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Abstract This paper presents a study of Walters’-B fluid with Caputo–Fabrizio fractional
derivatives through an infinitely long oscillating vertical plate by Newtonian heating under
the action of transverse magnetic field. The fractional calculus approach is employed to ob-
tain a system of fractional partial differential equations. The governing equations of momen-
tum and energy are converted first into dimensionless form and then solved by employing
Laplace transformation. The Laplace inverse transform has been evaluated both analytically
and numerically. The graphical illustrations represent the behavior of material parameters
on the solutions. A comparison between exact and numerical solutions is presented in tab-
ular and graphical form. The variation in Nusselt number with the change in fractional and
physical parameters is also presented. The velocity and temperature of the fluid decreases
with the enhancement in the fractional parameter for small values of time, and it has the
opposite behavior for greater values of time.

Keywords Walter’s-B fluid · Newtonian heating · Magnetic field · Stehfest’s algorithm ·
Caputo–Fabrizio derivatives

Nomenclature
u Fluid velocity, [m s−1]
T Fluid temperature, [K]
g Gravitational acceleration, [m s−2]
cp Specific heat at a constant pressure, [J kg−1 K−1]
T∞ Temperature of the fluid away from the plate, [K]
Gr Thermal Grashof number, [βTw]
k Fluid thermal conductivity, [W m−2 K−1]
Pr Prandtl number, [= μcp/k]
q Laplace transforms parameter, [–]
h Heat transfer coefficient, [W m−2 K−1]
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μ Dynamic viscosity, [kg m−1 s−1]
γT Coefficient of volumetric thermal expansion, [K−1]
ρ Fluid density, [kg m s−3]
ν Kinematics viscosity of fluid, [m2 s−1]
β Walter’s-B fluid parameter

1 Introduction

During the past several years, heat transfer and fluid motion over enlarged surfaces has
attained much attention from scientists and engineers because of their applications in in-
dustries like metal spinning, wire drawing, piping and casting systems, cooling of metallic
sheets, etc. The behavior of Walters’-B fluid model descries the several polymeric liquids
encountered in chemical engineering and biotechnology.

Ariel (1994) and Andersson (1992) have studied the analytical results for nonlinear dif-
ferential equations of the fourth order. Roy and Chaudhury (1980) evaluated heat and mass
transfer analysis of Walters’-B fluid through a plane wall using a perturbation method. Rap-
tis and Takhar (1989) studied Walters’-B fluid with thermal convection flow by a numeri-
cal technique. Chang et al. (2011) discussed the heat generated flow of a viscoelastic fluid
in a porous medium over a vertical plate. Wang (2003) investigated the influence of the
Walters’-B fluid through a plane wall. Mass and heat transfer of a viscoelastic fluid under
the action of transverse magnetic field in a free convection flow was discussed by Khan et al.
(2016).

The instability of non-Newtonian fluid in a porous channel was examined by Sharma
et al. (2002). Chaudhary and Jain (2006) discussed the heat effects on a hydromagnetic mass
flow of a viscoelastic fluid through a flat plate. The numerical or approximate results of tran-
sient and steady flows of Walters’-B fluid were evaluated for a diverse range of geometries in
Kumar and Srivastava (2005), Ghasemi et al. (2011), Nandeppanavar et al. (2010), Prakash
et al. (2010), Pal and Mondal (2011), Ali et al. (2016, 2017) and Bhattacharyya et al. (2011).

The hydrodynamic stability of a rotated Walters’-B fluid in the presence of nanoparti-
cles and thermal conduction was evaluated by Sharma and Rana (2001). The Walters’-B
fluid (Walters 1962) model was originated to move viscous fluids having elastic behaviors.
Soundalgekar and Puri (1969) studied the mathematical aspects of a viscoelastic fluid having
a two-dimensional flow through a porous vertical plane wall.

The two-dimensional viscoelastic flow over a smooth surface was investigated by Maha-
patra et al. (2007). Nadeem and Akbar (2010) applied numerical integration to find solutions
of peristaltic flow of a viscoelastic fluid in a smooth angles tube. Khan et al. (2014) discussed
mass transfer in Walters’-B fluid and investigated the effect of Walters’-B parameter on ve-
locity. Rath and Bastia (1978) applied a perturbation technique to discuss the heat transfer
and steady flow of Walters’-B fluid within two adjoining smooth porous plates along a com-
mon axis. Nanousis (1993) studied the MHD flow of a rotating incompressible Walters’-B
fluid.

