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Abstract We present a new rheological model depending on a real parameter ν ∈ [0,1],
which reduces to the Maxwell body for ν = 0 and to the Becker body for ν = 1. The cor-
responding creep law is expressed in an integral form in which the exponential function of
the Becker model is replaced and generalized by a Mittag–Leffler function of order ν. Then
the corresponding non-dimensional creep function and its rate are studied as functions of
time for different values of ν in order to visualize the transition from the classical Maxwell
body to the Becker body. Based on the hereditary theory of linear viscoelasticity, we also
approximate the relaxation function by solving numerically a Volterra integral equation of
the second kind. In turn, the relaxation function is shown versus time for different values
of ν to visualize again the transition from the classical Maxwell body to the Becker body.
Furthermore, we provide a full characterization of the new model by computing, in addition
to the creep and relaxation functions, the so-called specific dissipation Q−1 as a function of
frequency, which is of particular relevance for geophysical applications.
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1 The Becker model: the creep law and the spectra

In 1925 Becker1 introduced a creep law to deal with the deformation of particular viscoelas-
tic and plastic bodies (Becker 1925). Here we aim at extending the Becker law in order to
enlarge its possible spectrum of applications. In this section, we briefly summarize the creep
and the spectral properties of the Becker rheological law using some basic concepts of lin-
ear viscoelasticity, illustrated in the appendix. Subsequently, we generalize the Becker law
and study its creep behavior (Sect. 2), the rate of creep and the spectra (Sect. 3), and the
relaxation properties (Sect. 4). In Sect. 5 we obtain the specific dissipation function (Q−1)
and we study its frequency dependency. Our conclusions are drawn in Sect. 6.

The creep law proposed by Becker provides the strain response ε(t) to a constant stress
σ(t) = σ0 in the form

ε(t) = σ0

E0

[
1 + q Ein(t/τ0)

]
, t ≥ 0, (1.1)

where E0 is the shear modulus, τ0 > 0 is a characteristic time during which the transition
from elastic to creep-type deformation occurs and q > 0 is a non-dimensional constant.
The function Ein(z) is a transcendental function first introduced by Schelkunoff (1944) and
defined as

Ein(z) =
∫ z

0

1 − e−u

u
du, | arg z| < π, (1.2)

and related to the exponential integral E1(z) and to the incomplete Gamma function
Γ (0, z) = ∫ ∞

z
e−u

u
du as

E1(z) = −Ei(−z) = Γ (0 , z) = −C − log z + Ein(z), (1.3)

with | arg z| < π and where C = −Γ ′(1) = 0.577215 . . . denotes the Euler–Mascheroni con-
stant. For further mathematical details on the exponential integral and its generalizations we
refer the reader to the NIST Handbook (Olver et al. 2010). The actual notations are taken
from Appendix D of Mainardi (2010). Additional results shall be presented in Masina and
Mainardi (2017). We note that originally Becker was not aware of the Ein function (intro-
duced in 1944) but only of the classical exponential integral.

The creep law proposed by Becker on the basis of empirical arguments has found a
number of applications, formerly in ferromagnetism, see Becker and Doring (1939), and in
mathematical theory of linear viscoelasticity, see e.g. Gross (1953), in which we find refer-
ences to applications in dielectrics in the 1950s. Jellinek and Brill (1956) proposed a model
for the primary creep of ice based on the Becker model. Orowan (1967) recalled the Becker
model in order to get a Q quality factor for dissipation almost independent on frequency as
observed in most rheological materials, mainly in seismology. Indeed, in view of this weak
dependence of the Q factor in seismology, Strick and Mainardi (1982) have investigated the
Becker model in comparison with the most famous Lomnitz model of logarithmic creep. We
also recall the papers by Neubert (1963), by Holenstein and Nieder (1980) and the recent
one by Hanyga (2014), where the Becker model was considered for representing internal
damping in solid materials, in arterial viscoelastic walls, and in seismology, respectively.

