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Abstract In this paper, the stability analysis of moderately thick time-dependent viscoelas-
tic plates with various shapes is studied using the Laplace–Carson transformation and simple
hp cloud meshless method. The shear effect of the plate is described by the first order shear
deformation theory. The mechanical properties of the materials are supposed to be linear
viscoelastic based on the constant bulk modulus. The displacement field is assumed to be
the product of two functions, one being a function of geometrical parameters and the other
a known exponential function of time. The simple hp cloud method is used for discretiza-
tion which is based on Kronecker-delta properties. Thus, the essential boundary conditions
can be imposed directly. A numerical investigation is made by employing the inverse of
Laplace–Carson transformation. The time history of buckling coefficients of viscoelastic
plates of various shapes with different boundary conditions is considered. Moreover, a num-
ber of numerical results are presented to study the effect of thickness, aspect ratio, different
boundary conditions, and various shapes on the time history of buckling coefficients of the
viscoelastic plate.

Keywords Buckling · Laplace–Carson transformation · Simple hp cloud method ·
Viscoelastic moderately thick plate

1 Introduction

In recent years, polymeric materials and advanced composite materials have been widely
used in engineering applications. A linear elastic analysis may give inaccurate results for
such materials. Due to the viscoelastic properties of composite materials, demand for utiliz-
ing the viscoelastic theory has gained considerable attention. Time-dependent viscoelastic
materials express both elastic and viscose properties. In viscoelastic materials, the state of
strain depends on the present stress and the stress history (Christensen 1982). Zhang and
Cheng (1998) presented a nonlinear mathematical model of simply supported viscoelastic

B M. Azhari
mojtaba@cc.iut.ac.ir

1 Department of Civil Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11043-016-9334-8&domain=pdf
mailto:mojtaba@cc.iut.ac.ir


366 Mech Time-Depend Mater (2017) 21:365–381

thin plates based on the Karman’s hypotheses of large deflection and the Boltzmann’s law
of viscoelastic material in the case of constant Poisson ratio. Kennedy (1998) developed the
finite element method for the nonlinear viscoelastic analysis of composite plates and shells.
The creep model was represented as an exponential series plus a steady flow terms. Ham-
merand and Kapania (2000) analyzed the linear viscoelastic composite plates and shells
using the finite element method. To evaluate the hereditary integrals, a direct integration
scheme was employed. One disadvantage of heredity integral equations is that a large num-
ber of time steps are needed. Oliveira and Creus (2000) presented the finite element method
for modeling the failure behavior of composite plates and shells in the presence of large
displacements and creep. Zenkour (2004) studied the quasi static buckling analysis of fiber
reinforced viscoelastic composite rectangular plate with simply supported edges using a uni-
fied shear deformable theory and the effective moduli method. Salehi and Safi-Djahanshahi
(2010) presented the geometrically nonlinear analysis of viscoelastic rectangular plates sub-
jected to in-plane compression based on the Boltzmann superposition principle and third
order shear deformation theory. The static response of inhomogeneous fiber-reinforced vis-
coelastic sandwich plate was studied by Allam et al. (2010) using the first order shear defor-
mation theory. They utilized the method of effective moduli and Illyushin’s approximation
to solve the equations governing the bending response of viscoelastic sandwich plate with
simply supported boundary conditions. Jafari et al. (2011, 2014) employed the finite strip
method for the stability analysis of composite viscoelastic thick rectangular plates with vari-
able thickness based on the higher order shear deformation theory and the effective moduli
method. The linear viscoelastic response of a rectangular plate based on first-order and third-
order shear deformation theories was investigated by Nguyen et al. (2012). They determined
the compliance and relaxation modulus of viscoelastic behavior by Prony series. Amoushahi
and Azhari (2013, 2014) analyzed the thin and moderately thick viscoelastic rectangular
plates with different end conditions by expressing the relaxation modulus in terms of Prony
series using the finite strip method.

