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Abstract In the present paper, the predictive capabilities of some integral-based finite strain
viscoelastic models under the time–strain separability assumption have been investigated
through experimental data for monotonic, relaxation and dynamic shear loads, in time and
frequency domains. This analysis is instigated by experimental investigation results on two
vulcanized carbon black filled rubbers. A unified identification procedure has been deployed
to all models to determine the constitutive parameters. The monotonic tests were performed
to capture the rate dependent and the long-term response of the materials. For the purely hy-
perelastic response, we considered the proposed hyperelastic potential proposed in Abaqus
for incompressible materials. Relaxation tests were intended to identify the time-dependent
material properties, and completed with a dynamic mechanical analysis. Models under con-
sideration are Christensen, Fosdick & Yu, a variant of BKZ model, and the Simo model
implemented in Abaqus. In the time domain, for each test case and for each model, the
nominal stress is hence compared to experimental data, and the predictive capabilities are
then examined with respect to three polynomial hyperelastic potentials forms. The dynamic
properties had been investigated in the frequency domain with respect to the frequency and
predeformation dependencies, and then comparison conclusions have been drawn.

Keywords Rubber characterization · Hyperelasticity · Viscoelasticity · Time–strain
separability · Dynamic material properties

1 Introduction

Elastomeric compounds are widely used in the industry for their high deformability and
damping capabilities (Treloar 1975). Subjected to complex combinations of manufacturing
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and service loadings, elastomers undergo severe loading conditions, and the load case of
large static predeformation superimposed by small amplitude dynamic excitation is com-
monly encountered in industrial applications, e.g., tires, shock-absorbing bushes, construc-
tion industry, aerospace applications, etc. To design such industrial compounds efficiently,
it is of major importance to predict the response of the products through simple mod-
eling processes. Nevertheless, it has been pointed out through experimental observations
that the constitutive behavior of rubber materials is highly nonlinear in static and dynamic
regimes, which have multiple analysis methods: experimental (Treloar 1975; Lockett 1972;
Tschoegl 1997), theoretical (Valanis 1972; Holzapfel 2002; Drozdov 1996) and numerical
(Le Tallec 1990) among others.

Thus the objective of the present paper is to propose an analysis of the predictive capa-
bilities of some models for engineering applications. The choice is made herein on some
hereditary integral-based constitutive models in time and frequency domains, under the sep-
arability assumption (Hong et al. 1981; Sullivan 1983). This work is instigated by an experi-
mental investigation on two vulcanized rubber materials intended for a damping application.
Moreover, the choice of the considered models is motivated by the fact that these models do
not require a special identification procedure, and all parameters have been identified using
Abaqus Evaluate module.

A literature overview provides several modeling approaches for the evaluation and pre-
diction of the response of rubber materials. While many contributions to the kinetic theory
of elasticity (Treloar 1943; Ogden 1997) represent the foundation for rubbers showing rate-
independent behavior, Green and Tobolsky (1946) extended this theory to include relaxation
effects, and based on this, many contributions including viscoelastic phenomena have been
developed (Lockett 1972; Schapery 1966; Valanis 1966). Modeled strain-rate dependent re-
sponse of rubber materials is derived following different frameworks which can be classified
according to different criteria. In this work, we made use of the following criteria: The first is
related to the formulation of the model which can be integral based or differential/internal-
variables based, while the second is the time–strain separability or factorability (Hong et al.
1981; Sullivan 1983), which is frequently introduced in the formulation of finite strain vis-
coelastic constitutive models and provides extensive theoretical simplicity.

Firstly, the integral-based framework is founded on an extension of the Boltzmann su-
perposition principle to finite strain. From an historically point of view, multiple-integral
representation of the finite strain viscoelastic behavior has been originally proposed by
Green and Rivlin (1997). This work has been followed by other contributions (Pipkin 2012;
Lockett 1972), and more recently (Ravasoo 2013), among others. Multiple-integral mod-
els are known to be generally nonseparable (Sullivan and Mazich 1989) and mainly hardly
identifiable. Meanwhile, the constitutive theory of finite linear viscoelasticity (Coleman and
Noll 1961) has been of a major contribution within this framework, and small deviations
away from the thermodynamic equilibrium are assumed. The proposed models with respect
to this theory are generally of single integral representation and have been widely investi-
gated, e.g. in Batra and Yu (1999), Haupt and Lion (2002) and Ciambella et al. (2010), for
their simplicity they are common in engineering applications. Some of most used models
of this construction type, which are separable and do not require hard identification proce-
dure, could be found in Christensen (1980), Fosdick and Yu (1998), De Pascalis et al. (2014)
and Bernstein et al. (1963). We note that a new class of quasi-linear models, consisting on
a generalization of Fung’s models describing nonlinear viscoelastic response of materials,
has been recently proposed in Muliana et al. (2013, 2015) where the strain is expressed in
terms of a nonlinear measure of the stress. Within this framework, other models are found
to be nonseparable, as those in Sullivan (1987), Höfer and Lion (2009), Lion and Kardelky
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(2004) and Khajehsaeid et al. (2014) among others. The recently proposed model of Pucci
and Saccomandi (2015) offers the possibility to make it separable or nonseparable according
to the choice of some functions.

The second framework, differential/internal-variables, consists of a 3D generalization of
the 1D rheological models with large deformations. Within this framework, two different ap-
proaches could be considered: differential models without thermodynamics considerations
(Drozdov 1996), and the thermodynamically consistent internal-variables approach (Sido-
roff 1975a, 1975b). The focus herein is on the second approach, based on internal-variables,
which was originally proposed by Schapery (1966) and Valanis (1966). This approach has
found more interest in mid-1970s (Sidoroff 1975a, 1975b). The key point to develop mod-
els of this form is the choice of the evolution equation for the internal variables which is
neither evident nor unique. The particularity of these models is that in some cases they can
lead to an integral equation, and in particular, some contributors introduced linear evolu-
tion equations for the internal variables: separable models are investigated in Simo (1987),
Holzapfel and Simo (1996), Valanis (1972) and nonseparable models in Schapery (1966).
Even though some models could take the integral form and are separable, they are found
to be hardly identifiable and require a large number of material parameters, except for the
Simo model. Examples of nonseparable internal-variables models that don’t lead to an inte-
gral equation include (Lubliner 1985; Lion 1996; Reese and Govindjee 1998; Reese 2003;
Amin et al. 2006; Spathis and Kontou 2008) among others.