1Richard Becker (1887–1955) was a German theoretical physicist who made significant contributions in
thermodynamics, statistical mechanics, electromagnetism, superconductivity, and quantum electrodynamics.
He was professor formerly in Berlin and then in Göttingen. For more details see https://en.wikipedia.org/
wiki/Richard_Becker_(physicist).

https://en.wikipedia.org/wiki/Richard_Becker_(physicist)
https://en.wikipedia.org/wiki/Richard_Becker_(physicist)
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Fig. 1 The creep function ψ(t)

for the original Becker model
compared with its asymptotic
representations given by Eq. (1.4)

Unfortunately, in spite of its benefits, the Becker model was then neglected in the rheologi-
cal literature, but shortly recalled in Mainardi (2010). Nevertheless, in linear viscoelasticity
the Becker law was (independently) rediscovered in 1992 by Lubliner and Panoskaltsis as a
modification of the 1947 Kuhn logarithmic creep law (Lubliner and Panoskaltsis 1992), but
the priority of Becker with respect to Kuhn is out of discussion.

Herewith, in Fig. 1 we show the plots of the creep function ψ(t) for the original Becker
model with comparison to its asymptotic representations for small and large times, as
pointed out in the books on special functions, see e.g. Olver et al. (2010), namely

ψ(t) = Ein(t) ∼
{

t − t2

4 , t → 0+,

log(t) + C, t → +∞.
(1.4)

The spectra of the Becker model are easily derived from the corresponding Laplace trans-
form of the rate of creep:

sψ̃(s) = L
{

dψ

dt

}
= ln

(
1 + 1

s

)
. (1.5)

Indeed, by using the Titchmarsh formula (A.5) and Eq. (A.6), for the frequency and time
spectra we get

K(r) =
{

1, 0 ≤ r < 1,

0, 1 ≤ r < ∞; H(τ) =
{

0, 0 ≤ τ < 1,

1/τ 2, 1 ≤ τ < ∞,
(1.6)

respectively. The plots of the two spectra are shown in Fig. 2. Since the above spectra are
non-negative, the CM property of the rate of creep follows from the Bernstein theorem;
see e.g. Schilling et al. (2012). However, the CM property is already ensured in view of a
well-known theorem according to which a non-negative, finite linear combination of CM
functions is a CM function; see again Schilling et al. (2012). Indeed, in view of (1.2), the
rate of creep can be written as

dψ

dt
(t) = 1

t
− e−t

t
∈ [0,1], t ≥ 0. (1.7)

We note that in Gross (1953) has well pointed out the existence of the spectra for the
Becker body without citing the equivalent CM properties being these mathematical notions
unknown to Becker himself and to him. We recall that more recently Mainardi and Spada
(2012a) have revisited the creep spectra of the Becker body in comparison with those of the
Lomnitz logarithmic creep model.
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Fig. 2 The spectra for the Becker body: left in frequency K(r); right in time H(τ)

2 The generalized Becker model: the creep function

Let us now consider our generalization of the Becker model by writing the new creep com-
pliance as depending on a real parameter ν ∈ (0,1]

Jν(t) = J0

[
1 + qψν(t)

]
, (2.1)

where

ψν(t) = Γ (ν + 1)Einν(t) (2.2)

with

Einν(t) =
∫ t

0

1 − Eν(−uν)

uν
du. (2.3)

Above we have introduced the Mittag–Leffler function

Eν

(−uν
) ≡ Eν,1

(−uν
) =

+∞∑

k=0

(−uν)k

Γ (kν + 1)
, 0 < ν ≤ 1, (2.4)

which is known to generalize the exponential function exp(−u) to which it reduces just
for ν = 1. For details on this transcendental function the reader is referred to Gorenflo
et al. (2014). For applications of the Mittag–Leffler function in linear viscoelasticity based
on fractional calculus, we may refer e.g. to Mainardi (1997), to Mainardi (2010) and to
Mainardi and Spada (2011). We recall that in our numerical calculations we always chose
J0 = q = 1, although these parameters are kept in the expressions, for the sake of generality.