The viscoelastic flow with a slip condition because of a two-dimensional smooth surface
was investigated by Wang (2002). The axisymmetric, uniform, turbulent movement of a
Newtonian fluid along an extended sheet having a slip condition was evaluated by Ariel
(2007). Wang (2009) reinvestigated the viscous flow through an inextensible sheet under a
suction and slip condition. Ariel et al. (2006) reinvestigated the influence of a partial slip
condition on the flows of several rate type fluids through an extended plane.
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Fractional calculus is used to discuss the viscoelastic properties of materials, such as
memory effects. For generalizations of different physical concepts, fractional calculus is a
suitable frame-work and an efficient tool. Gemant (1938) was the first to use the fractional
derivatives for visco-elasticity. The generalization of several classical dynamics problems
was done by many researchers. A relative discussion of Caputo–Fabrizio and Atangana–
Baleanu non-integer derivatives to study the flow of a generalized Casson fluid was pre-
sented by Sheikh et al. (2017). Exact results of time fractional free convectional flow of a
Jeffrey fluid was given in Saqib et al. (2017). The Caputo time fractional derivative has been
developed to be more accurate by taking the Laplace transform. In Friedrich (1991) frac-
tional methods were used to study the rheological characteristics of materials. Khan et al.
(2017) employed Caputo–Fabrizio derivatives and studied heat transfer aspects in Maxwell
fluid model. Vieru et al. (2017) found analytical results for convective flow of an electrically
conducting rate type fluid with thermal diffusion through a porous medium by using Caputo
fractional derivatives. Vieru et al. (2015) presented the analytical results for fractional free
convective flow with constant mass diffusion and Newtonian heating. Shah and Khan (2016)
used fractional derivatives for the heat transfer of differential type fluid and attained exact
results. Imran et al. (2017) used Caputo time fractional derivatives and found the analytical
results for differential type fluid with Newtonian heating. Some latest articles related to the
application of Caputo–Fabrizio fractional derivatives are given in Imran et al. (2018), Shah
et al. (2017), Butt et al. (2017) and Ahmad et al. (2017).

The purpose of this article is to determine the effect of non-integer time fractional deriva-
tives on heat transfer in Walters’-B fluid over an oscillating vertical plate. Newtonian heating
is considered at the boundary of the smooth surface. A contemporary definition of fractional
derivatives, named as Caputo–Fabrizio fractional derivatives, has been employed in this ar-
ticle. The analytical solutions of temperature and velocity field have been procured by using
the Laplace transform. A comparison between exact and numerical solutions is presented in
both graphical and tabular form. For the validation of results, we used two Laplace inverse
numerical processes named as Tzou’s and Stehfest’s algorithm. A comparison of obtained
results is presented in Table 1. In Table 2, the influence of the physical parameter on heat
transfer rate is established. The impact of fractional parameter on dimensionless tempera-
ture and velocity field is presented in Tables 3 and 4. Finally, some graphs are plotted to see
the impact of the material parameters.

Table 1 Comparison between numerical and analytical results

y Velocity Temperature

Exact solution [Stehfest’s] [Tzou’s] Exact solution [Stehfest’s] [Tzou’s]

0.0 0 0 0 0.496053 0.496265 0.496608

0.1 0.780555 0.780924 0.782478 0.366948 0.367070 0.367321

0.2 1.307109 1.307252 1.308569 0.271275 0.271482 0.271665

0.3 1.535165 1.535268 1.536382 0.200589 0.200766 0.200900

0.4 1.522433 1.522632 1.523562 0.148300 0.148455 0.148553

0.5 1.373206 1.373274 1.374076 0.109505 0.109764 0.109836

0.6 1.176794 1.176948 1.177621 0.081002 0.081149 0.081201

0.7 0.984612 0.984801 0.985352 0.059774 0.059988 0.060027

0.8 0.816151 0.816301 0.816762 0.044156 0.044342 0.044370

0.9 0.674380 0.674588 0.674975 0.032521 0.032773 0.032794

1.0 0.556909 0.557033 0.557354 0.024062 0.024221 0.024236
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Table 2 Physical parameters’
effect on Nusselt number τ α Pr Nusselt number