After this short review, we recall our objective, which is analysis of the predictive capabil-
ities of some integral-based finite strain viscoelastic models under separability assumption,
in the time and frequency domains. It is to note that recently Ciambella et al. (2010) have
proposed a comparison of some integral-based viscoelastic models only in the time domain
for compression tests, while some other contributors investigated the purely hyperelastic
behavior of elastomers (Marckmann and Verron 2006).

This paper is organized as follows. In Sect. 2 we discuss experimental investigation con-
ducted to identify the material parameters, the experimental setup, as well as the used pro-
cedures for an efficient specimen testing (Charlton et al. 1994; Tschoegl 1997). Multi-step
tests were performed to capture the long-term hyperlastic response of the materials, for uni-
axial tension and simple shear motions (Hooper et al. 2012). Since for the intended industrial
application a preconditioning procedure is applied to eliminate the Mullins effect (Bueche
1961; Govindjee and Simo 1992), this effect is neglected herein. Relaxation tests are in-
tended to identify the kernel function modeling material memory effects. This experimental
investigation was completed by a dynamic mechanical analysis, aiming to be compared to
model responses with respect to frequency and predeformation dependence effects (Lee and
Kim 2001). We intentionally avoid the Payne effect (Payne and Whittaker 1970), which
consists of a dynamic amplitude dependent softening effect (Lion and Kardelky 2004). In
the same section, conclusions are drawn concerning a comparison of the material proper-
ties, with consideration to industrial applications. The following Sect. 3 is dedicated to the
constitutive relations, which are single integral hereditary models under the incompressibil-
ity constraint and separability assumption: Christensen (1980), Fosdick and Yu (1998), a
variant of BKZ (Petiteau et al. 2013), and Simo models (Simo 1987). In this section, a uni-
fied identification procedure for constitutive parameters is presented. Section 4 is dedicated
to the identification of the purely hyperelastic response. General hyperelastic constitutive
equations have been presented and potential forms proposed in Abaqus for incompressible
materials have been examined. Section 5 concerns the identification of the time-dependent
material parameters through relaxation tests. The three-dimensional constitutive equations
are reduced to a one-dimensional stress–strain relation for shear relaxation loading path, and
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the model responses are compared to experimental data. Conclusions for the time domain
comparison are drawn in the following Sect. 6, with the investigation of monotonic pre-
dictive capabilities. The frequency domain analysis as described in Christensen (1980) and
Bechir and Kaci (2004), and is made in Sect. 7, with the focus on the capability of the consid-
ered models to predict dynamic properties in terms of storage modulus and loss factor with
respect to the predeformation levels. A more generalized procedure can be found in Lion
et al. (2009), where the authors propose a methodology of geometric linearization around a
predeformed state, applicable to arbitrary constitutive models. The last section reports the
obtained comparison results on constitutive equations and experimental observations, and
conclusions are drawn about the predictive capabilities of the considered models.

2 Experimental setup

2.1 Materials

The vulcanized rubber materials investigated throughout this work are:

– a filled natural rubber NR vulcanizate
– a filled bromo butyl BIIR vulcanizate

The considered rubbers are especially relevant to damping applications, and were provided
by “EMAC Technical Rubber Compounds.” The mechanical behavior of both materials is
known to be hyperviscoelastic (Treloar 1975). Table 1 summarizes the measured hardness
and vulcanization parameters.

2.2 Experimental procedure

Taking different loading paths into account, sets of experiments, including uniaxial tension
and simple shear tests, were carried out on an Instron 3345 Table machine. The tension tests
were performed using standardized Haltere type 2 specimens. Shear tests were achieved
with the use of quad-shear specimens holders (Charlton et al. 1994; Combette and Ernoult
2005), as shown in Fig. 1, with four elastomeric inserts of 25 mm height, 15 mm width,
and 2.3 mm thickness, cut out from plates. An industrial cyanoacrylate fast-acting adhesive
was used to hold the assembly. Note that preliminary tests showed that the shear occurs on
inserts not on glue. The monotonic experiments were performed at room temperature under

Table 1 Hardness and
vulcanization parameters Shore A Vulcanization temp. (◦C) Vulcanization time (min)

NR 41 160 5

BIIR 30 160 10

Fig. 1 Quad-shear sample
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Fig. 2 Strain history for
monotonic testing

displacement-control, and the engineering strain was calculated assuming a homogeneous
deformation on the whole specimen. At least three tests were carried out for each loading
path.

For the uniaxial tension, the specimens were loaded till 500% of deformation under
strain-rates of 10, 100 and 200%/min. To avoid the shear occurring on glue, the shear tests
were loaded till 100% of deformation at 5, 10 and 20%/min.

Focusing on the equilibrium stress response, we made use of multistep experiments at
different strains with holding periods of 10 minutes (Shim and Mohr 2011; Fernandes and
De Focatiis 2014) during which the applied strain was held constant (Lion 1996; Bergström
and Boyce 1998), as shown in Fig. 2. We note that the chosen holding period of 10 minutes
is used in an industrial context.

