mechanisms, includes the flow records, and
proficiently expresses the rheology of viscoelastic fluids. For the very first time, James G.
Oldroyd advised this model with the key specification of preserving the rheological prop-
erties for unidirectional flows. Shakeel et al. (2016) applied slip condition on the boundary
to analytically discuss the flow of Oldroyd-B fluid near a progressing boundary. Riaz et al.
(2016) established the series form solutions of generalized Oldroyd-B fluid flowing inside
a circular channel. Tahir et al. (2018) performed a theoretical study to examine the time-
dependent fractional flow of Oldroyd-B model past a rotating closure. Wang et al. (2019)
further expanded this analysis and computed the semianalytic solutions through modified
Bessel functions and integral transformations. Heat transfer and hydromagnetic flow of the
Oldroyd-B fluid through a horizontal channel with extending boundaries were inspected
by Ali et al. (2016). Elhanafy et al. (2019) numerically scrutinized the Oldroyd-B model
to anticipate the blood transport inside an abdominal aortic section. Recently, on the basis
of Littlewood–Paley theory, Wan proved the global well-posed property of incompressible
Oldroyd-B fluid corresponding to some usual initial conditions (Wan 2019).

For various real-world engineering problems, it was well acknowledged in the past
decades that for differentiation fractional operators are more efficient compared to inte-
gral derivatives. Consequently, generalization of problems from the classical to fractional
environment is an issue of interest for numerous researchers in recent times. The signifi-
cant utilities of fractional calculus are found in viscoelasticity, electrochemistry, diffusion,
control, and relaxation processes. The convolutions of a kernel of the fractional operator
with ordinary derivative are utilized to establish the fractional operators. For this purpose,
a variety of suggested kernels is present in the literature, however, the power-law kernel
x−β is the basic and most common among them. It is employed to define the Caputo and
Riemann–Liouville fractional operators (Podlubny 1998). Later, a modified fractional oper-
ator was constructed by Caputo and Fabrizio by using an exponential kernel e−βx (Caputo
and Fabrizio 2015). Finally, the generalized Mittag-Leffler law Eβ(−ψxβ) was applied as a
kernel by Atangana and Baleanu to construct a new version of the fractional operator (Atan-
gana and Baleanu 2016; Atangana and Gómez-Aguilar 2017; Atangana 2018). Due to these
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novel fractional challenges and trends, many researchers are exploring some new directions
in this field (Khan et al. 2017; Sheikh et al. 2017; Atangana and Baleanu 2017; Abro et al.
2019; Imran et al. 2017; Khan et al. 2016). Saqib et al. (2018) investigated the freely con-
vective generalized flow of carbon nanotubes (CNTs) through a channel. Zafar and Fetecau
(2016) employed Caputo–Fabrizio fractional operator to evaluate the exact solutions of vis-
cous fluid flow near an infinite vertical plate. Ali et al. (2016) explored the fractionalized
MHD convective motion of Walter’s-B fluid with the existence of an exponential kernel.
A fractional model to analyze the blood flow under the influence of Lorentz force through
a cylindrical tube was developed by Ali et al. (2017). The memory effect in the vicinity of
an energy field established by a charge was numerically probed through various differen-
tial operators by Alkahtani and Atangana (2016). They provided some modern numerical
approaches to solve the fractional systems of equations. Saqib et al. (2019) established a
system of nonintegral order equations to comprehensively scrutinize the heat transfer phe-
nomenon for some hybrid nanofluids. Shah and Khan (2016) utilized the Caputo–Fabrizio
approach and integral transformation to provide an exact analysis of second grade fluid flow
near an oscillating vertical surface. Recently, Siddique et al. (2020) applied Caputo–Fabrizio
and Atangana–Baleanu derivatives for freely convective second grade fluid to forecast the
heat transfer under Newtonian heating.

In light of the above-mentioned literature, the primary focus of this study is to gener-
alize the time-dependent MHD convection slip flow of an Oldroyd-B fluid near an infinite
vertical wall. The generalized model also incorporates the impacts of nonlinear radiative
heat flux, wall oscillation, ramped heating, and porous material. The purpose of generaliza-
tion is achieved by operating Caputo–Fabrizio and Atangana–Baleanu fractional operators.
The temperature and momentum distributions are established through Laplace transform
and Stehfest’s Laplace inversion algorithm. Durbin’s and Zakian’s algorithms are utilized to
certify the computed solutions. At the boundary, the temperature and velocity gradients are
calculated in terms of Nusselt number and skin friction as they have indispensable practi-
cal applications in mechanical and industrial fields. The graphs and tables are elucidated to
critically evaluate the control of incipient parameters on temperature, velocity, skin friction,
and heat transfer rate. Finally, a comparison between generalized velocity distributions of
Oldroyd-B, second grade, Maxwell, and viscous fluid models for uniform (isothermal) and
nonuniform (ramped) temperature conditions are graphically elucidated to have a critical
view of the physics of the current model.

2 Problem description and model formulation

Consider the time-dependent flow of an electrically conducting Oldroyd-B fluid over an
infinitely long upright wall subject to nonzero slip condition at the surface. At the start
τ = 0, the wall and surrounding fluid exhibit zero motion at a constant temperature T∞.
For τ = 0+, the wall begins oscillating in its plane, and the temperature is lowered to
T∞ + (Tw − T∞)(τ/τ0) for τ ≤ τ0 and later it is raised to fixed temperature Tw for τ > τ0.
Furthermore, nonlinear radiation thermal flux and magnetic effects are acting in the trans-
verse direction to the wall (see Fig. 1). The equations to describe incompressible time-
dependent MHD convection flow of Oldroyd-B fluid subject to standard Boussinesq’s ap-
proximation are provided as (Asghar et al. 2003; Anwar et al. 2020)

∇ · q = 0, ρgβT (T − T∞) + J × M + divT + R = ρ

[
∂q
∂τ

+ (q.∇)q
]

