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Abstract In this paper the influence of increasing loading rates on hardening effects is an-
alyzed for rate-dependent elastoplastic materials. The effects of different loading rates on
hardening rules are discussed with regard to the constitutive behavior of strain-hardening
materials in elasto/viscoplasticity. A suitable procedure for the numerical simulation of rate-
sensitive material behavior is illustrated. A comparative analysis is presented on constitu-
tive relations in strain-hardening plasticity without rate effects and with rate effects in or-
der to show the different role played by hardening rules in the rate-sensitivity analysis of
elasto/viscoplastic strain-hardening materials. By reporting suitable numerical simulations
for the adopted constitutive relations it is shown that when the rate of application of the load-
ing is increased the influence of hardening has a different effect in the mechanical behavior
of structures. Computational results and applications are finally illustrated in order to show
numerically the different role played by hardening on the plastic strains when the loading
rates are incremented for elasto/viscoplastic strain-hardening materials and structures.

Keywords Hardening rules · Elasto/viscoplasticity · Rate-sensitive materials ·
Time-dependent material behavior · Finite Element Method

1 Introduction

Rate dependence of constitutive behavior of strain-hardening materials is a typical time-
dependent phenomenon. In fact, the rate-dependent plastic behavior of materials and struc-
tures is of considerable scientific interest in most common industrial applications; see, for
instance, the assessment of safety and reliability of mechanical and aeronautical structures,
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the mechanical behavior of beams plates and shells, the calculation of piping, pressure ves-
sels and jet engine turbine blades.

In the last two decades rate-dependent plasticity has achieved a significant progress, both
in the definition of the appropriate theoretical framework of the phenomenon and in the
computational treatment of the model. Computational algorithms for the simulation of non-
linear kinematic hardening rules have been presented by Artioli et al. (2007). Computa-
tional issues and numerical applications in rate-dependent plasticity with hardening have
been discussed by DeAngelis (2013). An efficient return mapping algorithm for elastoplas-
ticity with nonlinear hardening and an exact closed form solution of the local constitutive
problem has been proposed by DeAngelis and Taylor (2015) and DeAngelis and Taylor
(2016). Constitutive modeling of ductile materials for static and dynamic applications have
been investigated, among others, by Abed (2010). Ductile failure behavior of materials has
been analyzed under different loading conditions by Autenrieth et al. (2009). Experimental
results and analyses regarding the behavior of ductile metals under different environmental
conditions have been studied by Brnic et al. (2011). An experimental-numerical approach
has been adopted by Pina et al. (2014) to simulate the mechanical response of ductile met-
als. The effects of cyclic loadings and fatigue of materials have been investigated, among
others, by D’Amore et al. (2013), Farrahi et al. (2014) and D’Amore and Grassia (2016).
For a nonlocal approach in rate plasticity, see, e.g., Marotti de Sciarra (2004) and Marotti de
Sciarra (2008). For a comprehensive account on the computational simulation of strain-
hardening elasto/viscoplasticity see, among others, Simo and Hughes (1998), Simo (1998),
and Zienkiewicz et al. (2013).

In the present paper we refer to evolutive processes in rate-sensitive strain-hardening
materials and structures. A suitable algorithmic procedure is adopted, which is based on an
implicit backward difference method. The adopted numerical procedure is consistent with
the variational formulation of rate-dependent plasticity and viscoplasticity problems, see,
e.g., DeAngelis (2000). An appropriate solution strategy is adopted, which is suitable to be
specialized to different constitutive models and arbitrary yield criteria. Numerical algorithms
are considered for rate-dependent plasticity models which account for rate-dependent load-
ing effects in the mechanical response of strain-hardening materials and structures. A suit-
able implicit backward difference method is applied and an appropriate numerical solution
scheme is illustrated for elasto/viscoplasticity which accounts for rate-dependent loadings.

It is emphasized, however, that the present research work does not specifically address
investigations on the efficiency of different algorithmic aspects of solids loaded in the plastic
range. In fact, in this regard the interested reader may refer to, among others, DeAngelis
and Cancellara (2017). Conversely, in the present paper numerical results are analyzed in
order to investigate the influence that hardening rules have on constitutive relations in the
mechanical response of rate-dependent elastoplastic strain-hardening materials when the
loadings are applied with increasing prescribed loading rates. A comparative analysis is
discussed and remarks are reported on the differentiated effects that hardening rules have
on the mechanical behavior of rate-sensitive elastoplastic materials depending on the rate of
application of the loadings.

In the analysis, considerations are reported on the effects that hardening rules have on the
mechanical behavior of rate-dependent elastoplastic strain-hardening materials and struc-
tures. Some remarks are presented on the different role played by hardening in the rate-
sensitivity analysis of material behavior. The influence of different loading rates is discussed
with reference to the simulation of the rate-dependent elastoplastic strain-hardening behav-
ior of materials.