It is important to underline that a preconditioning procedure allows us not to consider the
Mullins effect, which is known to be a stress softening of virgin specimens in the first loading
cycles (Bueche 1961; Cantournet et al. 2009). The elastomeric samples were subjected to
5 loading–unloading cycles, under a constant strain-rate of 100%/min for uniaxial tension
and 10%/min for shear loadings. To identify the time-dependent viscoelastic behavior, stress
relaxation experiments were conducted on a Metravib DMA machine having load capacity
of 50 N by means of the double shear specimens holder as shown in Fig. 3a. It consists of an
assembly of metallic cylinders with elastomer sheet cut out of plates of 10 mm diameter and
2.3 mm thickness, as shown in Fig. 3b. The experimental procedure consists of deforming
the specimen with a traverse rate of 100%/min at different strain levels, ranging from 10%
to 50%, and holding the assembly for four hours. A hysteresis is seen to quickly vanish and
the steady relaxation response is measured.

Investigating the dynamic properties of the considered elastomers, the experimental pro-
cedure consists of superimposing a simple shear predeformation and a sinusoidal strain after
sufficient relaxation time of about 10 mn as

ε(t) = ε0 + �ε sin
(
ω(t)

)
, (1)

where ε0 denotes the predeformation and �ε the strain amplitude.
To consider the frequency-dependence of the material’s behavior, frequency sweep tests

with stepwise changing frequency from 0.1 up to 40 Hz at constant predeformation were
used (Lee and Kim 2001). Furthermore, the predeformation-dependence was investigated
through imposing different levels of prestrain levels from 10% up to 30% (Jalocha et al.
2015; Suphadon and Busfield 2011). The dynamic deformation amplitude was set as a max-
imum dynamic strain which was less than 1%, in order to avoid another softening effect,
the so-called Payne effect (Payne and Whittaker 1970; Klüppel 2009). The Payne effect



300 Mech Time-Depend Mater (2019) 23:295–325

Fig. 3 DMA shear specimen preparation and holding system

Fig. 4 Monotonic response of the two materials

is an amplitude dependent stress softening that leads to a decrease of the storage modu-
lus for increasing dynamic strain amplitude and a maximum of the loss modulus at middle
strains.

2.3 Experimental results

2.3.1 Strain-rate dependence

Both elastomers exhibit strain-rate dependence in the studied range of deformation. Increas-
ing deformation rate leads to a higher stress, till a glassy hyperelastic response is obtained
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(Yi et al. 2006; Hooper et al. 2012). Figure 4a shows that NR is dependent for all the applied
strain-rates, while BIIR exhibits the glassy behavior for strain-rates higher than 100%/min.
Moreover, for BIIR, this dependence is seen to be pronounced for strains higher than 200%
of deformation.

Focusing on the hyperelastic equilibrium stress–strain curve, the constant strain-rate was
interrupted by several holding times, with a duration of 10 minutes. Many authors (Lion
1996; Bergström and Boyce 1998) suggest that there exists a unique equilibrium response,
approached in an asymptotic sense, as the strain rate goes to zero. In our experiments, we
have seen that the value of stress reached at the end of each relaxation period is approx-
imately constant at the lower strain-rate. The set of these points is defined as the time-
independent equilibrium hyper-elastic stress–strain curve. Figure 4b graphically shows the
equilibrium response of the tested elastomers. The NR is seen to be stiffer than BIIR.

2.3.2 Stress relaxation

When vulcanized rubbers are deformed, the stress gradually decreases with time (Ferry
1980; Findley and Davis 2013). In other circumstances, when viscoelastic materials are
subjected to a constant stress, the resulting deformation is seen to increase continuously,
which is the creep phenomenon (Ferry 1980). Stress relaxation experiments were conducted
on simple shear specimens, measuring the stress over four hours of relaxation for different
constant strains. Figures 5a and 5c show that both materials relax and the shift from the levels
of maintained strain is quasi-linear. Direct comparison of the material responses shows that
the relaxation of the natural rubber NR is less obvious than for the bromobutyl filled material
(BIIR).

The separable viscoelastic behavior is determined by normalized relaxation stress curves
(Findley and Davis 2013; Tschoegl 2012), graphically shown in Figs. 5b and 5d. The nor-
malized stress response is seen to be independent of the deformation. For each material,
the different curves form an “envelope” with a maximum deviation of 5%. This observa-
tion confirms the separability assumption (Sullivan and Demery 1982; Bloch et al. 1978).
The stress quantity can hence be written as a product of two separate functions of time and
deformation: σ(t, ε) = f (t) · g(ε).

2.3.3 Dynamic properties

To investigate the frequency-dependent material behavior, frequency sweep tests from 0.1
up to 40 Hz were performed at room temperature of about 23°C. Shear storage modulus and
loss factor show the same behavior for the tested materials, as illustrated in Figs. 6a, 6c,
6b, and 6d. In the investigated frequency range, increasing this parameter leads to greater
modulus and damping factors. As mentioned above, the materials are relevant to a damping
application. Comparing the behavior of both materials to a dynamic excitation, loss factor
curves show that BIIR possesses higher damping ability.

Depending on the application, rubber compounds are generally used at a predeformed
configuration (Combette and Ernoult 2005). Several authors (Mullins 1969; Sullivan 1983;
Thorin et al. 2012) have investigated this phenomena, and defined three zones: a linear
domain, transition zone and nonlinear domain of dependency, depending on the amount of
installed predeformation. The tested materials exhibit predeformation-dependence. In terms
of shear storage modulus, the experimental curves in Figs. 6a and 6c show that increasing
the static predeformation leads to a lower storage modulus. Greater predeformation leads to
a softening phenomenon. The decrease between 0% and 10% of predeformation is greater
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Fig. 5 Relaxation test curves
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Fig. 6 Frequency and
predeformation dependence

than that between 20% and 30% of predeformation for the tested materials. As for the loss
factor, increasing installed predeformation for both NR and BIIR decreases the loss factor,
as graphically shown in Figs. 6b and 6d.