. (2.1)
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Fig. 1 Geometrical configuration
of the flow model

In the aforementioned expressions, q specifies the velocity distribution, ρ is the density,
g is the force of gravity, T is the fluid temperature, T∞ is the ambient temperature, τ is
the time, βT is the co-efficient of thermal volume expansion, M is the collective magnetic
strength, R is the vector of Darcy resistance, and J is the electric density. The following
expressions for R and J × M are generated by utilizing modified Darcy’s law and the set of
Maxwell’s equations:

R + α
∂R
∂τ

= −
{

μϕ

k0
q + αr

μϕ

k0

∂q
∂τ

}
, J × M = −σ0M

2
0 q, (2.2)

where M2
0 accounts for the imposed magnetic strength, ϕ is the porosity of medium, σ0 is

the current conducting capacity of the fluid, and k0 is the permeability of porous media. The
velocity and stress fields for unidirectional flows are assumed as

q = [V (y,τ),0,0] , S = S(y,τ). (2.3)

The constitutive expressions of Cauchy stress tensor T and extra stress tensor S for an
Oldroyd-B model are presented in the following manner:

T = −pI + S,

(
1 + α

D

Dτ

)
S = μ

(
1 + αr

D

Dτ

)
B, (2.4)

where −pI denotes the stress tensor’s indeterminate part, μ shows the dynamic viscosity,
and α and αr deal with the relaxation and retardation phenomenon respectively. The Rivlin–
Ericksen tensor B and material time derivative D

Dτ
are respectively expressed as

B = ∇q + (∇q)T =
(

0 Vy

Vy 0

)
,

D

Dτ
= ∂

∂τ
+ V

∂

∂x
+ U

∂

∂y
+ W

∂

∂z
. (2.5)

After substituting Eqs. (2.2)–(2.5) into Eq. (2.1)2 and using the classical Rosseland ap-
proximation, the principal equations establishing flow, stress field, and heat transfer for an
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Oldroyd-B model are described as (Martyushev and Sheremet 2012)

∂V (y,τ)

∂τ
+α

∂2V (y,τ)

∂τ2
= ν

∂2V (y,τ)

∂y2
+ναr

∂3V (y,τ)

∂y2∂τ
−

{
νϕ

k0
V (y,τ) + αr

νϕ

k0

∂V (y,τ)

∂τ

}

+ gβT

(
1 + α

∂

∂τ

)
(T − T∞) −

{
σ0M

2
0

ρ
V (y,τ) + σ0M

2
0

ρ
α

∂V (y,τ)

∂τ

}
, (2.6)

(
1 + α

∂

∂τ

)
S(y,τ) = μ

(
1 + αr

∂

∂τ

)
∂V (y,τ)

∂y
, (2.7)

(
ρcp

) ∂T (y,τ)

∂τ
= k

∂2T (y,τ)

∂y2
− ∂qr

∂y
,

[
qr = −4σ0

3β0

∂T 4

∂y
, T 4 ≈ (4T 3

∞)T − 3T 4
∞

]
, (2.8)

where σ0 is the Stefan–Boltzmann coefficient, cp is the specific heat at a fixed pressure, ν is
the kinematic viscosity, β0 is the coefficient of Rosseland absorption, and k is the thermal
conductivity. The initial and boundary conditions corresponding to modeled equations are

V (y,0) = 0, T (y,0) = T∞, V (0,τ) = b
∂V (0,τ)

∂y
+ e(aτ), (2.9)

T (0,τ) = (Tw − T∞)
τ

τ0
+ T∞ for τ ≤ τ0 and

T (0,τ) = Tw for τ > τ0, (2.10)

V (y,τ) → 0, T (y,τ) → T∞ for y → ∞. (2.11)

Some appropriate unitless quantities are introduced as

ζ = V0

ν
y, V ∗ = V

V0
, t = τ

τ0
= V 2

0

ν
τ, � = T − T∞

Tw − T∞
,

α1 = V 2
0

ν
α, α2 = V 2

0

ν
αr, S∗ = ν

μV 2
0

S, Gr = gβT (Tw − T∞)ν

V 3
0

,

a1 = ν

V 2
0

a, b1 = V0

ν
b, Rd = 16σ0T

3∞
3kβ0

, P r = μcp

k
,

M = σ0M
2
0 μ

ρ2V 2
0

, K = k0V
2

0

ν2ϕ
, a2 = M + 1

K
, b2 = α1M + α2

K
. (2.12)

Operating these unitless quantities in Eqs. (2.6) and (2.7) and dropping the ∗ notation
from V ∗ and S∗ yield

(
1 + α1

∂

∂t

)
∂V (ζ, t)

∂t
=

(
1 + α2

∂

∂t

)
∂2V (ζ, t)

∂ζ 2
− a2V (ζ, t)

−b2
∂V (ζ, t)

∂t
+ Gr

(
1 + α1

∂

∂t

)
�(ζ, t), (2.13)

(
1 + α1

∂

∂t

)
S(ζ, t) =

(
1 + α2

∂

∂t

)
∂V (ζ, t)

∂ζ
. (2.14)
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The local form of thermal balance to describe the heat diffusion mechanism is

ρcp

∂T (y,τ)

∂τ
= −∂q(y,τ)

∂y
, (2.15)

where q(y,τ) denotes the local heat flux density. The Fourier principle expresses the heat
flux in the following manner (Henry et al. 2010; Hristov 2016, 2017):

q(y,τ) = −k

{
∂T (y,τ)

∂y

}
. (2.16)

On combining Eqs. (2.15) and (2.16), we get

ρcp

∂T (y,τ)

∂τ
= − ∂

∂y

[
−k

{
∂T (y,τ)

∂y

}]
. (2.17)

On solving Eqs. (2.8) and (2.17) in the light of unitless quantities (2.12) and transforming
the consequent expression to the fractional form, we acquire

Pr
{
D

γ
t �(ζ, t)

} = (1 + Rd)
∂2�(ζ, t)