An investigation is presented on the effects of hardening in the mechanical response
of the constitutive relations in strain-hardening elasto/viscoplasticity with and without rate
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effects so that the different role played by hardening is emphasized in the rate-sensitive
mechanical behavior of materials and structures.

In the paper for the considered constitutive relations the illustrated computational simu-
lations are compared with experimental results reported in the literature. Computational re-
sults are finally described in order to illustrate numerically the effectiveness of the reported
considerations for the adopted constitutive relations. Accordingly, the different effects that
hardening rules have on the maximum plastic strains and on the inelastic material behavior
are emphasized for elasto/viscoplastic strain-hardening materials and structures in which the
loadings are applied with different and increased loading rates.

2 The continuum problem

For the body B we define the reference configuration Ω ⊂ �n, 1 ≤ n ≤ 3, and indicate
the particles by their position vector x ∈ Ω relative to a Cartesian coordinate system. Let
T ⊂ �+ be the time interval of interest and V be the space of displacements, D the strain
space and S the dual stress space. We indicate with u : Ω ×T → V the displacement vector
and with σ : Ω ×T → S the stress tensor. The compatible strain tensor is defined by ε(u) =
∇s(u) : Ω × T → D, where ∇s is the symmetric part of the gradient.

We assume the framework of a small strain theory with quasi-static deformations, i.e.,
without inertia effects. Furthermore, we refer to the class of materials often denoted in the
literature as rate-sensitive materials, see, e.g., Skrzypek and Hetnarski (1993). Accordingly,
viscous effects are assumed to exhibit beyond the elastic range, see also Naghdi and Murch
(1963) and Perzyna (1966). Consequently, we will indicate with εvp the viscoplastic strain,
where combined viscous and plastic effects are represented and the strain difference εe =
ε − εvp is identified as the elastic strain. For a comprehensive analysis, see, e.g., Duvaut and
Lions (1992) and Lemaitre and Chaboche (1990).

For modeling hardening behavior we introduce a dual pair of kinematic α = (αkin, αiso) ∈
X × � and static χ = (χkin, χiso) ∈ X′ × � internal variables, where αiso ∈ � and χiso ∈ �
model isotropic hardening and αkin ∈ X and χkin ∈ X′ model kinematic hardening, with X

and X′ representing dual spaces. Static and kinematic internal variables are related by the
expression χ = Hα where H = diag[Hkin,Hiso] is the hardening matrix.

We introduce the elastic domain E defined as

E def= {
(σ ,χkin, χiso) ∈ S × X′ × � : f (σ ,χkin, χiso) ≤ 0

}
, (1)

where f (σ ,χkin, χiso) is a convex yield function. The yield function is assumed to be ex-
pressed in the form

f (σ ,χkin, χiso) = F(σ − χkin) − κ(χiso), (2)

where κ(χiso) is a material hardening parameter.
We also introduce the elastic energy W : D → � and the complementary elastic energy

W∗ : S → �, which are expressed for linear elasticity in the quadratic forms

W(εe) = 1

2

〈
Cεe,εe

〉
, W∗(σ ) = 1

2

〈
σ ,C−1σ

〉
. (3)

Herein C denotes the elastic stiffness and the symbol 〈•,•〉 represents the inner product
in the dual spaces with the meaning of 〈•,•〉 def= ∫

Ω
• · •dΩ , where · denotes the simple

(double) index saturation operation between vectors (tensors).
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3 Evolutive problem in rate-dependent plasticity

In the sequel we develop the evolutive rate plastic problem with hardening within the frame-
work provided by Halphen and Nguyen (1975) in which strains and kinematic internal vari-
ables, as well as the corresponding dual static variables, are collected in suitably defined
generalized variables

E = (ε,o), Ee = (
εe,α

)
, Evp = (

εvp,−α
)
, Σ = (σ ,χ). (4)

The generalized kinematic and static variables are defined respectively in the product spaces
D̃ = D × X × � and S̃ = S × X′ × �.