In relation with the authors’ observations mentioned above, we can define the deforma-
tion zones (Thorin et al. 2012) as:



304 Mech Time-Depend Mater (2019) 23:295–325

– Deformation less than 10%, corresponding to the linear domain, where the curves are
qualitatively the same with a slight transition

– From 10% to 20% of deformation, corresponding to the transition domain, where the
transition is greater

– Deformation greater than 20%, corresponding to the nonlinear domain

3 Separable finite strain viscoelastic models under consideration

3.1 Models under consideration

In the present work, some of major contributions to finite strain viscoelastic models involv-
ing hereditary integral have been considered under the separability assumption. This choice
is motivated by the experimental observation confirming the separability assumption, as
mentioned above. Models were chosen so as to not require a special identification proce-
dure. All parameters have been identified using Abaqus Evaluate module. The models under
consideration are:

– Christensen model (2a), applicable for moderate and large strain ranges, consisting of a
viscoelastic generalization of the kinetic theory of rubber elasticity with specific attention
to stress-imposed problems (Christensen 1980)

– Fosdick & Yu model (Fosdick and Yu 1998) (2b), based on the QLV model, consisting of
a simple convolution between the Cauchy stress tensor σ(t) and the relative Green–Saint-
Venant deformation gradient Et(s)

– A variant of the BKZ model (2c), based on a hyperelastic part and a K-BKZ fluid (Bern-
stein et al. 1963) for the viscous part. This variant has been proposed in a recent work
(Petiteau et al. 2013)

– Simo model (2d), proposed in 1987 (Simo 1987), based on an uncoupled volumetric and
deviatoric response over any range of deformation, with decomposition of the stress tensor
into initial and nonequilibrium parts. We note that the Simo model is used in finite element
software Abaqus (Abaqus 2015b)

We have considered two other models for the analysis:

– Fung’s model, commonly referred to as Quasi-Linear Viscoelastic QLV model (Fung et al.
1972), which is one of the most used models and a simple way to incorporate nonlinearity
and time dependence in a simplified integral model. This model is intended especially for
biological tissues, and can find application for elastomers. Analysis of this model has
shown that, for an incompressible material, we obtain the same expression as that of the
Simo model.

– Yang et al.’s model (Yang et al. 2000) was proposed in 2000, and is an extension of the
BKZ model. This model is mainly used for very high strain-rates. Considering the A5

term as zero in the originally proposed model, we note that the expression is the same as
in Fosdick and Yu model.

We consider a homogeneous, isotropic and incompressible material. Intending to have
the same parameter number for the hyperelastic part, we make use of a generalization of
some models originally introduced with respect to a neo-Hookean material. Moreover, we
introduced an extension of the original version of single relaxation time in some models to



Mech Time-Depend Mater (2019) 23:295–325 305

a Prony’s series of at least 3 characteristic times. The constitutive relations for respectively
Christensen, Fosdick & Yu, the BKZ variant, and Simo models are:

σ Ch = −pI + 2B
∂W

∂B
+ FG0

∫ t

0
g1(t − s)

∂E(s)
∂s

dsFT , (2a)

σ FY = −pI + 2B
∂W

∂B
+ G0

∫ t

0
g1(t − s)

∂Et (s)

∂s
ds, (2b)

σ BKZ = −pI + 2B
∂W

∂B
− 2FG0

∫ t

0
g1(t − s)

∂C−1

∂s
dsFT , (2c)

σ Si = −pI + 2B
∂W

∂B
1

g∞

+ dev

[∫ t

0

∂g1(s)

∂s
F−1

t (t − s)
2

g∞
B(t − s)

∂W

∂B
F−T

t (t − s) ds

]
, (2d)

where F = ∂x
∂X is the deformation gradient, while x is the position vector in the current

configuration of a material particle, which was located at position X in the reference con-
figuration. The right and left Cauchy–Green strain tensors are respectively C = FT F and
B = FFT . The Green–Saint-Venant strain tensor is E = 1

2 (C − I). The compressibility con-
straint, det F = 1, is taken into account by adding a pressure field pI depending on the initial
and boundary conditions (Ogden 1997); W = W(I1, I2) is the hyperelastic free energy po-
tential and I1 and I2 stand for the isotropic scalar-valued invariants of C:

I1 = trace(C), (3a)

I2 = 1

2

(
trace(C)2 − trace

(
C2)), (3b)

I3 = det(C) = 1 for an incompressible material, (3c)

g1(t) is the dimensionless relaxation kernel defined as a Prony series and commonly taken
as

g1(t) =
N∑

i=1

gi

(
e

−t
τi

)
(4)

with gi and τi being material parameters. Also gi > 0 , g∞ = 1 − ∑N

i=1 gi ; G0 is the instan-
taneous linear shear modulus.

The convolution integral-based approach is based on the relative deformation gradient
Ft (s) = F(s)F−1(t), which is the deformation gradient at the current time s at the current
configuration. For the Simo model, the “dev” operator is defined as dev(·) = (·)− ( 1

3 (·) : I)I.
The first Piola–Kirchoff stress � is called nominal stress and will be used for experimen-

tal considerations. This tensor expresses the actual stress in the reference configuration, and
is related to the Cauchy stress tensor by

� = σF−T . (5)

3.2 Motions under consideration

The available experimental data are for a uniaxial tension test and a simple shear test, with
different strain-rates. Considering purely hyperelastic response, we make use of the equi-
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librium strain–stress curves for the identification of the hyperelastic potential. Considering
viscoelastic phenomena, we identified the Prony series through normalized shear relaxation
data.

The Evaluate module of the finite element software Abaqus has been used for this pur-
pose, and the identification of material parameters, summarized in Tables 2 to 5, consisted of
fitting theoretical solution with experimental data through a least-squares procedure, while
minimizing the relative error in stress (Abaqus 2015c).