Since the exact solution of plate problems is available only for special simple cases, ap-
proximate methods have been introduced to solve different problems of plates. Recently,
since the approximation functions of meshfree methods can be built without dividing the
plate domain, these methods have grown in popularity to solve the problems of partial dif-
ferential equations. The static analysis of moderately thick plate using hp cloud method has
been studied by Garcia et al. (2000) based on Mindlin’s theory. Due to the lack of Kronecker-
delta properties of approximation functions, Lagrange multipliers have been used to impose
essential boundary conditions. In the present paper, the hp cloud method is employed for
discretization. In this method, a set of arbitrary nodes with no connectivity among them are
laid in the domain of the plate. Similar to most meshfree methods, in the hp cloud method
the approximation functions lack the Kronecker-delta property and Lagrange multipliers are
used to impose the Dirichlet boundary conditions. In the present research, the approxima-
tion functions have the Kronecker-delta property and the essential boundary conditions can
be enforced directly. So, the hp cloud method used in this study is named “simple hp cloud
method.”

A viscoelastic problem can be considered in the time or Laplace domain. To avoid direct
time integration, when the accurate Laplace inverse is available, the use of Laplace domain
approach is justified due to the much simpler formulation and the improvement of compu-
tational efficiency. Therefore, in the present research, time history of critical buckling load
of the moderately thick viscoelastic Mindlin’s plates with various shapes is studied by the
effective moduli method based on the Laplace–Carson transformation. The organization of
this paper is as follows: In Sect. 2, the hp cloud method is introduced briefly and the ex-
traction of equations is described based on the Mindlin theory and the method of effective
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moduli. In Sect. 3, the numerical results are presented. The time history of critical buckling
loads of viscoelastic plates with rectangular, skew, trapezoidal, right-angled triangular, cir-
cular, and hexagonal shapes, as well as arbitrarily shaped viscoelastic plates, is considered.
Section 4 presents the conclusions.

2 Governing equations

2.1 Simple hp cloud method

In this study, the approximation functions are built by the simple hp cloud method. Suppose
that QN is an arbitrary selected set of scattered nodes xα ,

QN = {x1,x2, . . . ,xN }, xα ∈ Ω. (1)

Each node xα is associated with cloud ωα , which is centered at xα and has radius hα . Defin-
ing the function rα as

rα = ‖x − xα‖
hα

, (2)

the weight functions Wα in the form of a quartic B-spline can be written as

Wα(x) =
{

1 − 6r2
α + 8r3

α − 3r4
α, 0 ≤ rα ≤ 1,

0, rα > 1.
(3)

To obtain the shape functions of the hp cloud method, two kinds of functions must be deter-
mined, namely, partition of unity functions, ψα(x), and enrichment functions, Lαi(x). Then
we have

uhp(x) =
N∑

α=1

mα∑
i=1

uαi

(
ψα(x)Lαi(x)

)
(4)

where N is the number of selected nodes and mα is the number of terms of enrichment
function for node xα .

In this work, Shepard functions are used to build a partition of unity with low com-
putational cost. Shepard functions are simpler forms of moving least square interpolations
(Duarte and Oden 1996a, 1996b; Oden et al. 1998):

ψα(x) = P(x)A−1(x)Bα(x). (5)

Avoiding the non-economical process of calculating the inverse matrix at every node, by
setting P(x) = {1}, one obtains

A(x) =
∑

β

Wβ(x), Bα(x) = Wα(x). (6)

So Shepard functions are calculated as follows:

ψα(x) = Wα(x)∑
β Wβ(x)

. (7)

Enrichment functions are constructed at a very low cost by selecting complete polynomials.
Each node may have a different order of polynomial.