We note that the limit case ν = 0 requires special attention because in this case the
Mittag–Leffler function is not defined. However, in this case, by summing according to
Cesàro the undefined series of the corresponding limit of the Mittag–Leffler function, known
as Grandi’s series,2

∞∑

n=0

(−1)n = 1 − 1 + 1 − 1 + · · · = 1

2
, (2.5)

2This series is a particular realization of the so-called Dirichlet η function (Olver et al. 2010). The latter is part
of a broad class of function series, known as Dirichlet series, rather known in rheology as Prony series, which
have recently found new physical applications in the so-called Bessel models; see e.g. Giusti and Mainardi
(2016), Colombaro et al. (2017) and Giusti (2017).
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Fig. 3 The creep function for
some values of ν ∈ [0,1]

Fig. 4 The rate of creep dψν
dt

(t)

for different values of ν ∈ [0,1]

we get

ψ0(t) = t

2
. (2.6)

This regularized result corresponds to the linear creep law for a Maxwell body. As a conse-
quence, our generalized Becker model is effectively defined for 0 ≤ ν ≤ 1 ranging from the
Maxwell body at ν = 0 to the Becker body at ν = 1.

In Fig. 3 we show the creep function ψν(t) in a linear scale 0 ≤ t ≤ 10 for the particular
values of ν = 0,0.25,0.50,0.75,1, from which we can note the tendency to the Maxwell
creep law as ν → 0+.

3 The generalized Becker model: the rate of creep and the spectra

For the reader’s convenience we consider the time derivative of the creep function simply
referred to as the rate of creep and we show in Fig. 4 the corresponding plots for different
values of the parameter ν ∈ [0,1]. Indeed in experimental papers we often find such curves
that are observed to be decreasing ones, mainly in the so-called primary stage of creep.

We write the rate of creep obtained from (2.2), (2.3) along with their asymptotic repre-
sentations that are derived from the asymptotic formulas of the Mittag–Leffler function as
reported e.g. in Gorenflo et al. (2014) in the range 0 < ν ≤ 1:

dψν

dt
(t) = Γ (1 + ν)

1 − Eν(−tν)

tν
∼

⎧
⎨

⎩

1 − Γ (1+ν)

Γ (1+2ν)
tν, t → 0+,

Γ (1+ν)

tν
, t → +∞.

(3.1)

We point out that the rate of creep for our generalized Becker model is still a CM function
like for the standard Becker model in view of the same theorem we used earlier for proving
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Fig. 5 The spectra for the generalized Becker model for ν = 0.25,0.50,0.75 compared with those of the
Becker model ν = 1: left in frequency Kν(r); right in time Hν(τ)

the CM property. Indeed, in consequence of (3.1), the rate of creep can be written as

dψν

dt
(t) = Γ (1 + ν)

[
1

tν
− Eν(−tν)

tν

]
∈ [0,1], t ≥ 0, 0 < ν < 1. (3.2)

Here we have used the CM property of the Mittag–Leffler function Eν(−tν) for 0 < ν ≤ 1;
see e.g. Gorenflo et al. (2014). This statement appears justified because our model allows
a continuous transition between the Maxwell and Becker laws for which the corresponding
rates of creep turn out to be CM functions. Furthermore, it is confirmed by the non-negativity
of spectra evaluated numerically by using the Titchmarsh formula (A.5) and Eq. (A.6). In-
deed, for 0 < ν < 1, the Laplace transform of the rate of creep is not known in analytic form
so that it can be obtained integrating term by term the series representation of the original
function. This has been carried out by using the MATHEMATICA� tool box.

We show in Fig. 5 the spectra in frequency and in time of the rate of the creep for some
cases in the range 0 < ν ≤ 1, which turn out to be effectively non-negative (with a semi-
infinite support [0,+∞) except in the Becker case ν = 1).