∂y2
, (2.18)

where D
γ
t denotes the fractional operator with order γ . In the present case, D

γ
t is either

Caputo–Fabrizio (CF) or Atangana–Baleanu (ABC) operator, and both operators are defined
later to establish fractional models. The unitless version of initial and boundary conditions
is secured as

V (ζ,0) = 0, �(ζ,0) = 0, V (0, t) = b1
∂V (0, t)

∂ζ
+ e(a1t), (2.19)

�(0, t) = t for t ≤ 1 and

�(0, t) = 1 for t > 1, (2.20)

V (ζ, t) → 0, �(ζ, t) → 0 for ζ → ∞. (2.21)

The CF
(
CF D

γ
t {·}) and ABC

(
ABCD

γ
t {·}) fractional derivatives are respectively defined

as (Caputo and Fabrizio 2015; Atangana and Baleanu 2016)

CF D
γ
t V (ζ, t) =

(
1

1 − γ

) t∫
0

exp

(
γ (t − z)

γ − 1

)
V ′(ζ, z)dz, (2.22)

ABCD
γ
t V (ζ, t) =

(
1

1 − γ

) t∫
0

Eγ

(
γ (t − z)γ

γ − 1

)
V ′(ζ, z)dz. (2.23)

3 Solution of the problem

Laplace transformation (LT) (Le Page 1961) is considered an efficient technique to derive
solutions of fractional order ordinary differential equations under nonuniform conditions on
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the boundary. The Laplace transform formula is stated as

L[ψ](ζ, t) =
∞∫

0

ψ(ζ, t)e−qt dt = ψ̄(ζ, q). (3.1)

For the present problem, ψ ∈ {V,�,S}. The condition Re(q) > γ0 guarantees the con-
vergence of above integral. Moreover, q = γ1 + ı̇γ2, where γ0, γ1, and γ2 represent real
numbers and ı̇ is usual complex unit. The transformed Laplace domain forms of CF and
ABC fractional derivatives are respectively provided as

L
{

CF D
γ
t V (ζ, t)

} = qL {V (ζ, t)} − V (ζ,0)

γ + (1 − γ )q
, (3.2)

L
{

ABCD
γ
t V (ζ, t)

} = qγL {V (ζ, t)} − qγ−1V (ζ,0)

γ + (1 − γ )qγ
. (3.3)

The Laplace transform inversion of ψ̄(ζ, q) is established as

L−1[ψ̄](ζ, q) = 1

2πı̇

γ1+ı̇∞∫
γ1−ı̇∞

ψ̄(ζ, q)eqtdq = ψ(ζ, t). (3.4)

3.1 CF fractional model and its solution

3.1.1 Temperature field subject to ramped temperature

The CF fractional version of temperature equation (Eq. (2.18)) is determined as

Pr
{

CF D
γ
t �(ζ, t)

} = (1 + Rd)
∂2�(ζ, t)

∂ζ 2
. (3.5)

Employing the LT on Eq. (3.5) and substituting Eqs. (2.19)2 and (3.2) in the consequent
expression yields

[
(1 + Rd)

{
γ + (1 − γ )q

γ

}]
∂2�̄(ζ, q)

∂ζ 2
= Pr�̄(ζ, q), (3.6)

where �̄(ζ, q) follows the boundary conditions

�̄(0, q) = 1 − e−q

q2
, and �̄(ζ, q) → 0 for ζ → ∞. (3.7)

The solution of energy equation (3.6) subject to conditions (3.7) is derived as

�̄(ζ, q) =
(

1 − e−q

q2

)
e

−
(√

Prβq
(1+Rd)(γβ+q)

ζ
)
, (3.8)

where β = 1
1−γ

.



438 Mechanics of Time-Dependent Materials (2022) 26:431–462

3.1.2 Velocity field subject to ramped temperature

The CF fractional version of velocity equation (2.13) is determined as

(
1 + α1

CF D
γ
t

) ∂V (ζ, t)

∂t
= (

1 + α2
CF D

γ
t

) ∂2V (ζ, t)

∂ζ 2
− a2V (ζ, t)

− b2
CF D

γ
t V (ζ, t) + Gr

(
1 + α1

CF D
γ
t

)
�(ζ, t). (3.9)

Employing the LT on Eq. (3.9) and substituting the initial condition (2.19)1 yields

∂2V̄ (ζ, q)

∂ζ 2
−

(
q2(1 + α1β) + q(γβ + a2 + b2β) + aγ

q(1 + α2β) + γβ

)
V̄ (ζ, q)

= −Gr

(
q(1 + α1β) + γβ

q(1 + α2β) + γβ

)
�̄(ζ, q). (3.10)

The Laplace transformed boundary conditions for velocity field are

V̄ (0, q) = b1
∂V̄ (0, q)

∂ζ
+ 1

q − a1
and V̄ (ζ, q) → 0 for ζ → ∞. (3.11)

After substituting Eq. (3.8), the solution of Eq. (3.10) is determined as

V̄ (ζ, q) = e−(√
f1ζ

)

(q − a1)(1 + b1
√

f1)

+
{

Grf2

f 2
3 − f1

(
1 − e−q

q2

)}[
1 + b1f3

1 + b1
√

f1
e−(√

f1ζ
)
− e−(f3ζ )

]
, (3.12)

where

f1 = q2(1 + α1β) + q(γβ + a2 + b2β) + γβa2

q(1 + α2β) + γβ
,

f2 = q(1 + α1β) + γβ

q(1 + α2β) + γβ
, f3 =

√
Prβq

(1 + Rd)(γβ + q)
.