0.1 0.5 2 2.101271

0.2 0.5 2 2.205168

0.1 0.6 2 2.033916

0.1 0.5 3 1.711963

Table 3 Fractional effect on the velocity field

y v(y, τ )

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

0 0 0 0 0 0

0.1 1.352914 0.948289 0.631855 0.376479 0.178741

0.2 2.385558 1.62176 1.027312 0.544712 0.148267

0.3 2.968284 1.951288 1.166817 0.540296 0.090986

0.4 3.126984 1.984792 1.117867 0.453654 0.054658

0.5 2.988807 1.833677 0.976443 0.354663 0.032530

0.6 2.698300 1.605208 0.814252 0.270712 0.019186

0.7 2.362217 1.367808 0.665764 0.205393 0.011214

0.8 2.038071 1.152143 0.540677 0.155619 0.006501

0.9 1.748037 0.966495 0.438269 0.117837 0.003745

1.0 1.496249 0.809781 0.355098 0.089184 0.002148

Table 4 Fractional effect on the temperature distribution

y θ(y, τ )

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

0 1.779731 1.301357 0.920089 0.597455 0.336708

0.1 1.522377 1.090413 0.746753 0.457062 0.222426

0.2 1.302235 0.913648 0.606011 0.349334 0.142249

0.3 1.113924 0.765526 0.491746 0.266762 0.088421

0.4 0.952843 0.641408 0.398987 0.203537 0.053602

0.5 0.815053 0.537406 0.323695 0.155174 0.031782

0.6 0.697188 0.450260 0.262586 0.118213 0.018476

0.7 0.596366 0.377241 0.212995 0.089991 0.010553

0.8 0.510124 0.316058 0.172753 0.068459 0.005932

0.9 0.436352 0.264794 0.140102 0.052045 0.003287

1.0 0.373248 0.221842 0.113612 0.039541 0.001798

2 Formulation of the problem and governing equations

Let us consider a uniform free convectional flow of Walters’-B fluid along an oscillating
vertical flat plate with Newtonian heating. Due to the buoyancy strength, the change in
temperature extends upward over the plate. The plate is set cognate to the x-axis in rising
direction and perpendicular to the y-axis. The movement is along a magnetic field of strength
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Fig. 1 Schematic diagram and
physical geometry of the problem

B0 acting perpendicular to the plate. Further, we considered that the induced magnetic field
is at very small scale and the magnetic Reynolds number is nugatory. Since the electric field
is absent, the electric field caused by charges is neglected. At the beginning for t ≤ 0, the
fluid and plate are at rest and at monotonous temperature T∞. After time t > 0, the difference
between the temperature is lowered or raised to Tw . The geometry of the flow is shown in
Fig. 1.

The momentum and energy equations for an unsteady Walter’-B fluid (Khan et al. 2016)
are:

∂u(y, t)

∂t
=

(
υ − k0

ρ

∂

∂t

)
∂2u(y, t)

∂y2
− σB2

0

ρ
u(y, t) + (T − T∞)gγT , (1)

k
∂2T (y, t)

∂y2
= ρcp

∂T (y, t)

∂t
. (2)

The incorporated conditions are:

T (y,0) = T∞, u(y,0) = 0, y ≥ 0, (3)

∂T (y, t)

∂y

∣∣∣∣
y=0

= −h

k

[
T (0, t)

]
, u(0, t) = 0, t > 0, (4)

T (∞, t) = ∞, u(∞, t) = 0. (5)

Take the following dimensionless variables:

v = υh2u

gk2
, y = hy

k
, τ = υh2t

k2
, θ∗ = T − T∞

T∞
. (6)

Introducing the above variables into (1)–(5), we obtain

∂v(y, τ )

∂τ
=

(
1 − β

∂

∂τ

)
∂2v(y, τ )

∂y2
− Mv(y, τ ) + Grθ(y, τ ), (7)
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Pr
∂θ(y, τ )

∂y
= ∂2θ(y, τ )

∂y2
. (8)