Given a generalized viscoplastic strain Ėvp, among all possible generalized stresses Γ =
(τ ,q) ∈ S̃, the actual generalized stress Σ = (σ ,χ) satisfies the principle of maximum
dissipation, see, e.g., Hill (1950),

Dvp
(
Ėvp

) = sup
Γ ∈S̃

{〈
Γ , Ėvp

〉 − Π∗(Γ )
}
, (5)

where Π∗(Γ ) represents a viscoplastic convex potential.
The optimality conditions (5) can be expressed in terms of the viscoplastic Lagrangian

Lvp(Γ )
def= −〈

Γ , Ėvp
〉 + Π∗(Γ ). (6)

Accordingly, among all possible generalized stresses Γ = (τ ,q) ∈ S̃, the optimal gener-
alized stress Σ = (σ ,χ) is obtained by enforcing the stationarity condition for Lvp(Γ )

[
∂Lvp(Γ )

]
(Σ)

= 0 ⇐⇒ Ėvp = ∂Π∗(Σ), (7)

which expresses in generalized variables the flow law of the viscoplastic strain and the
evolutive laws of the kinematic internal variables. In order to take into account the mul-
tivaluedness of the viscoplastic evolutive problem, the above equation can be expressed in
subdifferential form, see, e.g., DeAngelis (2000).

The flow rule (7)2 can be formulated in the inverse equivalent form

Σ = ∂Dvp
(
Ėvp

)
, (8)

or equivalently in the Fenchel’s form, see, e.g., Hiriart-Urruty and Lemarechal (1993),

Π∗(Σ) + Dvp
(
Ėvp

) = 〈
Σ, Ėvp

〉
. (9)

By resorting to the penalty regularization procedure, see, e.g., Yosida (1980), the con-
strained optimization problem related to the plastic model is formulated as an unconstrained
problem. Let us introduce the penalty function g+(x) of the constraint f (Γ ). A penalty func-
tion is required to satisfy the following conditions: g+(x) is continuous in [0,∞), g+(x) ≥ 0
and convex in [0,∞), g+(x) = 0 if and only if x ≤ 0. Under such assumptions, the regular-
ized form of the Lagrangian (6) is expressed by

Lvp
η (Γ )

def= −〈
Γ , Ėvp

〉 + 1

η
g+(

f (Γ )
)
, (10)

where η > 0 is the penalty parameter with the significance of a viscosity coefficient.
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Accordingly, the regularized form of the viscoplastic dissipation is formulated by

Dvp
η

(
Ėvp

) = sup
Γ ∈S̃

{
〈
Γ , Ėvp

〉 − 1

η
g+(

f (Γ )
)
}
. (11)

The solution Ση of the regularized problem tends to the solution Σ of the constrained
plastic problem for η → 0+, see, e.g., Luenberger (1973). The viscoplastic constitutive prob-
lem is therefore regarded in the literature as a penalty regularization of the plastic constitu-
tive problem.

Different formulations of the viscoplastic constitutive relations are obtained by suitably
specializing the penalty function. The penalty function g+ can be suitably expressed by

g+(x)
def=

{
1
2 x2 for x ≥ 0,

0 for x < 0,
(12)

the derivative is expressed by dg+(x)

dx
= 〈x〉, where the MacAuley brackets 〈 · 〉 are defined by

〈x〉 = (x + |x|)/2.
For modeling nonlinear viscous effects it is useful to introduce the flow function Φ(x)

such that dg+(x)

dx
= 〈Φ(x)〉. By recalling the regularized viscoplastic potential (10), the vis-

coplastic flow rule (7) supplies

[
∂Lvp

η (Γ )
]
(Σ)

= 0 ⇐⇒ Ėvp = 1

η

〈
Φ

(
f (Σ)

)〉
∂f (Σ), (13)

which expresses in generalized variables the evolutive law of the Perzyna viscoplastic con-
stitutive model, see, e.g., Perzyna (1963). For linear viscous effects a standard choice of the
flow function is Φ(f (Σ)) = f (Σ). For nonlinear viscous effects, different proposals of the
flow function are reported, e.g., by Skrzypek and Hetnarski (1993).

The interpretation of the evolutive problem in viscoplasticity as optimality condition of
a convex optimization problem has proven to be useful of providing a complete variational
formulation for the viscoplastic structural problem, see, e.g., DeAngelis (2000), and it is well
suited for the formulation of variationally consistent numerical algorithms in finite element
applications.

4 Discrete formulation and algorithmic procedure

We consider the elastic domain as expressed by a von Mises yield criterion

f (σ ,χkin, χiso) = ‖devσ − χkin‖ − κ(χiso) = ‖η‖ −
√

2

3
(σyo + χiso) ≤ 0, (14)

in which devσ denotes the stress deviator, η
def= devσ − χkin is the relative stress, κ(χiso) =√

2
3 (σyo + χiso) is the current radius of the yield surface in the deviatoric plane, and σyo

represents the uniaxial yield stress of the virgin material.
An associative rate-dependent plastic behavior is assumed so that during an increment

of plastic strain the yield surface moves in the direction of the exterior normal to the yield
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surface at the considered stress point. Accordingly, the evolutive flow law for the constitutive
equation in associative rate-dependent plasticity is expressed by

ε̇vp = γ̇ vp ∂f

∂σ
= γ̇ vp ∂f

∂η
= γ̇ vp n, (15)

in which γ̇ vp is the viscoplastic multiplier, the second rank tensor n is given by n def= η
‖η‖ , and

the accumulated equivalent viscoplastic strain rate is expressed by ˙̄evp =
√

2
3 γ̇ vp.