4 The generalized Becker model: the relaxation function

For our generalized Becker model we now introduce the relaxation modulus:

Gν(t) = G0φν(t) (4.1)

in terms of the relaxation function φν(t), which in turn is related to the creep function by the
following Volterra integral equation of the second kind:

φν(t) = 1 − q

∫ t

0

dψν

dt ′
φν

(
t − t ′

)
dt ′. (4.2)

This equation has been solved numerically by using the method already adopted in Garra
et al. (2017). We point out that only in the limit case ν = 0 we get the analytic solution

φ0(t) = exp(−q t/2) , (4.3)

corresponding to the relaxation function of the Maxwell body. In Fig. 6 we show the
relaxation function φν(t) in a linear scale 0 ≤ t ≤ 10 for the particular values of ν =
0,0.25,0.50,0.75,1, taking as usual q = 1.
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Fig. 6 The relaxation function
φν(t) for different values of
ν ∈ [0,1]

5 The generalized Becker model: the specific dissipation function

We now consider the so-called specific dissipation or internal friction or loss tangent related
to the dissipation of energy for sinusoidal excitations in stress or strain. Referring again to
Mainardi (2010) we use the notation

Q−1(ω) := 1

2π

�E

Es

, (5.1)

most common in geophysics as a function of a non-dimensional angular frequency ω related
to the sinusoidal excitations, where �E is the amount of energy dissipated in one cycle and
Es is the peak energy stored during the cycle. For more details see Knopoff (1964).

The final formula, see Mainardi (2010), is provided in terms of the complex compliance
related to the Laplace transform of the strain compliance J (t) and reads

Q−1(ω) = 
{sJ̃ (s)}
�{sJ̃ (s)}

∣∣∣
∣
s=±iω

, (5.2)

where the positive result must be taken for ω > 0. As a consequence, for our generalized
Becker model depending on the parameter ν ∈ [0,1], we get

Q−1
ν (ω) = 
[1 + q sψ̃ν(s)

�[1 + qsψ̃ν(s)]
∣
∣∣
∣
s=±iω

. (5.3)

Analytic expressions are expected to be only available in the limit cases ν = 0 (Maxwell
model) and ν = 1 (Becker model).

After regularization of Grandi’s series, for the Maxwell model we get

ψ0(t) = Ein0(t) = t

2
,

dψ0

dt
= 1

2
,

so

sψ̃0(s) = L
{

dψ0

dt

}
= L

{
1

2

}
= 1

2s
.

Hence

Q−1
0 (ω) = 
[1 + q

2s
]

�[1 + q

2s
]

∣∣
∣∣
s=±iω

= 
[1 ± q

2iω
]

�[1 ± q

2iω
] = 


[
1 ∓ iq

2ω

]
= q

2ω
, (5.4)

which constitutes a well-known result.
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Fig. 7 Specific dissipation
function Q−1

ν (ω) for different
values of ν ∈ [0,1], by adopting
linear scales

For the Becker model we get

ψ1(t) = Ein(t),
dψ1

dt
= 1 − e−t

t
,

so

sψ̃1(s) = L
{

dψ1

dt

}
= L

{
1 − e−t

t

}
= ln

(
1 + 1

s

)
.

The specific dissipation is then given after some calculations of complex analysis

Q−1
1 (ω) = 2q arctan(

√
1 + ω2 − ω)

1 + q ln
√

1+ω2

ω

= 2q arctan(
√

1 + ω2 − ω)

1 + q( 1
2 ln(1 + ω2) − ln(ω))

,

which can be simplified as follows:

Q−1
1 (ω) = arctan( 1

ω
)

1
q

+ 1
2 ln( 1+ω2

ω2 )
. (5.5)

We note that this expression coincides with Eq. (8) found by Strick and Mainardi (1982),
where the authors have assumed τ = 10−10s and 1/q = 57.812 in order to have a dissipation
function compatible with some experimental data in seismology.

We also note that whereas for the Maxwell model the specific dissipation decreases from
infinity to zero in the range 0 < ω < ∞, in the Becker model the specific dissipation in-
creases from zero at ω = 0 to a certain value at an intermediate frequency and then decreases
to zero as ω → ∞.

In Figs. 7 and 8 we show the specific dissipation function Q−1
ν (ω) by adopting linear and

logarithmic scales, respectively, for the particular values of ν = 0,0.25,0.50,0.75,1, taking
as usual q = 1.