3.1.3 Temperature field subject to isothermal temperature

The transformed energy equation and isothermal temperature condition are provided as

[
(1 + Rd)(γβ + q)

βq

]
∂2�̄(ζ, q)

∂ζ 2
= Pr�̄(ζ, q), (3.13)

�̄(0, q) = 1

q
, �̄(ζ, q) → 0 for ζ → ∞. (3.14)

The solution of Eq. (3.13) is developed as

�̄(ζ, q) = 1

q
e

−
(√

Prβq
(1+Rd)(γβ+q)

ζ
)
. (3.15)



Mechanics of Time-Dependent Materials (2022) 26:431–462 439

3.1.4 Velocity field subject to isothermal temperature

Plugging Eq. (3.15) into Eq. (3.10) yields the following velocity equation subject to isother-
mal temperature condition:

∂2V̄ (ζ, q)

∂ζ 2
− f1V̄ (ζ, q) = −

(
Grf2

q

)
e−(f3ζ ). (3.16)

The exact Laplace domain solution of Eq. (3.16) subject to the conditions (3.11) is

V̄ (ζ, q) = e−(√
f1ζ

)

(q − a1)(1 + b1
√

f1)
+

{
Grf2

q
(
f 2

3 − f1

)
}[

1 + b1f3

1 + b1
√

f1
e−(√

f1ζ
)
− e−(f3ζ )

]
.

(3.17)

The rate of heat transfer corresponding to ramped surface temperature condition is cal-
culated in terms of Nusselt number as

Nu = −∂�̄(0, q)

∂ζ
= f3

(
1 − e−q

q

)
. (3.18)

In industrial and mechanical fields, wall shear stress is of indispensable significance, and
increasing shear stress is considered a disadvantage. To predict shear stress at the wall, the
skin friction coefficient is evaluated as

C̄f =
[

q(1 + α2β) + γβ

q(1 + α1β) + γβ

]
∂V̄ (0, q)

∂ζ

= Gr

f 2
3 − f1

(
1 − e−q

q2

)[
f3 − √

f1

(
1 + b1f3

1 + b1
√

f1

)]
−

√
f1

f2(q − a1)(1 + b1
√

f1)
. (3.19)

3.2 ABC fractional model and its solution

3.2.1 Temperature field subject to ramped temperature

The ABC fractional version of temperature equation (2.18) is determined as

Pr
{

ABCD
γ
t �(ζ, t)

} = (1 + Rd)
∂2�(ζ, t)

∂ζ 2
. (3.20)

Employing the LT on Eq. (3.20) and utilizing Eqs. (2.19)2 and (3.3) yield

[
(1 + Rd)(γβ + qγ )

βqγ

]
∂2�̄(ζ, q)

∂ζ 2
= Pr�̄(ζ, q). (3.21)

The solution of Eq. (3.21) subjected to conditions (3.7) is derived as

�̄(ζ, q) =
(

1 − e−q

q2

)
e

−
(√

(1+Rd)(γβ+qγ )

βqγ ζ

)
. (3.22)
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3.2.2 Velocity field subject to ramped temperature

The ABC fractional version of velocity equation (2.13) is determined as

(
1 + α1

ABCD
γ
t

) ∂V (ζ, t)

∂t
= (

1 + α2
ABCD

γ
t

) ∂2V (ζ, t)

∂ζ 2
− a2V (ζ, t)

− b2
ABCD

γ
t V (ζ, t) + Gr

(
1 + α1

ABCD
γ
t

)
�(ζ, t). (3.23)

Employing the LT on Eq. (3.23) yields

∂2V̄ (ζ, q)

∂ζ 2
−

(
qγ+1(1 + α1β) + qγ (a2 + b2β) + β1

q(1 + α2β) + γβ

)
V̄ (ζ, q)

= −Gr

(
qγ (1 + α1β) + γβ

qγ (1 + α2β) + γβ

)
�̄(ζ, q), (3.24)

where β1 = γβq + γβa2. The solution of Eq. (3.24) in the presence of Eq. (3.22) is deter-
mined as

V̄ (ζ, q) = e−(√
g1ζ

)

(q − a1)(1 + b1
√

g1)

+
{

Grg2

g2
3 − g1

(
1 − e−q

q2

)}[
1 + b1g3

1 + b1
√

g1
e−(√

g1ζ
)
− e−(g3ζ )

]
, (3.25)

where

g1 = qγ+1(1 + α1β) + qγ (a2 + b2β) + β1

q(1 + α2β) + γβ
,

g2 = qγ (1 + α1β) + γβ

qγ (1 + α2β) + γβ
, g3 =

√
(1 + Rd)(γβ + qγ )

βqγ
.

For the ABC model, temperature and velocity field solutions under the isothermal tem-
perature conditions can be obtained by following the same steps adopted for the CF model.
The corresponding results are avoided to reduce mathematical expressions; however, rela-
tions for Nusselt number and skin friction coefficient are developed as

Nu = g3

(
1 − e−q

q

)
, (3.26)

C̄f = Gr

g2
3 − g1

(
1 − e−q

q2

)[
g3 − √

g1

(
1 + b1g3

1 + b1
√

g1

)]
−

√
g1

g2(q − a1)(1 + b1
√

g1)
. (3.27)

For both CF and ABC fractional models, the derived temperature and velocity field solu-
tions in Eqs. (3.8), (3.12), (3.15), (3.17), (3.22), (3.25) comprise multivalued combinations
of Laplace frequency q . These multivalued functions restrict us to apply the analytic inverse
Laplace transform, therefore for similar problems the numerical Laplace inversion is an ef-
fective way out to fetch the solutions in the primary domain. In recent times, Saqib et al.
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Fig. 2 Authentication of
temperature and velocity
distributions for CF fractional
operator

(2019) employed the numerical Laplace inversion to transform the solutions of fractional
differential equations in the real-time domain. Tahir et al. (2017) established the results of
fractional differential equations by applying the numerical inverse Laplace transformation.
Sheng et al. (2011) declared that numerical Laplace inversion is a reliable and effective tool
to anticipate solutions of nonintegral order differential equations in primary coordinates. On
the basis of the above reports, we employed the numerical inverse Laplace transformation
to anticipate temperature and velocity solutions of considered models. More precisely, we
implicated Stehfest’s algorithm (Durbin 1974) to establish the results, and the authentic-
ity of these results is further secured with the assistance of Fourier series expansion based
Durbin’s algorithm (Stehfest 1970) and Zakian’s algorithm (Zakian 1969). The graphical
verification for velocity and temperature solutions of CF and ABC fractional models are
presented in Figs. 2 and 3, respectively. These solutions are in perfect agreement for both
models. The formulas for the aforementioned algorithms are provided as
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Fig. 3 Authentication of
temperature and velocity
distributions for ABC fractional
operator

(Stehfest’s algorithm)

V (ζ, t) = ln(2)

t

2k∑
s=1

dsV̄

(
ζ, s

ln(2)

t

)
, with

ds = (−1)s+k

min(s,k)∑
j=

[
s+1

2

]
jn(2j)!