A widely adopted hypothesis for strain-hardening assumes the isotropic hardening to
produce a change in size of the yield surface in the stress space during continued plastic
deformation without change in shape. For linear isotropic hardening the static internal vari-
able related to isotropic hardening is given by χiso = Hisoαiso and the dual kinematic internal

variable αiso is represented by the equivalent viscoplastic strain αiso
def= ēvp = ∫ t

0

√
2
3‖ε̇vp‖dt .

For nonlinear isotropic hardening it is often assumed

χiso = Hiso(ē
vp)m, or χiso = χiso,∞

(
1 − e−b ēvp)

, (16)

where m, χiso,∞ and b are material parameters.
A frequently used kinematic hardening rule is the linear kinematic hardening law pro-

posed by Ishlinsky (1954) and Prager (1956). It is postulated that the kinematic hardening is
given by a pure translation of the yield surface in the stress space without change in size. The
translation of the yield surface is expressed by the back stress. By assuming linear kinematic
hardening the back stress rate is represented in the form

β̇ = 2

3
Hkin ε̇vp, (17)

where it has been assumed Hkin = 2
3 HkinI. The static internal variable related to kinematic

hardening is assumed to be the back stress χkin
def= β , and the dual kinematic internal variable

αkin is represented by the viscoplastic strain rate ε̇vp.
Under the assumption of a nonlinear kinematic hardening behavior, the model proposed

by Armstrong and Frederick (1966) is often adopted in the literature, which is expressed by

β̇ = 2

3
Hkin ε̇vp − Hnl ˙̄evp

β, (18)

where Hnl is a dimensionless material-dependent parameter which is null in case of lin-
ear kinematic hardening. A better approximation of nonlinear kinematic hardening behav-
ior consists in adding several components of the back stress with different recall constants
(Chaboche 2008):

β =
M∑

i=1

β i , β̇ i = 2

3
Hkin,i ε̇

vp − Hnl,i
˙̄evp

β i . (19)

For a comparative analysis of linear and nonlinear kinematic hardening rules for metals and
alloys, see, e.g., DeAngelis (2012).

We consider the time interval T ⊂ �+ specified as [0, T ]. According to a strain-driven
formulation, at a generic time tn ∈ [0, T ] the total and viscoplastic strain fields and the
internal variables are assumed to be known.
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At time tn ∈ [0, T ] a prescribed increment of the displacement field �u is assigned, that
is, a corresponding increment of the strain field �ε = ∇s(�u), which corresponds to assign-
ing the total strain at time tn+1 ∈ [0, T ] set equal to εn+1 = εn + ∇s(�u). The algorithmic
scheme requires updating all the unknown fields at time tn+1 ∈ [0, T ] consistently with the
viscoplastic flow rule expressed in generalized variables as

Ėvp = 1

η

〈
Φ

(
f (Σ)

)〉
dΣf (Σ). (20)

In the sequel we make explicit a Perzyna viscoplastic constitutive model with nonlinear
viscous effects and, accordingly, the flow rule (20) is expressed in components by

ε̇vp = 1

η

〈
Φ

(
f (σ ,χ)

)〉 η

‖η‖ = 1

η

〈
Φ

(
f (σ ,χ)

)〉
n,

χ̇kin = 2

3
Hkinε̇

vp = 2

3

〈Φ(f (σ ,χ))〉
η

Hkin
η

‖η‖ = 2

3

〈Φ(f (σ ,χ))〉
η

Hkinn, (21)

˙̄evp =
√

2

3

〈Φ(f (σ ,χ))〉
η

.

By adopting a fully implicit integration scheme and by recalling that for the back stress
β

def= χkin, we introduce the time step dependent viscoplastic multiplier

γ
vp
n+1 = 1

η

〈
Φ

(
f (σ n+1,βn+1, κn+1)

)〉
�t, (22)

in which �t = tn+1 − tn, see, e.g., Simo et al. (1988) and DeAngelis and Cancellara (2017).
Accordingly, the discrete forms of the evolutive equations (21) are specialized into

ε
vp
n+1 = εvp

n + γ
vp
n+1nn+1,

βn+1 = βn + 2

3
Hkinγ

vp
n+1nn+1, (23)

ē
vp
n+1 = ēvp

n +
√

2

3
γ

vp
n+1,

and the current radius of the yield surface in the deviatoric plane is expressed by