We have considered the following motions:

3.2.1 Uniaxial tension

We consider a uniaxial tension test. The transformation has the form:

x1 = λ(t)X1, x2 = 1√
λt

X2, x3 = 1√
λt

X3. (6)

The deformation gradient and the right Cauchy–Green strain tensor have components:

F(t) =
⎡

⎢
⎣

λ(t) 0 0

0 1√
λ(t)

0

0 0 1√
λ(t)

⎤

⎥
⎦ , C(t) = B(t) =

⎡

⎢
⎣

λ2(t) 0 0

0 1
λ(t)

0

0 0 1
λ(t)

⎤

⎥
⎦ . (7)

The hydrostatic pressure is eliminated through the relation �22 = 0.
The obtained constitutive equations for uniaxial tension motion are then

�Ch
tension(t) = 2

(
λ(t) − 1

λ2(t)

)(
∂W

∂I1
+ 1

λ(t)

∂W

∂I2

)

+ G0

2
λ(t)

∫ t

0
g1(t − s)

∂λ2(s)

∂s
ds

− G0

2λ2(t)

∫ t

0
g1(t − s)

∂ 1
λ(s)

∂s
ds, (8a)

�FY
tension(t) = 2

(
λ(t) − 1

λ2(t)

)(
∂W

∂I1
+ 1

λ(t)

∂W

∂I2

)

+ G0

2λ(t)3

∫ t

0
g1(t − s)

∂λ2(s)

∂s
ds

− G0

2

∫ t

0
g1(t − s)

∂ 1
λ(s)

∂s
ds, (8b)

�BKZ
tension(t) = 2

(
λ(t) − 1

λ2(t)

)(
∂W

∂I1
+ 1

λ(t)

∂W

∂I2

)

+ 2G0

λ2(t)

∫ t

0
g1(t − s)

∂λ(s)

∂s
ds

− 2G0λ(t)

∫ t

0
g1(t − s)

∂ 1
λ(s)2

∂s
ds, (8c)
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�Si
tension(t) = 2

g∞

(
λ(t) − 1

λ2(t)

)(
∂W

∂I1
+ 1

λ(t)

∂W

∂I2

)

+ 2

g∞

(
λ(t) − 1

λ2(t)

)∫ t

0

∂g1(s)

∂s

(
∂W

∂I1
+ 1

λ(t − s)

∂W

∂I2

)
ds

− 2

λ2(t)g∞

∫ t

0

∂g1(s)

∂s

∂W

∂I2
λ2(t − s) ds. (8d)

3.2.2 Simple shear motion

Considering a simple shear motion, the asymmetric deformation gradient has components

F(t) =
⎡

⎣
1 γ (t) 0
0 1 0
0 0 1

⎤

⎦ . (9)

The right and left Cauchy–Green strain tensors are

C(t) =
⎡

⎣
1 γ (t) 0

γ (t) 1 + γ 2(t) 0
0 0 1

⎤

⎦ , B(t) =
⎡

⎣
1 + γ 2(t) γ (t) 0

γ (t) 1 0
0 0 1

⎤

⎦ . (10)

The obtained constitutive equations for a simple shear motion are then

�Ch
12 (t) = 2γ (t)

(
∂W

∂I1
+ ∂W

∂I2

)
+ G0

2

∫ t

0
g1(t − s)

∂γ (s)

∂s
ds

+ G0

2
γ (t)

∫ t

0
g1(t − s)

∂γ 2(s)

∂s
ds, (11a)

�FY
12 (t) = 2γ (t)

(
∂W

∂I1
+ ∂W

∂I2

)
+ G0

2

∫ t

0
g1(t − s)

∂γ (s)

∂s
ds, (11b)

�BKZ
12 (t) = 2γ (t)

(
∂W

∂I1
+ ∂W

∂I2

)
+ 2G0

∫ t

0
g1(t − s)

∂γ (s)

∂s
ds, (11c)

�Si
12(t) = 2

g∞
γ (t)

(
∂W

∂I1
+ ∂W

∂I2

)
− 2

g∞

∫ t

0

∂g1(s)

∂s

∂W

∂I2
γ (t − s) ds

+ 2

g∞
γ (t)

∫ t

0

∂g1(s)

∂s

(
∂W

∂I1
+ 2

∂W

∂I2

)
ds. (11d)

4 Hyperelastic potential choice

4.1 Hyperelasticity constitutive equations

Hyperelastic behavior is a special case of the Cauchy elasticity concept (Ogden 1997;
Beatty 1987) and the strain-energy function W from which stress quantities are derived
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satisfies objectivity and material symmetry principles. The purely hyperelastic component
is expressed as follows:

σ = 2B
∂W

∂B
− pI, (12a)

� = ∂W

∂F
− pF−T . (12b)

Stress–stretch relationships corresponding to homogeneous tests can be derived as fol-
lows:

– Uniaxial Tension

� = 2

(
λ − 1

λ2

)(
∂W

∂I1
+ ∂W

∂I2

1

λ

)
; (13)

– Simple Shear

� = 2

(
∂W

∂I1
+ ∂W

∂I2

)
γ. (14)

4.2 Incompressible hyperelastic models in Abaqus 6.14

There are several forms of strain energy potentials available in Abaqus to model incom-
pressible or quasi-incompressible isotropic elastomers (Abaqus 2015a):

– The polynomial form (Rivlin and Saunders 1951) and its particular cases: reduced polyno-
mial, neo-Hookean (Treloar 1943), Mooney–Rivlin (Mooney 1940) and Yeoh form (Yeoh
1993)

W =
∞∑

i=0,j=0

Cij (I1 − 3)i(I2 − 3)j , (15)

where Cij are material parameters;
– Ogden real exponents form (Ogden 1972)

W =
N∑

i=1

μi

αi

(
λ

αi

1 + λ
αi

2 + λ
αi

3 − 3
)
, (16)

where μi and αi are material parameters;
– Arruda–Boyce form, commonly referred to as “8 chain model” (Arruda and Boyce 1993)

W = μ

[
1

2
(I1 − 3) + 1

20λ2
m

(
I 2

1 − 9
) + 11

1050λ4
m

(
I 3

1 − 27
)

+ 19

7000λ6
m

(
I 4

1 − 81
) + 519

67375λ8
m

(
I 5

1 − 243
)
]
, (17)

where μ and λm are temperature-dependent material parameters;
– van der Waals form (Enderle and Kilian 1987)

W = μ

[
−(

λ2
m − 3

)[
ln(1 − η) + η

] − 2

3
a

(
Ĩ − 3

2

) 3
2 ]

, (18)
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Fig. 7 Comparison of
experimental data and different
hyperelastic strain energy
potential responses

where Ĩ = (1 − β)I1 + βI2 is a generalized strain invariant and β and a are material
parameters.