(k − j)!j !(j − 1)!(s − 1)!(2j − s)! ;

(Durbin’s algorithm)

V (ζ, t) = ea1t

T

[
−1

2
Re

{
V̄ (ζ, a1)

} +
∞∑

s=0

Re
{
V̄

(
ζ, a1 + sπ

T
ı̇
)}

cos

(
sπt

T

)
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−
∞∑

s=0

Im
{
V̄

(
ζ, a1 + sπ

T
ı̇
)}

sin

(
sπt

T

)]
;

(Zakian’s algorithm)

V (ζ, t) = 2

t

5∑
m=1

Re

{
KmV̄

(
ζ,

λm

t

)}
, (3.28)

where k specifies a positive integer, [c] specifies the integer part of real constant c, and λm

and Km appear in terms of real constants or conjugate complex pairs.

4 Limiting models

In this section, some special cases of the current model are deduced to compare the flow
characteristics. These limiting models are presented for CF fractional derivative; however,
adoption of the same trend leads to the ABC version of these models. The velocity solutions
of these models are graphically compared with the velocity field of an Oldroyd-B model
under ramped and isothermal temperature conditions.

4.1 Velocity field for Maxwell fluid

The velocity field solution for a fractional Maxwell fluid corresponding to slip flow and
ramped heating can be traced out by substituting α2 = 0 into Eq. (3.12), which gives

V̄ (ζ, q) = e−(√
f4ζ

)

(q − a1)(1 + b1
√

f4)

+
{

Grf5

f 2
3 − f4

(
1 − e−q

q2

)}[
1 + b1f3

1 + b1
√

f4
e−(√

f4ζ
)
− e−(f3ζ )

]
, (4.1)

where

f4 = q2(1 + α1β) + q(γβ + a2 + Mα1β) + γβa2

q(1 + α2β) + γβ
, f5 = q(1 + α1β) + γβ

q + γβ
. (4.2)

4.2 Velocity field for second grade fluid

The solution for generalized momentum equation of second grade fluid is obtained by using
α1 = 0 in Eq. (3.12) as

V̄ (ζ, q) = e−(√
f6ζ

)

(q − a1)(1 + b1
√

f6)

+
{

Grf7

f 2
3 − f6

(
1 − e−q

q2

)}[
1 + b1f3

1 + b1
√

f6
e−(√

f6ζ
)
− e−(f3ζ )

]
, (4.3)

where

f6 = q2 + q(γβ + a2 + α2
K

β) + γβa2

q + γβ
, f7 = q + γβ

q(1 + α2β) + γβ
. (4.4)
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Fig. 4 Temperature and velocity
comparison between CF and
ABC fractional operators

4.3 Velocity field for viscous fluid

The velocity distribution for viscous fluid is evaluated by choosing α1 = α2 = 0 in Eq. (3.12)
as

V̄ (ζ, q) = e−(√
f8ζ

)

(q − a1)(1 + b1
√

f8)

+
{

Gr

f 2
3 − f8

(
1 − e−q

q2

)}[
1 + b1f3

1 + b1
√

f8
e−(√

f8ζ
)
− e−(f3ζ )

]
, (4.5)

where

f8 = q2 + q (γβ + a2) + γβa2

q + γβ
. (4.6)
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Fig. 5 Comparison between flow
curve of Haq et al. (2020) and
current model when
α1 = Rd = M = 1

K
= 0

Fig. 6 Temperature curve for
diverse inputs of γ

5 Results and discussion

In this section, some critical findings are discussed and elaborated to deeply examine
the physical aspects of the presented model. The generalization of the considered non-
Newtonian fluid model is presented through CF and ABC fractional operators. The note-
worthy contribution of rheological parameters in heat transfer and MHD convective slip
flow of an Oldroyd-B fluid over an accelerating ramped wall is analyzed, and graphs are
presented to explain the repercussions. The upright wall is nested in a porous media un-
der thermal radiation effects. A tabular illustration of velocity and temperature gradients is
provided to anticipate the impacts of incipient parameters on skin friction and rate of heat
transfer at the wall. Graphical illustrations are supplied to validate the velocity and temper-
ature solutions evaluated by Stehfest’s, Durbin’s, and Zakian’s Laplace reversion methods.
A comparison is drawn for generalized Oldroyd-B fluid, Maxwell fluid, second grade fluid,
and viscous fluid under ramped and isothermal wall temperature conditions. The incipient
parameters significantly influencing the flow characteristics are named Grashof number Gr ,
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Fig. 7 Temperature curve for
diverse inputs of Rd

Fig. 8 Temperature curve for
diverse inputs of Pr

porosity parameter K , Prandtl number Pr , relaxation parameter α1, fractional parameter γ ,
magnetic parameter M , slip parameter b2, retardation parameter α2, and radiation parameter
Rd .