κn+1 = κn + 2

3
Hisoγ

vp
n+1. (24)

For the numerical scheme it is useful to introduce the strain deviator ν
def= devε and the

stress deviator s def= devσ . An elastic prediction-plastic correction scheme yields the trial
values

st
n+1 = 2G

(
νn+1 − νvp

n

)
, ηt

n+1 = st
n+1 − βn. (25)

Accordingly, at time tn+1 the stress deviator and the relative stress are expressed by

sn+1 = st
n+1 − 2Gγ

vp
n+1nn+1, ηn+1 = ηt

n+1 −
(

2G + 2

3
Hkin

)
γ

vp
n+1nn+1. (26)
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The viscoplastic multiplier γ
vp
n+1 and the normal nn+1 can be determined by the algorith-

mic procedure illustrated by DeAngelis and Cancellara (2017). Consequently, the unknown
variables are updated at time tn+1 by (23), (24) and (26).

For rate-dependent plasticity problems, the tangent stiffness operator consistent with the
algorithmic procedure may be derived within the framework of the generalized standard ma-
terial model, see DeAngelis and Cancellara (2017). The expression of the consistent tangent
operator Cvp for general yield criteria in rate elastoplasticity is thus given by

Cvp = Ξ 1 − N ⊗ N
ρ

, (27)

where

N = Ξ 2n,

Ξ 1 = C − γ vpCAC,

Ξ 2 = C − γ vpCA(C + Hkin),

Ξ 3 = (C + Hkin) − γ vp(C + Hkin)A(C + Hkin),

ρ = Ξ 3n · n + 2

3
Hiso + d

dγ vp

[
Φ−1

(
η

�t
γ vp

)]
,

A = d2
σσ f

[
I + γ vp(C + Hkin)

(
d2

σσ f
)]−1

.

(28)

A noteworthy characteristic of such a tangent operator is the applicability to arbitrary
yield criteria and to different viscoplastic constitutive models. Different viscoplastic consti-
tutive models may be readily taken into account by suitably specializing the flow function Φ .
Different expressions for the flow function Φ for different constitutive models are reported
by, among others, Skrzypek and Hetnarski (1993). Another advantage of the above consis-
tent tangent operator is the applicability to arbitrary yield criteria by suitably specializing
the relevant yield function f .

With regard to the consistent linearization that is required in plasticity problems, we also
note that finite element plasticity formulations without matrix inversions have been inves-
tigated by Valoroso and Rosati (2009a) and Valoroso and Rosati (2009b) and for plasticity
with nonlinear kinematic hardening by DeAngelis and Taylor (2016).

5 The influence of loading rates on hardening effects for rate-dependent
elastoplastic materials and finite element applications

We study the plane strain problem of an infinitely long rectangular strip with a circular
hole subject to prescribed edge displacements perpendicular to the axis of the strip. A rate-
dependent elastoplastic strain-hardening material behavior is adopted according to the con-
stitutive relations detailed in the previous sections. Details of the geometry the finite element
mesh and the loading conditions are illustrated in Fig. 1 (top).

For symmetry conditions only 1/4 of the strip is modeled. The adopted finite element
mesh is composed of 325 nodes and 288 elements. In the numerical simulation 4-node bi-
linear isoparametric quadrilateral elements have been adopted with 2 × 2 Gaussian quadra-
ture. The mechanical parameters for the material are: elastic modulus E = 2.1 × 105 MPa,
Poisson’s ratio ν = 0.3, yield limit σy = 240 MPa, hardening moduli Hiso = 2.1 × 103 MPa,
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Fig. 1 Perforated strip. Finite
element mesh (top). Load vs
displacement curves for different
values of the loading program
parameter τ (bottom)

and Hkin = 6.0×102 MPa. Prescribed upper edge displacements are assigned in single steps
�u up to the final imposed displacement umax = 10 cm.

In the following a dimensionless loading program parameter

τ = tR

Lc

�u

�t

is introduced in order to account for the loading rate adopted in the loading process.
The dimensionless loading program parameter τ accounts for the rate �u/�t of the

prescribed edge displacement �u, the intrinsic properties of the material via a relaxation
time tR = η/2G and the geometry of the problem by means of a characteristic length of
the structural model Lc = L/c, where L is the length of the strip and c a dimensionless
constant. Herein the dimensionless constant c is introduced in order to decrease the length
L to a reduced value Lc = L/c. In this numerical example we assumed c = 2900. The
value of c has been adopted in order to have reasonable values for the loading program
parameter τ .