From our plots we recognize that in the intermediate cases, 0 < ν < 1, the specific dis-
sipation assumes a finite value at ω = 0 decreasing with increasing ν. Then for ν ≥ 0.75
the function increases up to a maximum whereas for ν = 0,0.25,0.50 it is always decreas-
ing. The transition value of ν in the interval 0.50 < ν < 0.75 for the existence of such a
maximum cannot be analytically determined. In any case, for ν > 0, it is possible to find a
frequency range where the dissipation factor is almost constant by taking a suitable factor
q , as was required by Becker in his 1925 paper.
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Fig. 8 Specific dissipation
function Q−1

ν (ω) for different
values of ν ∈ [0,1], by adopting
logarithmic scales

6 Conclusions

We have presented a new rheological model starting from the creep law of the so-called
Becker body. Indeed we have generalized the Becker creep law by introducing the Mittag–
Leffler function of order ν ∈ (0,1) that in the limit of vanishing ν allows us to recover the
linear creep law of the Maxwell body. We recall that a different transition in creep from a
linear behavior typical of the Maxwell body to a logarithmic behavior typical of the Lom-
nitz model has been investigated by Mainardi and Spada (2012b) for the Strick–Jeffreys–
Lomnitz model of linear viscoelastity.

Then, based on the hereditary theory of linear viscoelasticity, for our generalized Becker
model we have also approximated the corresponding relaxation function by solving numer-
ically a Volterra integral equation of the second kind. The problem of the evaluation of
the corresponding spectral distributions has been left to a future paper. Furthermore, we
have provided a full characterization of the new model adding to the creep and relaxation
functions the so-called specific dissipation Q−1 function versus frequency of relevance in
geophysics.

Illuminating plots of the characteristic functions (creep, relaxation, specific dissipation)
have been presented for the reader’s convenience. This similarity (apart from a suitable
scaling factor) leads us to believe that our generalized model can hopefully be assumed
by experimentalists in rheology to fit some curves of these characteristic functions in their
experiments. We do hope that the results obtained in this paper may be useful for fitting
experimental data in rheology of real materials that exhibit responses in creep, relaxation and
energy dissipation varying between the Maxwell and Becker bodies. We are thus confident
to have found a suitable application of the Mittag–Leffler function in linear viscoelasticity
without involving the possible constitutive stress-strain equations of fractional order.

A systematic comparison between the theoretical responses predicted by the generalized
Becker model and experimental results is out of the scope of present paper. However, we
have noted that the Becker creep law has already found some application in the rheology
of the Earth mantle and of the primary creep of ice. In particular, for ice it was found that
the fit of experimental data with creep functions containing exponential integrals is not fully
satisfactory. Hence, the generalization of the Becker law by the introduction of an extra pa-
rameter ν via the Mittag–Leffler function that we have accomplished here could potentially
help to improve the agreement with experimental data. This will be the subject of a follow
up paper. Furthermore, because the Mittag–Leffler function enters in any creep and relax-
ation function of the fractional viscoelastic models, see e.g. Caputo and Mainardi (1971),
Glöckle and Nonnenmacher (1991), Metzler et al. (1995), Mainardi (2010) and Sasso and
Palmieri (2011) for more references, we also expect that the constitutive law of our gen-
eralized Becker model could be based on a differential stress-strain relation of fractional
order.
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We close this section with this relevant statement again: for 0 < ν < 1 the correspond-
ing non-dimensional functions ψν(t) and φν(t) keep the property to be Bernstein and CM
functions as for the Maxwell (ν = 0) and Becker (ν = 1) bodies, which implies that our
generalized Becker model is in agreement with basic physical principles of linear viscoelas-
ticity.