So the approximation functions can be written in the matrix form as follows:

Nα = ψαLα. (8)
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Fig. 1 Distribution of nodes on
the domain of plates of various
shapes

For an arbitrary node xα , the cloud shape functions of the simple hp cloud method have the
property of Kronecker-delta, i.e., Nα(xβ) = δαβ , if the two conditions below hold:

1. Effective radius, hα , is shorter than the distance between the node xα and the dis-
tributed neighboring nodes on plate mid-surfaces. So Eq. (9) is obtained as

Wβ(x = xγ ) = 0 if β �= γ,

Wβ(x = xγ ) = 1 if β = γ,∑
β

Wβ(x = xγ ) = Wβ(x = xγ ) = 1.
(9)

Substituting Eq. (9) into Eq. (7), Eq. (10) is obtained, i.e.,

ψα(x = xγ ) = 0 if α �= γ,

ψα(x = xγ ) = 1 if α = γ.
(10)

Plugging Eqs. (9)–(10) into Eq. (4), Eq. (11) is obtained as

uhp(x = xγ ) =
N∑

α=1

mα∑
i=1

uγ i

(
ψγ (x = xγ )Lγ i(x = xγ )

) =
mα∑
i=1

uγ iLγ i(x = xγ ). (11)

2. The values of the terms of the enrichment functions at xα are 1 only for one term, and
0 for the other terms. For imposing condition 2, it is enough to define a complete polynomial
(of order 2 for moderately thick plates) in the following form:

Lγ (x) = [
1 x − xγ y − yγ (x − xγ )2 (x − xγ )(y − yγ ) (y − yγ )2

]
. (12)

Plugging Eq. (12) into Eq. (11), Eq. (13) is obtained. Hence the essential boundary condi-
tions of the simple hp cloud method are imposed directly without any additional work. We
have

uhp(x = xγ ) =
mα∑
i=1

uγ iLγ i(x = xγ ) = uγ 1. (13)

Figure 1 shows the distribution of considered nodes on the domain of various shapes of plate
to apply the simple hp cloud method.
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2.2 Mindlin theory

According to the Uflyand–Mindlin’s plate theory (Uflyand 1984), the plate displacement
field may be written as

u(x, y, z) =
⎧⎨
⎩

u(x, y, z)

v(x, y, z)

w(x, y, z)

⎫⎬
⎭ =

⎧⎨
⎩

−zθx

−zθy

w(x, y)

⎫⎬
⎭ (14)

where θx and θy are the rotations with respect to y- and x-axes, respectively, and w(x,y) is
a transversal displacement of a reference plate.

2.3 Strain–displacement relations

The strain vector of plate can be stated as

ε = εL + εNL (15)

where εL is the linear part and εNL is the nonlinear part of the strain vector. The linear part
of the strain vector in Eq. (15) is given by

εL = 〈εx εy γxy γxz γyz〉T = 〈−zθx,x −zθy,y −z(θx,y + θy,x) w,x − θx w,y − θy

〉T
, (16)

and the nonlinear part is

εNL =
〈

1

2

(
∂w

∂x

)2 1

2

(
∂w

∂y

)2
∂w

∂x

∂w

∂y
0 0

〉T

. (17)

The bending curvature κ , shear curvature Γ , and linear part of strain εL are defined as
follows:

κ = 〈−θx,x −θy,y −(θx,y + θy,x)
〉T

, (18)

Γ = 〈w,x − θx w,y − θy〉T , (19)

and

εL =
{−zκ

Γ

}
. (20)

2.4 Viscoelastic material properties

For a viscoelastic material, the relaxation function ω(t) can be defined by Prony series as
follows:

ω(t) = c1 + c2e
−τ , τ = t

ts
(21)

where c1 and c2 are constants, τ is a dimensionless parameter, ts is the relaxation time, and
t is time.

The bulk K(t) and shear G(t) moduli can be expressed by the relaxation function in the
time domain as

K(t) = K, G(t) = 3

2
Kω(t). (22)

On the other hand, Eqs. (23) always hold

K(t) = E(t)

3(1 − 2ν(t))
, G(t) = E(t)

2(1 + ν(t))
. (23)
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So the viscoelastic modulus E(t) and Poisson ratio ν(t) in the time domain can be stated as

E(t) = 9Kω(t)

2 + ω(t)
, ν(t) = 1 − ω(t)

2 + ω(t)
. (24)

2.5 Constitutive equations

The constitutive equation for a linear viscoelastic material in the Laplace–Carson domain
(see Appendix) is expressed as follows (Levesque et al. 2007):

σ ij = Cijklεkl (25)

where σ ij and εkl are the Laplace–Carson of time-dependent stress and strain, respectively,
and Cijkl is the effective modulus in the Laplace–Carson domain.