In Fig. 1 (bottom), load versus displacement curves are plotted for different loading pro-
gram parameters τ . The load is considered to be the sum of the nodal reactions on the
bounded upper edge. The rate-independent plastic behavior is recovered for a loading pro-
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Fig. 2 Rate-independent
plasticity with and without
hardening (τ = 0). Maximum
equivalent plastic strain exhibited
in the loading process vs the
applied load (top). Maximum
equivalent plastic strain exhibited
in the loading process vs the
prescribed upper edge
displacement (bottom)

gram parameter τ = 0. The rate-dependent plastic material behavior is recovered for non-
null values of the loading program parameter τ . We note that different load–displacement
curves are obtained for different loading program parameters τ . Increasing values of the
loading program parameter τ correspond to loading processes in which the loadings are
applied with increasing prescribed loading rates. For increasing values of τ , the curves of
the load-displacement plot rise. This behavior agrees with the experimental evidences in
which the inelastic threshold of materials is increased when the loadings are applied with
increasing rate, see, e.g., Skrzypek and Hetnarski (1993).

The effect of hardening for the rate-independent material behavior (τ = 0) is described
in Fig. 2. In Fig. 2 (top), the maximum equivalent plastic strain exhibited in the solid during
the loading process is plotted as a function of the applied load for the elastoplastic material
behavior with and without hardening. Herein the load is the sum of the nodal reactions on
the bounded upper edge. In Fig. 2 (bottom), the maximum equivalent plastic strain exhibited
in the solid is plotted as a function of the prescribed upper edge displacement for the rate-
independent elastoplastic material behavior with and without hardening.

The evolution of the plastic strain for increasing prescribed upper edge displacements is
illustrated in Fig. 3 for a rate-independent elastoplastic material behavior (corresponding to
a loading program parameter τ = 0) without hardening.

For a rate-independent elastoplastic material behavior (τ = 0) with hardening the evolu-
tion of the plastic strain is reported in Fig. 4 for increasing prescribed upper edge displace-
ments.
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Fig. 3 Rate-independent plasticity without hardening (loading program parameter τ = 0). Evolution of
equivalent plastic strains for increasing prescribed upper edge displacements u = 1.5 cm (top left), u = 2.5 cm
(top right), u = 5 cm (bottom left), u = 10 cm (bottom right)

By increasing the loading, we observe that the plastic strains originated at the rim of the
hole gradually evolve towards the lateral edge of the perforated strip. The numerical results
and the contour plots illustrated in Figs. 3–4 are in agreement with the experimental results
analyzed by Theocaris and Marketos (1964). In this regard, see, e.g., Fig. 12 reported by
Theocaris and Marketos (1964) on page 388. The agreement with the experimental results
confirms the reliability of the numerical simulation analysis for the adopted constitutive
relations.

In Fig. 5 (top figures), the evolution of the plastic strain in the strip is shown for
rate-independent plasticity (τ = 0) with hardening, by illustrating the contour plots of the
equivalent plastic strain for prescribed upper edge displacements respectively set equal to
u = 1.5 cm (top left) and u = 2.0 cm (top right).

For rate-dependent plasticity with hardening, by assuming an increased prescribed load-
ing rate corresponding to a loading program parameter τ = 0.2, the contour plots of the
equivalent plastic strain are reported in Fig. 5 (bottom figures) for the prescribed upper edge
displacements set equal to u = 1.5 cm (bottom left) and u = 2.0 cm (bottom right).

The effects of the loading rate on the material response are clearly illustrated in Fig. 6,
where the contour plots of the equivalent plastic strains are reported for the same prescribed
upper edge displacement (u = 2.0 cm) and for different prescribed loading rates correspond-
ing respectively to τ = 0 (Fig. 6 (left)) and τ = 0.2 (Fig. 6 (right)).

When the loading process is applied with an increased prescribed loading rate, in order to
investigate the effects of increasing loading rates on the distribution of plastic strains for an
elastoplastic material behavior, in Fig. 7 we illustrate the contour plots of the final equivalent
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Fig. 4 Rate-independent plasticity with hardening (loading program parameter τ = 0). Evolution of equiva-
lent plastic strain for increasing prescribed upper edge displacements u = 1.5 cm (top left), u = 2.5 cm (top
right), u = 5 cm (bottom left), u = 10 cm (bottom right)

plastic strain corresponding to the final prescribed upper edge displacement umax = 10 cm.
In Fig. 7, the contour plots of the final equivalent plastic strains are respectively reported for
an elastoplastic material behavior without hardening by prescribing increasing loading rates
corresponding to the loading program parameters τ = 0.1,1,3, and 6.

Furthermore, in Fig. 8 in order to analyze the influence of increased loading rates on
the plastic material behavior with hardening, the contour plots of the equivalent plas-
tic strains are illustrated for the final prescribed upper edge displacement umax = 10 cm
and for different increased loading rates corresponding to the loading program parameters
τ = 0.1,1,3, and 6.