4.3 Prediction of purely hyperelastic response

Comparison results are graphically shown in Fig. 7. For a given model, a unique set of mate-
rial parameters must be able to reproduce set of experimental data with good approximation
(Liu et al. 2015). In the considered deformation range, we observed that:
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– Arruda–Boyce, van der Walls and Yeoh models have shown slightly the same response
in uniaxial or shear modes. These models are seen to underestimate the uniaxial tension
nominal stress and overestimate that of shear. Nevertheless, the response has the same
curvature as experimental data and the maximum measured error for highest strains is
about 18%.

– Mooney–Rivlin and neo-Hookean potentials are seen incapable of predicting experimen-
tal data. The response is quasi-linear for both models. An acceptable range of deformation
for both models can be less than 150% of deformation.

– The reduced polynomial model with N = 6 is seen to have a response similar to that
of Arruda–Boyce model. It underestimates tension stress and overestimates shear stress.
Nevertheless, at moderate or large strains, the models is seen to have some instabilities,
and the origin of some curvatures (as shown in Fig. 7) is not clear.

– Both Ogden (N = 3) and Polynomial (N = 2) strain energy potentials are seen to give
a well approximated response of the experimental data for a large strain loading. For
moderate strains (approximately 300% in shear), the Polynomial model is seen unable to
fit the curvature. Ogden model exhibits a slight underestimation of the tension stress and
an overestimation of the shear stress. Nevertheless, the measured error is acceptable.

5 On the capability to predict relaxation experiments

The evaluation of the Prony series is available in the Abaqus Evaluate module (Abaqus
2015c) for normalized shear stress relaxation experiments, with a specification on the maxi-
mum relative error, which we have chosen to be 10−2. We make use of the normalized stress
relaxation curves for the tested materials at mean deformation level (30%).

The deformation taken into account for relaxation tests is less than 50% of deforma-
tion. For simplification reasons, and since experimental data are well approximated in this
range, we consider in this section neo-Hookean, Mooney–Rivlin and 2nd order Polynomial
hyperelastic potentials.

For a stress relaxation test,

γ (t) = γ0H(t), (19)

where H(t) is the Heaviside function. This equation is to be introduced in the governing
shear equations (11a), (11b), (11c), and (11d).

Relaxation equilibrium response For a very long relaxation time, i.e., when t → ∞, the
relaxation equations for the considered hyperelastic potentials give the following equilib-
rium expressions:

σ
Neo-Hook Equil
12 = 2C10γ0, (20a)

σ
MR Equil
12 = 2(C10 + C01)γ0, (20b)

σ
Poly Equil
12 = 2

(
C10 + 2C20γ

2
0 + C11γ

2
0 + C01 + 2C02γ

2
0 + C11γ

2
0

)
γ0. (20c)

Comparison results are reported in Figs. 8 and 9 and can be summarized as follows:

– Considering the neo-Hookean hyperelastic potential, the models are seen to well repro-
duce the relaxation test data for a low deformation level. For higher deformation levels,
the predicted response is seen to be overestimated. This can be dedicated to the few hyper-
elastic model parameters, which are clearly not able to predict the long-term viscoelastic
response with good accuracy.
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Fig. 8 Comparison of the relaxation response for different hyperelastic models; the case of NR

– Considering the Mooney–Rivlin hyperelastic potential, the response of the models im-
proves. With material BIIR as shown in Fig. 9b, the response is well approximated at
10% and 30% of deformation. This hyperelastic model still can’t predict the long-term
stress for the NR material since the response between the two deformation levels is not
really linear.
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Fig. 9 Comparison of the relaxation response for different hyperelastic models; the case of BIIR

– The 2nd order Polynomial hyperelastic model offers the best prediction for the long-
term relaxation stress response. The measured error between experimental test data and
predicted data is of an acceptable level.

– The major difference of the considered hyperviscoelastic models is seen for the hysteretic
part. Focusing on Figs. 8c and 9c, the Simo model is seen to offer a good fidelity to ap-
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proximate low stress. Christensen and Fosdick & Yu models underestimate the hysteretic
stress level while the BKZ model is observed to highly overestimate the instantaneous
relaxation stress.

6 On the capability to predict monotonic experiments

6.1 Monotonic uniaxial tension

In this section we keep the polynomial hyperelasic form and its particular cases, neo-
Hookean and Mooney–Rivlin. Since the available experimental data for uniaxial tension
are only for monotonic testing, we consider the elongation function as

λ(t) = 1 + λ̇t (21)

with λ̇ = const. The integration of the equations has been done using numerical approxima-
tion methods (Simo and Hughes 2006).

The monotonic tension responses in terms of nominal stresses (�) are reported in
Figs. 10 and 11. The considered models present the capability to take into account the
strain-rate effect, with higher stain rates leading to a higher stress at same deformation
level. Considering a neo-Hookean or Mooney–Rivlin hyperelastic potential, the predicted
data are seen to be inaccurate, and all the models could not predict the second inflection
point. Considering the 2nd order polynomial hyperelastic potential, we made the following
observations:

– All the considered models are able to predict the strain-rate effect.
– Christensen model is seen to highly overestimate the nominal stress level for high strains,

not exceedinf 100% of deformation for the BIIR material as Figs. 11e and 11f show. For
the NR material, this model was able to predict the stress level with accepted overestima-
tion, and the error increased as the strain rate increased.