Neglecting the plate normal stress, the constitutive relations for the isotropic viscoelastic
material in the Laplace–Carson domain can be written as{

σ b

σ s

}
=

[
Cb 0
0 Cs

]
εL (26)

where σ b and σ s are the bending and shear stresses in the Laplace–Carson domain, respec-
tively. We have

σ b =
⎧⎨
⎩

σx

σ y

τ xy

⎫⎬
⎭ , σ s =

{
τ xz

τ yz

}
, Cb =

⎡
⎣c11 c12 0

c12 c22 0
0 0 c44

⎤
⎦ , Cs =

[
c55 0
0 c66

]
.

(27)

The components of effective modulus tensors can be written as (see Appendix)

c11 = c22 = 3Kω(2 + ω)

(1 + 2ω)
, c12 = 3Kω(1 − ω)

(2 + ω)
, c44 = c55 = c66 = 3Kω

2
(28)

where ω is a dimensionless relaxation function in the Laplace–Carson domain.
The plate stress resultants can be expressed as follows:

M = 〈Mx M yMxy〉T =
∫ h

2

− h
2

σ bz dz = Dbκ, (29)

Q = 〈Qx Qy〉T =
∫ h

2

− h
2

σ s dz = αDsΓ (30)

where Db = h3

12 Cb , h is the plate thickness, Ds = Csh, and α is a shear correction factor.

2.6 Approximation of the displacement

Assume the displacement field can be formulated as the product of two functions, one being
a function of geometrical parameters and the other a known exponential function of time:

u(x, y, t) =
⎧⎨
⎩

w(x,y, t)

θx(x, y, t)

θy(x, y, t)

⎫⎬
⎭ =

⎧⎨
⎩

w(x,y)

θx(x, y)

θy(x, y)

⎫⎬
⎭f (t). (31)

Then the Laplace–Carson transform of u(x, y, t) can be written as

u(x, y, s) = u(x, y)f . (32)
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Fig. 2 Rectangular plate under
compressive and shear loads

The function f (t) can be chosen as

f (t) = 1 − e−τ , τ = t

ts
. (33)

2.7 Simple hp cloud discretization

According to the simple hp cloud method, the following equations are defined:

U = [
U1 U2 . . . UN

]T
, (34)

θ = 〈θxθy〉T = Nθ U, w = NwU (35)

where Nθ and Nw are the cloud shape functions, and N is the number of arbitrary points in
the mid-surface. Other parameters can be written as:

Ui = 〈wi θxi
θyi

〉T , Ni
θ =

[
0 Ni 0
0 0 Ni

]
, Ni

w = [
Ni 0 0

]
. (36)

Thus, the strains κ and Γ can be discretized in the following form:

κ = BbU, Γ = BsU (37)

where

Bi
b =

⎡
⎣0 −Ni

,x 0
0 0 −Ni

,y

0 −Ni
,y −Ni

,x

⎤
⎦ , Bi

s =
[

Ni
,x −Ni 0

Ni
,y 0 −Ni

]
. (38)

Using virtual work principle and integrating over the thickness, Eq. (39) is obtained in the
Laplace–Carson domain as

δUT

(∫
A

BT
b Dbf Bb dA +

∫
A

BT
s Dsf Bs dA −

∫
A

BT
GNmBG dA

)
U = 0 (39)

in which

Bi
G =

[
Ni

,x 0 0
Ni

,y 0 0

]
, Nm =

[
Nx Nxy

Nxy Ny

]
. (40)

Nm is the matrix of inplane forces Nx , Ny and Nxy (as illustrated in Fig. 2).
So we obtain

(K − KG)U = 0 (41)

where

K =
∫

A

BT
b Dbf Bb dA +

∫
A

BT
s Dsf Bs dA, KG =

∫
A

BT
GNmBG dA. (42)

K and KG are the stiffness and geometry matrices in the Laplace–Carson domain.