Figure 4(a) encloses temperature distributions developed through CF and ABC fractional
operators. Subject to ramped surface heating, the ABC operator-based model exhibits a
higher temperature distribution. However, a reverse behavior is witnessed when isothermal
temperature condition is considered, i.e., temperature curve for the CF model is higher than
that of the ABC model. Furthermore, an identical trend for velocity distribution is ana-
lyzed in Fig. 4(b). The CF model exhibits a higher velocity field for isothermal temperature,
whereas for ramped temperature this velocity curve declines and stays lower than the veloc-
ity curve associated with the ABC model. The prime physical argument for these trends is a
dissimilarity between values of the time (t ). The values of time associated with ramped and
isothermal temperature cases are t = 0.9 and t = 3.0, respectively. This time nonuniformity
influences velocity and thermal boundary layers independently and produces a variation
in them. In the present study, this variation in connected boundary layers is opposite for
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Fig. 9 Flow curve for diverse
inputs of α1 and γ

isothermal and ramped surface heating conditions therefore, the acquired physical profiles
behave inversely. In Fig. 5, the velocity profile of the current model and Haq et al. (2020)
are compared for ramped and isothermal temperature cases. The solutions are found in good
agreement, which justifies the reliability of our solutions.

Figure 6 uncovers the control of fractional parameter γ on temperature distribution. For
a ramped surface, it is evident that temperature exhibits a decaying profile for increasing
variation of γ . An augmentation in γ strongly influences the thermal boundary layer and
leads to a decrease in its thickness. Consequently, a decline in the temperature curve is per-
ceived. On the contrary, the behavior of temperature profile under γ variation reverses for
the isothermal temperature condition due to the higher value of time. In the mainstream re-
gion, fluid temperature presents a significant behavior and asymptotically tends to zero as
the fluid flows through the free stream region. The key role of radiation parameter Rd in the
temperature distribution is discerned in Fig. 7. A large value of Rd specifies the ameliorated
transfer of heat energy to the flow region, and therefore, the temperature distribution esca-
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Fig. 10 Flow curve for diverse
inputs of Gr and γ

lates. Corresponding to the increasing variation of Rd , the mean Rosseland absorptivity β0

increases for invariant values of T∞ and k (Eq. (2.12)). In the physical sense, the radiative
transfer of heat from boundary to the flow region enhances due to dominant thermal radi-
ation flux gradient ( ∂qr

∂y
). As a consequence, a higher temperature distribution is observed.

Figure 8 reveals that temperature is elevated for dropping values of Prandtl number Pr . This
diminishing behavior of fluid temperature is legitimized by the reason that the fluid with a
small value of Pr has greater thermal conductivity. The physical aspect of this phenomenon
describes that the fluids associated with lower Pr values are supportive for rapid transfer of
heat from the boundary to the fluid due to their greater conduction potential and ultimately
a rise in energy boundary layer thickness and temperature curve is witnessed.

The impact of the relaxation parameter α1 on fluid velocity accompanied by a variation
of the fractional parameter γ is revealed in Fig. 9. In this figure, velocity solutions are
presented for ramped and isothermal temperature cases, and it is noted that fluid has a lower
velocity for the former case. This result also highlights an important feature that the wall
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Fig. 11 Flow curve for diverse
inputs of K and γ

ramping technique can be implemented to attain better flow performance and control in
highly-sensitive dynamical systems. For isothermal temperature, the fluid velocity exhibits
an accelerating behavior subject to increasing variation of γ . However, γ exerts inverse
effects on the momentum boundary layer for the ramped condition and retards the fluid
motion. Additionally, an augmentation in the variation of α1 upsurges the flow. The time
required by the fluid to adjust its flow is specified by the parameter α1. A large value of α1

shows that fluid particles get more time to adjust, which allows them to express a smooth
motion. Hence, the velocity profile increases.

Figure 10 perceives the relative influence of buoyancy and viscous forces on velocity
distribution in terms of Grashof number Gr . It is depicted that an increase in Grashof num-
ber accelerates the fluid flow. In the physical sense, a positive variation of Gr is associated
with greater heating of the fluid which leads to the occurrence of convection currents. These
convection currents play their part to appreciate the supremacy of buoyancy force which sup-
presses the other flow retarding forces and consequently velocity of the fluid is augmented.
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Fig. 12 Flow curve for diverse
inputs of M and γ

The porosity parameter K influence on fluid velocity is shown in Fig. 11. It is descried that
the slip transport of an Oldroyd-B type fluid is accelerated with the amplifying magnitude
of parameter K . The physical argument after this velocity variation is the reduction in the
strength of dragging force. Corresponding to higher values of K , this reduction phenomenon
appears because holes of the porous medium permit more amount of fluid to pass through
them, and consequently flow velocity is accelerated. The influence of K on velocity distribu-
tion is the same for ramped and isothermal temperature conditions. Figure 12 is provided to
account for the magnetic parameter (M) effects on velocity distribution for multiple values
of γ . It is witnessed that flow is retarded due to a magnifying alteration of M . This figure
characterizes the development of the Lorentz force that operates in an antiflow direction.
Hence, it plays the role of dragging force and reduces the velocity of the fluid. In short, it
is observed that the imposition of a magnetic field in the flow region significantly reduces
the speed of fluid’s motion. These physical arguments justify observed behaviors of velocity
boundary layer and velocity profile.
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Fig. 13 Flow curve for diverse
inputs of α2 and γ

Figure 13 characterizes the impression of the retardation parameter α2 on the velocity
profile. A reciprocal profile of fluid velocity for increasing variation of α2 is visualized
when compared with the velocity profile developed for increasing relaxation parameter α1.
Physically, resistive force dominates for larger values of α2 and establishes a significant re-
sistance, which results in declination of fluid velocity. This profile is further endorsed by
the Eq. (2.13), which presents that fluid velocity shares an inverse relationship with α1 and
α2. The parameter α2 exerts identical effects on the boundary layer thickness for both the
conditions of isothermal and ramped temperature. The contribution of radiative heat flux in
flow distribution is surveyed in Fig. 14. An expansion in the inputs of Rd depicts that heat
transfer through radiation gradually increases. The force due to which fluid particles stick to
each other becomes weak when more heat energy is transferred to the flow region. There-
fore, the fluid particles are unable to produce significant resistance to flow and ultimately an
augmented velocity distribution is attained. Figure 15 is prepared to emphasize the impacts
of thermal and viscous forces on flow profile. For both cases of ramped and isothermal tem-
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Fig. 14 Flow curve for diverse
inputs of Rd and γ

perature, the flow is decelerated by maximized values of Pr . The physical reason behind
this decelerating flow is the dominant nature of viscous forces, which drag the fluid and
ultimately reduce the velocity of the fluid. The parameter Pr is the relative contribution of
momentum and thermal diffusivities in heat and flow profiles. For high Pr values, momen-
tum diffusivity dominates and reduces the thickness of momentum and thermal boundary
layers.