Also the dimensionless conditions are

v(y,0) = 0, θ(y,0) = 0, y ≥ 0. (9)

∂θ(0, τ )

∂y

∣∣∣∣
y=0

= −[
1 + θ(0, τ )

]
, v(0, τ ) = 0, τ > 0, (10)

θ(y, τ ) → 0, v(y, τ ) → 0, as y → ∞, τ ≥ 0. (11)

Here Gr = γT T∞ is the thermal Grashof number, Pr = μcp

k
is the Prandtl number, M =

k2σB2
0 v

h2μ
is the magnetic parameter, and β = k0h2

ρk2 is Walter’ B fluid index.
The time fractional model of the problem is obtained by replacing the ordinary derivative

with Dα
t (·) in (7)–(8):

Dα
τ v(y, τ ) = (

1 − βDα
τ

)∂2v(y, τ )

∂y2
− Mv(y, τ ) + Grθ(y, τ ), (12)

PrDα
t θ(y, τ ) = ∂2θ(y, τ )

∂y2
. (13)

Here Dα
t (·) is the Caputo–Fabrizio operator, which is defined as

Dα
t v(y, t) = 1

1 − α

∫ t

0
exp

(−α(t − τ)

1 − α

)
u′(τ ) dτ, 0 < α < 1. (14)

3 Solution of the fractional model

The fractional differential equations (12)–(13) with the conditions (9)–(11) will be solved in
this section.

3.1 Solution of temperature distribution

By employing the Laplace transform to (10), (11) and (13), we obtain

∂2θ̄ (y, q)

∂y2
−

[
qPr

(1 − α)q + α

]
θ̄ (y, q) = 0, (15)

∂θ̄(y, q)

∂y

∣∣∣∣
y=0

= −
[
θ̄ (0, q) + 1

q

]
, and θ̄ (y, q) → 0, as y → ∞. (16)

Here q is the Laplace parameter. Equation (15) can be written as

[
qb0Pr

q + b0α

]
θ̄ (y, q) − ∂2θ̄ (y, q)

∂y2
= 0,

where b0 = 1
1−α

.
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The solution of the above differential equation by taking conditions (16) is

θ̄ (y, q) = 1√
b0qPr
q+b0α

− 1
· 1

q
exp

(
−y

√
b0qPr

q + b0α

)
. (17)

or

θ̄ (y, q) = 1√
aq

q+b
− 1

· 1

q
exp

(
−y

√
aq

q + b

)
. (18)

where a = b0Pr, b = b0α and m = a − 1.
The Laplace inverse of (18) is procured by means of the following inverse formulas:

L−1

{
1

q
exp

(
−y

√
mq

q + n

)}
= 1 − 2m

π

∫ ∞

0

Sin(yx)

(m + x2)x
exp

(
− nx2t

m + x2

)
dx,

L−1

{
1√

q2 − d2

}
= I0(dt), L−1

{
1

q − a

}
= eat .

By the convolution theorem, we get

θ(y, t) = θ1(t) ∗ θ2(y, t) =
∫ t

0
θ1(t − τ)θ2(y, τ ) dτ,

where

θ1(t) =
(

a

m
δ′(t) + abm + ab

m3
e

b
m t

)
· 1√

a
I0

(
b

2
t

)
e

−b
2 t − 1

m
δ(t) − b(c + 1)

m2
e

b
m t , (19)

and

θ2(y, t) = 1 − 2a

π

∫ ∞

0

sin(yx)

x(a + x2)
exp

(
− bx2t

x2 + a

)
dx. (20)

Equation (18) represents the solution of the temperature field in the transformed domain. The
inverse Laplace transform of (18) is also found numerically for validation and presented in
Sect. 4.