7 Societal value of the presented research results

This study could lead to better knowledge of the mechanical properties of some materials,
with possible applications to engineering and industry. Indeed rheology is relevant in the
mechanics of time-dependent materials and this model, depending on a parameter, could be
assumed by experimentalists to better fit their curves on creep, relaxation and energy dissi-
pation at most in the primary stage of deformation where linear viscoelasticity is dominant.
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Appendix A: Essentials of linear viscoelasticity

We recall that in the linear theory of viscoelasticity, based on the hereditary theory by
Volterra, a viscoelastic body is characterized by two distinct but interrelated material func-
tions, causal in time (i.e. vanishing for t < 0): the creep compliance J (t) (the strain response
to a unit step of stress) and the relaxation modulus G(t) (the stress response to a unit step
of strain). For more details, see e.g. Christensen (1982), Pipkin (1986), Tschoegl (1989),
Tschoegl (1997) and Mainardi (2010).

By taking J (0+) = J0 > 0 so that G(0+) = G0 = 1/J0, the body is assumed to exhibit
a non vanishing instantaneous response both in the creep and in the relaxation tests. As a
consequence, we find it convenient to introduce two dimensionless quantities ψ(t) and φ(t)

as follows:

J (t) = J0

[
1 + qψ(t)

]
, G(t) = G0φ(t), (A.1)

where ψ(t) is a non-negative increasing function with ψ(0) = 0 and φ(t) is a non-negative
decreasing function with φ(0) = 1. We have assumed, without loss of generality τ0 = 1,
but we have kept the non-dimensional quantity q for a suitable scaling of the strain, ac-
cording to convenience in experimental rheology. At this stage, viscoelastic bodies may
be distinguished in solid-like and fluid-like whether J (+∞) is finite or infinite so that
G(+∞) = 1/J (+∞) is non zero or zero, correspondingly.

As pointed out in most treatises on linear viscoelastity, e.g. in Pipkin (1986), Tschoegl
(1989), Mainardi (2010), the relaxation modulus G(t) can be derived from the correspond-
ing creep compliance J (t) through the Volterra integral equation of the second kind

G(t) = 1

J0
− 1

J0

∫ t

0

dJ

dt ′
G

(
t − t ′

)
dt ′; (A.2)
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then, as a consequence of Eq. (A.1), the non-dimensional relaxation function φ(t) obeys the
Volterra integral equation

φ(t) = 1 − q

∫ t

0

dψ

dt ′
φ
(
t − t ′

)
dt ′. (A.3)

In linear viscoelasticity, it is quite common to require the existence of positive retardation
and relaxation spectra for the material functions J (t) and G(t), as pointed out by Gross in
his 1953 monograph on the mathematical structure of the theories of viscoelasticity (Gross
1953). This implies, as formerly proved in Molinari (1973) and revisited in Hanyga (2005),
see also Mainardi (2010), that J (t) and G(t) and consequently the functions ψ(t) and φ(t)

turn out to be Bernstein and Completely Monotonic (CM) functions, respectively.
Here we recall that a CM function f (t) is a non-negative, infinitely derivable function

with derivatives alternating in sign for t > 0 like exp(−t), whereas a Bernstein function is
a non-negative function whose derivative is CM, like 1 − exp(−t). Then a necessary and
sufficient condition to be a CM function is provided by the Bernstein theorem according to
which f (t) is the Laplace transform of a non-negative real function. For more details on
these mathematical properties the interested reader is referred to the excellent monograph
by Schilling et al. (2012).

For the rate of creep, we write

dψ

dt
(t) =

∫ ∞

0
e−rtK(r) dr =

∫ ∞

0
e−t/τH(τ) dτ, (A.4)

where K(r) and H(τ) are the required spectra in frequency (r) and in time (τ = 1/r),
respectively.

The frequency spectrum can be determined from the Laplace transform of the rate of
creep by the Titchmarsh formula that reads in an obvious notation, if ψ(0+) = 0,

K(r) = ± 1

π

[

sψ̃(s)
] ∣∣

s=re∓iπ . (A.5)

This a consequence of the fact that the Laplace transform of the rate of creep is the iterated
Laplace transform of the frequency spectrum, that is, the Stieltjes transform of K(r) and
henceforth the Titchmarsh formula provides the inversion of the Stieltjes transform; see e.g.
Widder (1946). As a consequence, the time spectrum can be determined using the transfor-
mation τ = 1/r , so that

H(τ) = K(1/τ)

τ 2
. (A.6)
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