When the loadings are applied with an increased prescribed loading rate, the effects of the
loading rate on the elastoplastic behavior are described in Fig. 9 where for rate-dependent
plasticity the maximum value of the equivalent plastic strain is plotted as a function of the
prescribed upper edge displacement for different values of the loading program parameter τ .
In the plot it is shown that for a fixed value of the maximum equivalent plastic strain the load
increases for increasing values of the loading program parameter τ . For a fixed value of the
prescribed upper edge displacement, the maximum equivalent plastic strain decreases for
increasing values of the loading program parameter τ .

In Fig. 10, for rate-dependent plasticity without hardening (Fig. 10, top) and rate-
dependent plasticity with hardening (Fig. 10, bottom), we illustrate the maximum equiv-
alent plastic strain exhibited in the solid as a function of the applied load and for different
prescribed loading rates which are obtained by assigning increasing values of the loading
program parameter τ .
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Fig. 5 Top figures: Rate-independent plasticity with hardening (τ = 0). Evolution of equivalent plastic strain
for the prescribed upper edge displacements u = 1.5 cm (top left) and u = 2.0 cm (top right). Bottom figures:
Rate-dependent plasticity with hardening (τ = 0.2). Evolution of equivalent plastic strain for the prescribed
upper edge displacements u = 1.5 cm (bottom left) and u = 2.0 cm (bottom right)

Fig. 6 Rate plasticity with hardening. Contour plots of equivalent plastic strain for the same prescribed upper
edge displacement u = 2.0 cm and different loading rates corresponding to loading program parameters τ = 0
(left) and τ = 0.2 (right)

We notice from Fig. 10 that the maximum final equivalent plastic strain decreases when
the load is applied with increased values of the prescribed loading rate that is with increased
values of the loading program parameter τ . Herein the final prescribed displacement corre-
sponds to umax = 10 cm.
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Fig. 7 Rate-dependent plasticity without hardening. Contour plots of the equivalent plastic strain for the final
prescribed upper edge displacement (umax = 10 cm) and different loading rates corresponding to loading
program parameters τ = 0.1 (top left), τ = 1 (top right), τ = 3 (bottom left), τ = 6 (bottom right)

In order to better clarify the different influence that hardening has in elastoplasticity when
the loading is applied with a null or a prescribed loading rate, we illustrate in Fig. 11 (top
left) the contour plot of the final equivalent plastic strain in the solid for rate-independent
plasticity (τ = 0) without hardening and in Fig. 11 (top right) the contour plot of the final
equivalent plastic strain in the solid for rate-independent plasticity (τ = 0) with hardening.
The different distribution of the plastic strains in the solid is clearly shown for both the
contour plot and the magnitude of the plastic strains by comparing Fig. 11 (top left), without
hardening, and Fig. 11 (top right) with hardening.

Conversely, when the loading is applied by assigning a considerable high value of the
prescribed loading rate (τ = 10), the contour plots of the final equivalent plastic strains in the
solid are illustrated in Fig. 11 (bottom left) for rate-dependent plasticity without hardening
and in Fig. 11 (bottom right) for rate-dependent plasticity with hardening.

For plasticity without hardening, by comparing Fig. 11 (top left), with null loading rate,
and Fig. 11 (bottom left), with a prescribed loading rate τ = 10, we note that by increasing
the prescribed loading rate the plastic strains are more distributed in the solid with the result
that the final maximum equivalent plastic strain decreases. The same effect of a more diffuse
distribution of plastic strains in the solid due to increased prescribed loading rates can also be
noticed for plasticity with hardening, by comparing Fig. 11 (top right) and Fig. 11 (bottom
right).

In Fig. 12 (top), we report the maximum final equivalent plastic strain as a function of the
loading program parameter τ for rate-dependent plasticity without hardening. As a matter of
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Fig. 8 Rate-dependent plasticity with hardening. Contour plots of the equivalent plastic strain for the final
prescribed edge displacement (umax = 10 cm) and different loading rates corresponding to loading program
parameters τ = 0.1 (top left), τ = 1 (top right), τ = 3 (bottom left), τ = 6 (bottom right)

Fig. 9 Maximum equivalent
plastic strain vs the imposed
upper edge displacement for
different loading rates
corresponding to increasing
loading program parameters τ .
Rate-dependent plasticity without
hardening

fact, Fig. 12 (top) clearly shows the decrease of the maximum final equivalent plastic strain
for increasing values of the prescribed loading rates.