3.2 Solution of the velocity field

Taking Laplace transformation of (10), (11) and (12), we obtain

[
qb0

q + b0α

]
v̄(y, q) =

[
1

q
− βqb0

q + b0α

]
∂2v̄(y, q)

∂y2
− Mv̄(y, q) + Grθ̄ (y, q), (21)

ū(0, q) = 0 and ū(y, q) → 0, as y → ∞. (22)

Here b0 = 1
1−α

.
By using (17) into (21) and rearranging, we have
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∂2v̄(y, q)

∂y2
−

[
(M + b0)q + qb0

(1 − βb0)q + b0α

]
v̄(y, q)

= −(q + b0α)Gr

(1 − βb0)q + b0α
· 1√

qb0Pr
q+b0α

− 1
· 1

q
exp

(
−y

√
qb0Pr

q + b0α

)
. (23)

Solving (23) by using condition (22), we get

v̄(y, q) = −Gr(q + b0α)

(1 − βb0)q + b0α
· 1√

qb0Pr
q+b0α

− 1

×
[

1

q
exp

(
−y

√
(M + b0)q + qb0

(1 − βb0)q + b0α

)
− 1

q
exp

(
−y

√
qb0Pr

q + b0α

)]
. (24)

Equation (24) in suitable form is written as

v̄(y, q) = v̄1(y, q) · (v̄2(y, q) − v̄3(y, q)
)
. (25)

The inverse Laplace of the above expression is obtained by means of the following inverse
formulas:

L−1

{
1√

q2 − d2

}
= I0(dt), L−1

{
1

q − a

}
= eat ,

L−1

{
1

q
exp

(
−y

√
cq + f

dq + 1

)}

= c

d
e

−t
d

∫ ∞

0
erfc

(
y

2
√

z

)
e

−cz
d I0

(
z

d

√
(c − df )zt

)
dz

+ f

d

∫ ∞

0

∫ t

0
erfc

(
y

2
√

z

)
e− cz+x

d I0

(
z

d

√
(c − df )zt

)
dx dz,

L−1

{
1

q
exp

(
−y

√
mq

q + n

)}
= 1 − 2m

π

∫ ∞

0

Sin(yx)

(m + x2)x
exp

(
− nx2t

m + x2

)
dx.

By using the above inverse Laplace formulas in (25), we get

v1(y, τ ) = Gr√
a(1 − βb0)

{
δ′(t) + b(1 − 2βb0)

1 − βb0
δ(t) + α2β2b4

0

(1 − βb0)2
e

− b
1−βb0

t

}
∗ e− b

2 t I0

(
b

2
t

)
.

(26)

v2(y, τ ) = c

d
e

−t
d

∫ ∞

0
erfc

(
y

2
√

z

)
e

−cz
d I0

(
z

d

√
(c − df )zt

)
dz

+ f

d

∫ ∞

0

∫ t

0
erfc

(
y

2
√

z

)
e− cz+x

d I0

(
z

d

√
(c − df )zt

)
dx dz (27)

v3(y, t) = 1 − 2a

π

∫ ∞

0

sin(yx)

x(a + x2)
exp

(
− bx2t

x2 + a

)
dx, (28)

where a = b0Pr, b = b0α, c = M+b0
b

, and d = 1−β

b
.
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Equation (24) represents the solution of the velocity field in the Laplace transform do-
main. Recently, many researchers have used numerical algorithms for the inverse Laplace
transform in a productive way to evaluate such models (Abdullah et al. 2017; Raza et al.
2017; Sheng et al. 2011; Tong et al. 2009; Jiang et al. 2017). Therefore, in this manuscript,
we have employed numerical algorithms for validation of our obtained solutions. The Ste-
hfest’s algorithm (Stehfest 1970) is written as

v(y, τ ) = ln(2)

τ

2p∑
k=1

Mkv̄

(
y, k

ln(2)

τ

)
, (29)

Fig. 2 Fractional effect on
temperature
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where p is a natural number and

Mk = (−1)k+p

min(k,p)∑
i=[ k+1

2 ]

ip(2n)!
(p − i)!i!(i − 1)!(k − i)!(2i − k)! . (30)

The Tzou’s algorithm (Tzou 1997) is written as

v(y, τ ) = e4.7

τ

[
1

2
v̄

(
y,

4.7

τ

)
+ Re

{
N1∑

m=1

(−1)mv̄

(
y,

4.7 + mπi

τ

)}]
. (31)

Fig. 3 Prandtl number effect on
temperature
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3.3 Rate of heat transfer

The rate of heat transfer from the plate to the fluid is known as Nusselt number. The mathe-
matical form is

Nu = −
∣∣∣∣∂θ

∂y

∣∣∣∣
y=0

. (32)

From (19), we get the expression of Nusselt number in the transformed domain as

Fig. 4 Fractional effect on
velocity
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Nu = 1√
b0qPr
q+b0α

− 1
· 1

q

(√
b0qPr

q + b0α

)
. (33)

The results for Nusselt number have been tabulated in Sect. 4.