Figure 16 scrutinizes the behavior of velocity distribution for variation in slip parameter
b2. An interesting fact is observed that velocity is accelerated for isothermal temperature
case subject to addition in the values of b2. Contrarily, for the ramped temperature condi-
tion, the fluid is retarded due to greater values of b2. Physically, the momentum boundary
layer gets thicker for the evolution of time and fluid attains more speed in the immediate
vicinity of the wall. Additionally, velocity in the case of slip transport is higher than the
velocity of the fluid with a zero-slip condition for the isothermal temperature condition.
This phenomenon reverses for ramped heating of the wall. Figure 17 is developed to draw
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Fig. 15 Flow curve for diverse
inputs of Pr and γ

a comparison between generalized velocity distributions of Oldroyd-B, Maxwell, second
grade, and viscous models. The respective figure contains velocity distributions of all the
aforementioned models for ramped and isothermal conditions at the boundary. It is worth
mentioning that the second grade slippage flow has the highest velocity profile under the
ramped heating condition. The velocity field of second grade fluid is followed by the veloc-
ity fields of viscous, Oldroyd-B, and Maxwell fluid, respectively. In the case of isothermal
temperature, a reverse pattern is followed in such a way that the Maxwell fluid flows with
the highest velocity, and second grade fluid exhibits the slowest flow profile.

In Fig. 18, the Nusselt number generated through CF and ABC fractional models is
demonstrated to analogize the heat transfer rate. Same as temperature and velocity distri-
butions, the heat transfer rate specifies an inverse variation for both types of thermal condi-
tions. More precisely, the CF derivative provides a better heat transfer rate under the ramped
temperature condition, and for the isothermal condition, the ABC model appreciates the heat
transfer rate. The impacts of fractional parameter γ and Prandtl number Pr on the rate of
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Fig. 16 Flow curve for diverse
inputs of b2 and γ

heat transfer are analyzed in Figs. 19 and 20. An interesting fact is explored that the param-
eter γ influences the Nusselt number in an exactly opposite fashion for ramped surface con-
dition and isothermal surface condition. Extensively, for ramped temperature (0 < t < 1),
heat is swiftly transferred from the boundary to the fluid, whereas for isothermal tempera-
ture (t > 1) the rate of heat transfer starts decreasing with time progression. Additionally,
due to the dominance of the wall temperature gradient, the rate of heat transfer enhances for
greater values of Pr . Generally, it is observed that the rate of heat transfer is exceptionally
rapid for the ramped boundary condition. Figure 21 anatomizes how the radiative thermal
flux controls the heat transfer rate. A decline in heat transfer rate is perceived due to higher
values of Rd . Physically, intensification of radiation effects leads to enhance the Rosseland
approximation, which results in temperature enhancement. Conclusively, the heat transfer
phenomenon takes place at a lower rate.

Table 1 is reported to numerically visualize the relative control of parameter γ on ve-
locity, temperature, and Nusselt number for CF and ABC fractional derivatives. In Table 2,
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Fig. 17 Velocity comparison
between various fluid models

a numerical comparison between slip and no-slip flow profiles is drawn for ramped and
isothermal temperature conditions. The value t = 0.9 is connected with the former boundary
condition. In this case, a rapid fluid motion is observed in the absence of slip parameter b2.
However, in the case of constant temperature, the velocity of the fluid is higher for slippage
flow. The physical justification after these inverse behaviors is that parameter b2 produces
an opposite variation in the velocity boundary layer. Numerical outcomes of fractionalized
Nusselt number are accessible through Table 3. In this table, we have deeply inspected the
significance of incipient parameters in the rate of heat transfer. Nusselt number is a decreas-
ing function of Rd while it shows an escalating variation in response to growing values of
Pr . In the physical view, loosely connected intermolecular bonds and higher thermal con-
ductivity amplify the heat conduction potential of fluid and resultantly rate of heat transfer
grows. The effect of parameter γ on Nusselt number is reversible for isothermal and ramped
boundary conditions. In order to determine the behavior of wall shear stress, the variation
of skin friction coefficient corresponding to dissimilar inputs of incipient parameters is pre-
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Fig. 18 Nusselt number
comparison between CF and
ABC fractional operators

Fig. 19 Nusselt number for
diverse inputs of γ

sented in Table 4. Shear stress has abundant implications in industrial and mechanical sci-
ences and its intensification is assumed to be a drawback in engineering exercises. The table
specifies that shear stress at the boundary can be restrained by choosing augmented values
of relaxation parameter α2 and magnetic parameter M . On the other hand, smaller inputs of
α1, Gr , and b2 are useful to achieve the desired outcomes.

6 Conclusion

The motive of this theoretical study is to investigate the influence of CF and ABC fractional
derivatives on heat transfer enhancement in MHD convective Oldroyd-B fluid slip flow with
ramped wall heating. The plate exhibits an oscillatory motion in a porous material and en-
counters the radiation effects. Laplace transformation is operated to establish the solutions
of principal unitless fractional equations. The dominance of several nested parameters on
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Fig. 20 Nusselt number for
diverse inputs of Pr

Fig. 21 Nusselt number for
diverse inputs of Rd

flow and energy distributions is surveyed to grasp the dynamics of the present problem.
The effects of ramped boundary heating and stepped boundary heating on heat transfer rate,
velocity, and energy fields are also compared and discussed. Additionally, the generalized
models of Oldroyd-B, Maxwell, second grade, and viscous fluids are studied for isothermal
and ramped temperature conditions to distinguish the flow characteristics.