372 Mech Time-Depend Mater (2017) 21:365–381

2.8 Illyushin approximation method

Each component of stiffness matrix in the Laplace–Carson domain, Kpl(ω), can be approx-
imated using Illyushin approximation as follows (Zenkour 2004):

Kpl(ω) ∼=
4∑

j=1

fjφj (ω) (43)

in which φj (ω) are some known kernels in the Laplace–Carson domain and may be chosen
in the following form:

φ1 = 1, φ2 = ω, φ3 = 1

ω
, φ4 = 1

1 + 0.5ω
. (44)

The coefficients fi are determined by solving the algebraic equations

4∑
j=1

fiϕij = γi (45)

where

ϕij =
∫ 1

0
φiφj dω, γi =

∫ 1

0
φiKpl(ω)dω. (46)

Using Eq. (43), Eq. (41) is approximated by equation (47) as follows:

(K̃ − K̃G)U = 0 (47)

where K̃ and K̃G are the approximated stiffness and geometry matrices, respectively.

2.9 Returning to the time domain

Each component of the stiffness matrix in the time domain, Kpl(t), is determined using the
inverse Laplace–Carson transformation in the following form (Zenkour 2004):

Kpl(t) ∼=
4∑

j=1

fjθj (t) (48)

where θj (t) is the inverse Laplace–Carson transformation of φj (ω), namely,

θ1 = 1, θ2 = c1 + c2e
−τ , θ3 = 1

c1

(
1 − c2

(c1 + c2)
e−βτ

)
,

θ4 = 1

1 + 0.5c1

(
1 − 0.5c2

1 + 0.5(c1 + c2)
e−ατ

)
, (49)

in which

α = 1 + 0.5c1

1 + 0.5(c1 + c2)
, β = −c1

(c1 + c2)
, τ = t

ts
. (50)

2.10 Stability analysis

Applying the inverse Laplace–Carson transform, Eq. (51) in the time domain is obtained as

|K − KG| = 0. (51)

The critical load, N(t), is calculated by solving the eigenvalue problem and finding the
minimum eigenvalue of Eq. (51).
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Fig. 3 (a) Square, (b) Skew, (c) Trapezoidal, (d) Right-angled triangular, (e) Hexagonal, and (f) Circular
plate under compression

3 Numerical results

3.1 General setup

In the computations, regular distributions of 25, 15, and 21 nodes are used for quadrilateral,
hexagonal, triangular, and circular plates (Fig. 1), respectively. A 2 × 2 Gauss integration is
used to evaluate the integral numerically. For calculating the enrichment functions, a com-
plete polynomial of order 2 is used for all nodes. The material properties are supposed to be
as follows: K = 3 × 107 N

m2 , c1 = 0.1, c2 = 0.9. In the numerical results, the local buckling
coefficient becomes dimensionless as follows:

k(t) = b2N(t)/π2D (52)

where D is the flexural rigidity of the elastic plate, i.e.,

D = Eh3

12(1 − ν2)
. (53)

In Eq. (53), the elastic Poison ratio and the elastic modulus are assumed to be 0.3 and 0.3 ×
107 N

m2 , respectively. The ratio of thickness over the length of the plate, h/a, is assumed to
be 0.1 unless otherwise stated. The shear correction factor is assumed to be 5/6.

In this section, a variety of plates subjected to compressive load (Fig. 3) are considered
to show the efficiency and suitability of the proposed method.

3.2 Verification

To evaluate the accuracy of the assumptions in Sect. 2.6, a viscoelastic square plate subjected
to uniaxial compression is considered. The local buckling coefficient of the viscoelastic
square plate is calculated (see Fig. 4 for its time history) by the ABAQUS software, and the
problem is also solved by the presented method.
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Fig. 4 Local buckling
coefficient of a viscoelastic
square plate with simply
supported edges under uniaxial
compression versus the time
parameter (h/a = 0.1, b/a = 1)

Fig. 5 Time-dependent buckling
coefficient of a viscoelastic
square plate with simply
supported edges under uniaxial
compression

Fig. 6 Time-dependent buckling
coefficient of a viscoelastic
square plate with simply
supported edges under biaxial
compression

(It is noted that for analyzing the problem with ABAQUS software, for different values
of compressive load, the central displacement–time curves are drawn, and the time in which
the central deformation pattern of viscoelastic plate changes is investigated.)