– Fosdick & Yu model is seen to underestimate the stress level for both materials, and has
the lowest stress level among all models. Nevertheless, the predicted level is seen to be
acceptable.

– Both BKZ and Simo models were able to give a better approximation of the stress level.
The prediction is quite good and the predicted stress is in a good range.

6.2 Monotonic simple shear

For a monotonic simple shear motion, we consider

γ (t) = γ0t. (22)

We introduce this equation into Eqs. (11a), (11b), (11c), and (11d) to obtain the constitutive
equations for a monotonic simple shear motion. Model response results at different strain
rates has been compared to the experimental data. Results for each material are reported in
Figs. 12 and 13. For all models, the shear response is quasi-linear as observed by Rivlin
and Saunders (1951). Considering the NR material, and for both presented strain rates of 5
and 20%/min, the experimental data are well approximated only for low strain levels, not
exceeding 50% of deformation by neo-Hookean and Mooney–Rivlin potentials. Above this
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Fig. 10 NR monotonic tension model response for neo-Hookean, Mooney–Rivlin and polynomial hypere-
lastic potentials

range, the response of the different models overestimates the experimental data. The 2nd or-
der polynomial hyperelastic potential is seen to underestimate the stress level along loading,
and reaches the stress level at the end of loading. Considering the BIIR material, the pre-
diction quality is worse than for the NR material. Increasing the hyperelastic potential order
leads to a softening of the material response. Fosdick & Yu model shows a good estimation
of the material data with a neo-Hookean potential for deformation level less than 50%. The
response is overestimated over this limit. Christensen model has the ability to stiffen and
approximate the stress level at 100% of deformation, but the error is large. BKZ and Simo
models show close responses, at each strain rate. The stress level is underestimated, and the
maximum error is of about 0.4 MPa.
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Fig. 11 BIIR monotonic tension model response for neo-Hookean, Mooney–Rivlin and polynomial hypere-
lastic potentials

7 On the capability to predict dynamic properties

7.1 Determination of the complex shear modulus

The determination of the complex shear modulus was introduced in Christensen (1980) and
is a Fourier transform of the governing equations. The frequency domain viscoelasticity is
defined for a kinematically small perturbation about a predeformed state. The procedure
consists of a linearized vibration solution associated with a long-term hyperelastic material
behavior. This assumes that the linear expression for the shear stress still governs the sys-
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Fig. 12 NR monotonic shear model response for neo-Hookean, Mooney–Rivlin and polynomial hyperelastic
potentials

tem. Since the available experimental data in the frequency domain are limited to moderate
strains, not exceeding 30%, and the procedure is linearized for high order strains, a simple
Mooney–Rivlin hyperelastic potential leads to sufficiently good results. Therefore, we used
the following state of loading:

γ (s) = 0, s < 0,

γ (s) = γ0, 0 � s � t0,

γ (s) = γ0 + γae
(iωs), t0 � s � t.

(23)
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Fig. 13 BIIR monotonic shear model response for neo-Hookean, Mooney–Rivlin and polynomial hypere-
lastic potentials

We assume that |γa| � 1 and that the specimen has been oscillating for a very long time so
that a steady-state solution is obtained and the dynamic stress has the form

σ ∗(ω) = G∗(ω, γ0)γ (ω), (24a)

G∗(ω, γ0) = Gs(ω,γ0) + iGl(ω, γ0), (24b)

where Gs = 	[G∗(ω, γ0)] and Gl = 
[G∗(ω, γ0)] are respectively the shear storage and loss
modulus expressed in terms of the Fourier transform of the time-dependent shear relaxation
modulus.
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Taking into account only the first order terms of γ (ω), calculations lead to

σ
∗,Ch
12 (ω, γ0) = 2(C10 + C01)γ

∗(ω)

+ G0

(
1

2
+ γ 2

0

)[
iω

∫ ∞

0
g1(s)e

(−iωs) ds

]
γ ∗(ω), (25a)

σ
∗,FY
12 (ω, γ0) = 2(C10 + C01)γ

∗(ω)

+ G0

2

[
iω

∫ ∞

0
g1(s)e

(−iωs) ds

]
γ ∗(ω), (25b)

σ
∗,BKZ
12 (ω, γ0) = 2(C10 + C01)γ

∗(ω)

+ 2G0

[
iω

∫ ∞

0
g1(s)e

(−iωs) ds

]
γ ∗(ω), (25c)

σ
∗,Si
12 (ω, γ0) =

(
2

g∞
(C10 + C01) − 2C01

(1 − g∞)

g∞

)
γ ∗(ω)

− 2C01

g∞

[
iω

∫ ∞

0
g1(s)e

(−iωs) ds

]
γ ∗(ω), (25d)

where σ ∗
12(ω, γ0) is the dynamic stress component that should be added to the equilibrium

static stress σ
Equilibrium

12 = 2(C10 + C01)γ0 component to obtain the total stress.
The determined complex shear modulus for the considered models is then

G∗,Ch(ω, γ0) = 2(C10 + C01)

+ G0

(
1

2
+ γ 2

0

)[
iω

∫ ∞

0
g1(s)e

(−iωs) ds

]
, (26a)

G∗,FY(ω, γ0) = 2(C10 + C01)

+ G0

2

[
iω

∫ ∞

0
g1(s)e

(−iωs) ds

]
, (26b)

G∗,BKZ(ω, γ0) = 2(C10 + C01)

+ 2G0

[
iω

∫ ∞

0
g1(s)e

(−iωs) ds

]
, (26c)