4 Numerical solutions and physical discussion

Numerical solutions are depicted graphically in this section to show the influence of different
physical parameters.

Fig. 5 Grashof number effect on
velocity
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Figure 2 depicts the impact of the time fractional parameter α on the dimensionless tem-
perature distribution. All of the graphs are plotted versus spatial variable y. By enhancing
the impact of the fractional parameter, the temperature distribution decreases for small val-
ues of time but has the opposite behavior for large time values. Physically, it happens due
to the memory effect of the viscoelastic behavior of the fluid. Figure 3 represents the dom-
ination of Prandtl number on dimensionless temperature distribution. It is found that the
temperature field decreases for larger values of Pr. Physically, we can say that the viscosity
of the material decreases, and the thickness of the thermal boundary layer also decreases.

Figure 4 shows the effect of the fractional parameter α on the velocity field. The velocity
field is a decreasing function of the fractional parameter α for lower values of time but has
the opposite behavior for large time values. Figure 5 illustrates the effect of thermal Grashof

Fig. 6 Prandtl number effect on
velocity
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Fig. 7 Magnetic parameter
effect on velocity

number Gr on the velocity field. It is found that the dimensionless velocity field increases for
larger values of thermal Grashof number Gr. Physically, we can say that the cooling of the
plate produced a stronger velocity field. The convection currents in the plates are produced
due to a change in the temperature gradient.

The effect of Prandtl number on the velocity field is plotted in Fig. 6. The velocity field
is also an increasing function of Prandtl number Pr and for greater values of time it shows
similar behavior. Figure 7 illustrates the influence of the transverse magnetic field on veloc-
ity. It is found that the dimensionless velocity field increases for larger values of M and it
is also seen that greater values of the magnetic parameter produced weaker velocity field. It
is discovered that the magnetic field produces a drag force that resists the fluid flow, which
causes a decrease in the velocity field. Physically, it represents the fact that the Lorentz force
behaves as a frictional force to the flow, which causes a decrease in the motion of the fluid.
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Fig. 8 Walter’s-B parameter
effect on velocity

Figure 8 shows the effect of Walter’s-B fluid parameter on velocity. The velocity field
decreases for larger values of the parameter β . A comparison between numerical and exact
solutions is plotted in Fig. 9. From these plots, we find good agreement between the exact
and numerical solutions.

To compare our exact solution, we employed two numerical methods, Tzou’s and Ste-
hfest’s algorithms. The exact and numerical results are presented in Table 1. From this table,
we found an equivalence relation between them. Table 2 allows one to check the impact of
the physical and fractional variables on Nusselt number. The heat transfer rate is directly
proportional to the fractional parameter α and Pr. Tables 3 and 4 are presented to show
the influence of the fractional parameter on the dimensionless velocity field and tempera-
ture distribution. It is noted that with greater values of the fractional parameter, velocity and
temperature decrease.
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Fig. 9 Comparison of exact and
numerical solutions

5 Conclusions

In this paper, the unsteady flow of a fractional Walter’s-B fluid with Newtonian heating
under the influence of uniform magnetic field has been calculated. The thermal boundary
condition is taken along the flat oscillating vertical plate. The solution of the mathematical
model is found by employing Laplace transformation. The results have been found both
analytically and numerically. These are some of the main results of the study:

1. The solutions for the velocity field and temperature distribution are obtained both numer-
ically and analytically. The solutions satisfy both initial and boundary conditions.

2. Table 1 shows the good agreement between numerical and exact solutions.
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3. The fractional parameter α is directly proportional to the velocity and temperature field
for lower values of time.

4. The thickness of the boundary layer increases near the plate in time.
5. The temperature distribution decreases by increasing Pr.
6. The velocity field is directly proportional to Gr.
7. The influence of the magnetic parameter is opposite to the velocity field. Weaker velocity

fields are produced by increasing magnetic field strength.
8. The rate of heat transfer is enhanced with time but decreased with increasing values of

Pr and α.
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