In addition, Figs. 5 and 6 compare the buckling coefficients of a simply supported moder-
ately thick time-dependent viscoelastic square plate obtained by the present method and the
results calculated by other available methods under uniaxial and biaxial compressive loads,
respectively. It is noted that Zenkour (2004), Jafari et al. (2011), and Jafari et al. (2014) have
assumed that the displacement field is independent of time (u = u(x, y, ), f (t) = 1). This
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Table 1 Buckling coefficients of a viscoelastic plate at the first time (τ = 0) with simply supported edges
under uniaxial and biaxial compression

Plate with various
shapes

Compressive
load

Elastic buckling coefficient Viscoelastic buckling
coefficient (τ = 0)

Square Uniaxial 3.697 (Doong 1987) 3.604

Square Biaxial 1.8658 (Jafari et al. 2014) 1.8126

Skew with angle 15 Uniaxial 3.8028 (Kitipornchai et al. 1993) 3.8432

Skew with angle 30 Uniaxial 4.9324 (Kitipornchai et al. 1993) 4.982

Skew with angle 45 Uniaxial 7.7236 (Kitipornchai et al. 1993) 7.3655

assumption yields that the results are exact at time zero and at infinity, and for other times
the results have some error. Using this assumption, Eq. (39) can be written as

δUT

(∫
A

BT
b DbBb dA +

∫
A

BT
s DsBs dA −

∫
A

BT
GNmBG dA

)
U = 0. (54)

So we obtain (∫
A

BT
b DbBb dA +

∫
A

BT
s DsBs dA −

∫
A

BT
GNmBG dA

)
U = 0. (55)

Defining

K =
∫

A

BT
b DbBb dA +

∫
A

BT
s DsBs dA, KG =

∫
A

BT
GNmBG dA, (56)

Eq. (57) is obtained as

(K − KG)U = 0. (57)

Also, in order to evaluate the accuracy of the presented results, the buckling coefficients
of viscoelastic plate at the first time (τ = 0) can be compared with the results obtained for
elastic materials. Table 1 shows the buckling coefficients of a simply supported moderately
thick viscoelastic plate with various shapes at the first time under uniaxial and biaxial com-
pression.

3.3 Rectangular plates

Figure 7 displays the time history of the buckling coefficient of a clamped moderately thick
viscoelastic square plate under uniaxial and biaxial compression.

Figure 8 shows the time history of a simply supported moderately thick viscoelastic
square plate (Fig. 3(a)) under shear load.

The results indicate that the critical load of viscoelastic plates decreases with respect to
time, as the thickness-to-length ratio increases.

3.4 Skew plates

Figure 9 shows the time history of the buckling coefficient of a moderately thick viscoelastic
skew plate (Fig. 3(b)) under uniaxial compression with clamped edges.

The buckling coefficient of skew plates increases with respect to time as the angle in-
creases. Also, the critical load of viscoelastic plate increases with respect to time as the
rigidity in the edges increases.
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Fig. 7 Buckling coefficient of a
viscoelastic rectangular plate
with clamped edges under
uniaxial and biaxial compression
versus the time parameter

Fig. 8 Buckling coefficient of a
viscoelastic square plate with
simply supported edges under
shear load versus the time
parameter

Fig. 9 Buckling coefficient of a
viscoelastic skew plate with
clamped edges under uniaxial
compression versus the time
parameter

3.5 Trapezoidal plates

Figure 10 shows the time history of the buckling coefficient of a moderately thick viscoelas-
tic trapezoidal plate (Fig. 3(c)) under uniaxial compression with simply supported edges.