The noteworthy outcomes of this investigation are enlightened as follows:

• For ramped boundary temperature, the rate of heat transfer is an increasing function of
the fractional parameter γ while it specifies a reciprocal behavior for isothermal boundary
temperature.

• Heat transfer takes place at a rapid rate for ramped wall temperature but for isothermal
wall temperature, heat transfer rate exhibits a gradual decay against time evolution.

• ABC fractional derivative maximizes the heat transfer rate under constant surface tem-
perature, while CF derivative serves this purpose for ramped plate temperature.
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Table 1 Control of fractional parameter γ on temperature, velocity, and Nusselt number for CF and ABC
fractional operators

γ �(ζ, t) �(ζ, t) V (ζ, t) V (ζ, t) Nu Nu

CF model ABC model CF model ABC model CF model ABC model

0.1 0.1781 0.1856 0.5774 0.5880 2.9268 2.8537
0.2 0.1696 0.1832 0.5650 0.5839 3.0126 2.8774
0.3 0.1609 0.1790 0.5520 0.5770 3.1029 2.9175
0.4 0.1519 0.1730 0.5383 0.5675 3.1964 2.9742
0.5 0.1426 0.1652 0.5241 0.5553 3.2901 3.0475
0.6 0.1331 0.1554 0.5092 0.5401 3.3778 3.1362
0.7 0.1232 0.1435 0.4937 0.5219 3.4474 3.2360
0.8 0.1129 0.1291 0.4777 0.5004 3.4785 3.3334
0.9 0.1019 0.1118 0.4616 0.4751 3.4818 3.3963

Table 2 Numerical velocity profile comparison for slip and no-slip boundary flows

ζ V (ζ, t) V (ζ, t) V (ζ, t) V (ζ, t) V (ζ, t) V (ζ, t)

t = 0.9 t = 3.0 t = 5.0
b2 = 1.5 b2 = 0.0 b2 = 1.5 b2 = 0.0 b2 = 1.5 b2 = 0.0

0.0 0.8706 1.0942 1.5172 1.3499 1.7549 1.6488
0.3 0.6834 0.8957 1.3864 1.2768 1.6341 1.5582
0.6 0.4382 0.6124 1.0960 1.0251 1.3511 1.2973
0.9 0.2553 0.3852 0.7991 0.7540 1.0356 0.9977
1.2 0.1400 0.2300 0.5545 0.5265 0.7540 0.7275
1.5 0.0733 0.1316 0.3726 0.3558 0.5295 0.5111
1.8 0.0369 0.0724 0.2451 0.2353 0.3626 0.3499
2.1 0.0178 0.0382 0.1587 0.1535 0.2439 0.2351
2.4 0.0082 0.0193 0.1016 0.0991 0.1619 0.1560
2.7 0.0037 0.0093 0.0644 0.0635 0.1066 0.1025
3.0 0.0016 0.0042 0.0405 0.0404 0.0697 0.0670

Table 3 Numerical computations of Nusselt number for diverse inputs of implanted parameters

γ Rd P r Nu Nu Nu

t = 0.9 t = 3.0 t = 5.0

0.1 1.0 20 2.92683 2.91552 2.63399
0.4 3.19642 2.10330 1.49903
0.7 3.44748 1.43526 1.02888
0.9 3.45182 1.20956 0.88413

0.5 0.5 3.79914 2.12784 1.48257
1.5 2.94280 1.64822 1.14839
2.5 2.48712 1.39300 0.97057
3.5 2.19344 1.22851 0.85596

7 1.94648 1.09019 0.75959
10 2.32649 1.30303 0.90788
15 2.84936 1.59588 1.11192
17 3.03337 1.69894 1.18373
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Table 4 Numerical computations of skin friction for diverse inputs of implanted parameters

γ t α1 Gr K M α2 Rd b2 Cf

0.1 0.9 1.0 7.0 0.6 0.2 0.5 1.0 1.5 −0.10062

0.5 −0.12507

0.9 −0.15713

0.5 0.4 −0.31218

0.6 −0.24641

0.8 −0.17398

0.8 0.5 −0.22537

1.5 −0.08495

2.5 −0.03550

3.0 −0.29078

6.0 −0.17378

9.0 −0.05660

0.2 −0.25418

0.5 −0.15118

0.8 −0.11184

0.0 −0.12081

2.0 −0.22761

4.0 −0.28919

0.5 −0.11960

1.5 −0.29731

2.5 −0.50698

0.5 −0.15935

1.5 −0.11479

2.5 −0.08400

0.5 −0.19817

1.5 −0.13481

2.5 −0.09809

• The velocity and temperature profiles under the ramped boundary condition are higher
for the ABC model. Inversely, for the isothermal condition, these physical quantities are
better explained by the CF operator.

• Fluid velocity is controlled by wall ramping technique, magnetic effects, and retardation
parameter α2.

• The dominant convection currents (Gr), thermal radiation (Rd), relaxation parameter α1,
and porosity parameter K upsurge the fluid motion. Additionally, the oscillated Oldroyd-
B fluid performs a rapid motion for the nonzero slip condition under constant temperature.

• Shear stress enhances for growing variation of parameters b2, Gr , K , and α1, while it
reduces for higher values of retardation parameter α2 and magnetic parameter M .

• The role of the parameter γ is reversible for ramped and stepped temperature conditions.
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• The generalized slip flow of Maxwell fluid possesses greater velocity subject to constant
boundary temperature. Under the ramped heating condition, second grade fluid exhibits
the augmented slip transport to the remaining models.

• For each parameter, energy and momentum distributions associated with the isothermal
condition are always in a leading position.

• The solutions computed through Stehfest’s, Durbin’s, and Zakian’s numerical methods
are in excellent agreement.
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