By comparing Fig. 11 (bottom left) and Fig. 11 (bottom right), we observe that for con-
siderably high values of the prescribed loading rate (τ = 10) the extent of the contour plot of
the plastic strains for the material without hardening resembles the one for the material with
hardening. The same considerations apply with regard to the maximum equivalent plastic
strains exhibited in the solid, see Fig. 11 (bottom left) and Fig. 11 (bottom right). These
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Fig. 10 Maximum equivalent
plastic strain vs applied load for
different loading rates
corresponding to increasing
loading program parameters τ .
Rate-dependent plasticity without
hardening (top) and
rate-dependent plasticity with
hardening (bottom)

similarities between the plastic behavior without hardening and that with hardening occur
for increased values of the prescribed loading program parameter τ , that is, for highly in-
creased values of the loading rate. Conversely, hardening plays a more relevant role on the
different distribution of the plastic strains when the loadings are applied with a null loading
rate (τ = 0), that is, by comparing Fig. 11 (top left) for plasticity without hardening and
Fig. 11 (top right) for plasticity with hardening.

For a further clarification of these aspects, in Fig. 12 (bottom) a comparative analysis
of the effects of hardening for increasing prescribed loading rates is illustrated in rate-
dependent plasticity. In Fig. 12 (bottom) the maximum final equivalent plastic strain in the
solid is plotted as a function of the loading program parameter τ , which describes the in-
fluence of the prescribed loading rate of the applied loadings, thus accounting for gradually
increasing loading rates. In Fig. 12 (bottom), we note that for increased prescribed loading
rates, that is, by assigning increased values of τ , the difference between the maximum final
equivalent plastic strain for elastoplasticity without hardening and that with hardening is
gradually decreasing.

For increasing values of the prescribed loading rate, that is, for increasing values of τ ,
the effect of hardening on the maximum equivalent plastic strain is reduced. In fact, from
Fig. 12 (bottom) we note that for increased values of the loading program parameter τ the
difference is reduced between the two curves representing the maximum final equivalent
plastic strain in the elastoplastic material with hardening and without hardening.
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Fig. 11 Contour plot of equivalent plastic strain corresponding to the final prescribed upper edge displace-
ment umax = 10 cm. Top figures: Rate-independent plasticity (τ = 0). Rate-independent plasticity without
hardening (top left) and rate-independent plasticity with hardening (top right). Bottom figures: Rate-depen-
dent plasticity with a considerable high value of the prescribed loading rate (τ = 10). Rate-dependent plas-
ticity without hardening (bottom left) and rate-dependent plasticity with hardening (bottom right)

6 Conclusions

In this work a suitable finite element solution procedure has been adopted for rate-dependent
problems in elastoplasticity, and an implicit algorithmic scheme has been illustrated and
implemented into a finite element code. For the simulation of rate-dependent elastoplastic
strain-hardening problems, a numerical procedure has been described, which accounts for
the effects of the loading rate dependence. An analysis has been detailed on the influence
that hardening rules have on the mechanical response of elasto/viscoplastic materials when
they are subject to loadings applied with increased prescribed loading rates.

The effects of different loading rates have been investigated for elasto/viscoplastic strain-
hardening problems, and the mechanical response of the adopted constitutive material be-
havior has been analyzed. Hardening rules have a different influence on the mechanical
response of materials and structures depending on the different imposition of the load-
ing rate. A comparative analysis has been presented on the effects of hardening in rate-
dependent elastoplasticity when the loadings are applied with different prescribed loading
rates so that the different influence of hardening is illustrated in the rate-sensitive analysis
of elasto/viscoplastic strain-hardening materials and structures.

Numerical applications and computational results have been presented in order to illus-
trate the influence that hardening rules have in the rate-dependent elastoplastic analysis of
structures when the loadings are applied with a null or with increased loading rates. A nu-
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Fig. 12 Maximum final
equivalent plastic strain exhibited
in the solid vs the loading
program parameter τ : (top)
rate-dependent plasticity without
hardening; (bottom) comparative
analysis between rate-dependent
plasticity without hardening
(upper curve) and rate-dependent
plasticity with hardening (lower
curve)

merical simulation has been presented of the influence due to hardening on the plastic strains
in the rate-dependent elastoplastic analysis of structures subject to different rate-dependent
loading programs.

Computational applications have been illustrated by showing numerically that hardening
has a reduced influence on the amplitude of the maximum equivalent plastic strains when
the loadings are applied with an increased prescribed loading rates with respect to the case
without hardening. Accordingly, for elasto/viscoplastic strain-hardening materials and struc-
tures when the loadings are applied with increased prescribed loading rates the influence of
hardening has a gradually reduced effect on the amount and distribution of the maximum
equivalent plastic strains with respect to the elasto/viscoplastic material behavior without
hardening.
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