G∗,Si(ω, γ0) =
(

2

g∞
(C10 + C01) − 2C01

(1 − g∞)

g∞

)

− 2C01

g∞

[
iω

∫ ∞

0
g1(s)e

(−iωs) ds

]
. (26d)

7.2 Complex modulus comparison results

We first report on the results concerning the shear storage modulus, which are shown in
Figs. 14 and 15. The considered materials have shown a frequency-dependent dynamic be-
havior. Increasing frequency leads to increasing shear storage modulus in the frequency
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Fig. 14 NR dynamic properties and model response for Mooney–Rivlin hyperelastic potential

range. At each considered predeformation level, the following observations have been
made:

– Simo model have shown an excellent approximation of the dynamic shear storage modu-
lus with respect to frequency and predeformation, with a relative error not exceeding 4%.
At lowest frequencies, the experimental data are seen to be slightly overestimated.

– Christensen model underestimates the shear modulus at 10% of deformation and over-
estimates the properties at higher predeformation; this model was not able to predict the
softening of the material occurring with increasing predeformation level.

– Fosdick and Yu model’s response underestimates the materials response, diverging by
more than 20%. Even though increasing predeformation leads to a stiffening of the model
response, the predicted data are slightly lower than the experimental data.

– The BKZ model’s response is not in an acceptable range, with an error exceeding 160%.
The predicted shear storage modulus shows the ability to take into account the frequency
effect and the predeformation level but not the moduli level.

For the shear loss factor, the frequency dependence of the compared models is pro-
nounced, and all models are seen to offer a good approximation of this factor as Figs. 14
and 15 show. The Simo model slightly underestimates the response, and the maximum de-
viation is about 10%. One can observe that although the BKZ model could not predict the
storage modulus, it has shown the ability to well approximate the damping of the materials.
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Fig. 15 BIIR dynamic properties and model response for Mooney–Rivlin hyperelastic potential

8 Conclusion

Within this work, we propose an analysis of the predictive capabilities of some finite strain
viscoelastic models under time–strain separability assumption, based on experimental ob-
servations in a recent work. We determined the response of four models, well adapted for
engineering applications, for monotonic uniaxial tension/simple shear motions, shear re-
laxation and shear dynamic response. We have found that the choice of the hyperelastic
potential is of major importance, since this choice defines the equilibrium point commonly
called the service point for dynamic problems in the industrial context. We determined the
strain-rate dependent response of the considered models; and the major difference has been
found on the transient response. For Christensen model, we have seen that it is more suitable
to be used for mid-range deformations, while with a good choice of a hyperelastic poten-
tial all other models could predict the response over a wider range of deformations. In the
frequency domain, models have shown the capability to take into account frequency and pre-
deformation effects. For shear storage modulus, except for BKZ model, all predicted data
were in an acceptable range. For the damping capability governed by the estimation of the
loss factor, all models could estimate it in an acceptable range. In the future, this analysis
can be conducted with consideration of the temperature effect, which highly influences the
phenomenological behavior of elastomerers in the frequency domain in particular and could
lead to brittle damage of the materials.
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Appendix

This appendix lists material parameters identified with the Abaqus 6.14 “Evaluate” mod-
ule.

Table 2 Identified parameters of
NR Model Parameters

Mooney–Rivlin C10 = 0.224434819

C01 = −7.175494879E–02

Poly N = 2 C10 = 0.308734742

C01 = 7.092035111E–02

C20 = 5.655083805E–03

C11 = −1.641920286E–02

C02 = −3.081416959E–03

R-Poly N = 6 C10 = 0.204778110

C20 = −9.635936917E–03

C30 = 9.191905207E–04

C40 = −4.348677257E–05

C50 = 1.107154360E–06

C60 = −1.106589992E–08

Neo-Hookean C10 = 0.186320587

Yeoh C10 = 0.187319431

C20 = −2.239423283E–03

C30 = 8.132003494E–05

Ogden N = 3 μ1 = 0.121208583

α1 = 2.49438466

μ2 = 1.721434390E–03

α2 = 5.44782947

μ3 = 0.309994144

α3 = −7.130978464E–02

Arruda–Boyce μ = 0.318671316

μ0 = 0.328168844

λm = 4.59117146

van der Walls μ = 0.431171188

λm = 7.73158389

a = 0.293830246

β = 0.338485094
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Table 3 Identified parameters of
BIIR Model Parameters

Mooney–Rivlin C10 = 7.911448022E–02

C01 = 8.734172589E–03

Poly N = 2 C10 = 6.801980842E–02

C01 = 3.874614985E–02

C20 = 1.554222984E–03

C11 = −3.086784051E–03

C02 = −9.069058754E–03

R-Poly N = 6 C10 = 0.101004182

C20 = −7.883413601E–03

C30 = 8.108056492E–04

C40 = −4.026437366E–05

C50 = 9.754164863E–07

C60 = −9.022385489E–09

Neo-Hookean C10 = 8.239229043E–02

Yeoh C10 = 9.060825199E–02

C20 = −1.651455576E–03

C30 = 4.045174346E–05

Ogden N = 3 μ1 = 0.202742001

α1 = −0.498379489

μ2 = 2.461782680E–02

α2 = 3.56596575

μ3 = −1.057016458E–02

α3 = −7.12655115

Arruda–Boyce μ = 0.163655756

μ0 = 0.163959700

λm = 18.0002016

van der Walls μ = 0.203731542

λm = 8.27155661

a = 0.339657433

β = 0.314264338

Table 4 Prony series
parameters, NR gi τi [s]

7.54942E–03 1.74110E–02

3.51810E–02 598.66

4.72695E–02 6835.5

Table 5 Prony series
parameters, BIIR gi τi [s]

8.57115E–03 2.82821E–02

7.44958E–02 233.23

6.93801E–02 1376.9

9.77678E–02 7517.2
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