The results show that when c = 0, the buckling coefficient converges to the results of the
rectangular plate.
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Fig. 10 Buckling coefficient of a
viscoelastic trapezoidal plate
with simply supported edges
under uniaxial compression
versus the time parameter

Fig. 11 Buckling coefficient of a
viscoelastic right-angled
triangular plate with simply
supported edges under biaxial
compression versus the time
parameter

3.6 Right-angled triangular plates

The effect of time on the buckling coefficient of a simply supported moderately thick vis-
coelastic right-angled triangular plate (Fig. 3(d)) under biaxial compression is shown in
Fig. 11.

3.7 Hexagonal plates

Figure 12 displays the time history of the buckling coefficient of a simply supported moder-
ately thick viscoelastic hexagonal plate (Fig. 3(e)) under biaxial compression.

3.8 Circular plates

Figure 13 shows the time history of buckling coefficient of a moderately thick viscoelastic
circular plate (Fig. 3(f)) under biaxial compression with simply supported edges.

3.9 Plates with arbitrary shapes

The effect of time on the buckling coefficients of moderately thick viscoelastic arbitrarily
shaped plates (Fig. 14) subjected to uniaxial compression with simply supported edges is
displayed in Figs. 15 and 16.
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Fig. 12 Buckling coefficient of a
viscoelastic hexagonal plate with
simply supported edges under
biaxial compression versus the
time parameter

Fig. 13 Buckling coefficient of a
viscoelastic circular plate with
simply supported edges under
biaxial compression versus the
time parameter

Fig. 14 Arbitrarily shaped plates under uniaxial compression

4 Conclusions

A simple hp cloud method was developed for the stability analysis of moderately thick
time-dependent viscoelastic plates with various and different boundary conditions shapes
using the Laplace–Carson transformation. Plates were subjected to uniaxial and biaxial
compression and shear load. The bulk modulus was assumed to be constant. The mechan-
ical properties of viscoelastic materials were considered by the effective moduli method in
the Laplace–Carson domain. The displacement field was assumed to be the product of two
functions, one being a function of geometrical parameters and the other a known exponential
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Fig. 15 Buckling coefficient of
an arbitrarily shaped viscoelastic
plate with simply supported
edges under uniaxial
compression versus the time
parameter

Fig. 16 Buckling coefficient of
an arbitrarily shaped viscoelastic
plate with simply supported
edges under uniaxial
compression versus the time
parameter (h/r = 0.1)

function of time. The problem was solved by approximating the stiffness matrix by some
known kernels in the Laplace–Carson domain and returned to the time domain by the in-
verse Laplace–Carson transformation. The solution was obtained by solving an eigenvalue
problem.

For constructing the shape functions based on the simple hp cloud method, Shepard func-
tion was utilized for a partition of unity and a complete polynomial of order 2 was used as
an enrichment function. The cloud shape functions have Kronecker-delta properties, so the
essential boundary conditions can be directly enforced.

The effect of time on the critical load of viscoelastic plates was studied. Also the ef-
fect of different parameters such as boundary conditions, aspect ratio, and plate thickness
on the time history of buckling coefficients of viscoelastic plates with various shapes (rect-
angular, skew, trapezoidal, right-angled triangular, hexagonal, circular, and arbitrary shape)
was evaluated. The results were compared to other available references, and the proposed
method showed good agreement. The results showed that the critical load of viscoelastic
plates decreases in time.

Appendix

The Laplace–Carson transform of a function is defined by (Donolato 2002)

F(s) = s

∫ ∞

0
f (t)e−st dt. (A.1)
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The relaxation function can be written in the Laplace–Carson domain as follows:

ω = c1 + c2
s

s + 1
ts

. (A.2)

Assuming the bulk modulus constant, the bulk, shear, and viscoelastic moduli can be written
in the Laplace–Carson domain as follows:

K = K, G = 3

2
Kω, E = 3K(1 − 2ν). (A.3)

In addition, Eq. (A.4) in the Laplace (or Fourier) domain is universally valid (Hilton 2011);
consequently, Eq. (A.4) in the Laplace–Carson domain is also universally valid, namely,

E = 3G

1 + G
3K

. (A.4)

So the viscoelastic modulus and Poisson ratio in the Laplace–Carson domain can be stated
by the effective moduli method as (Zenkour 2004):

E = 9Kω

2 + ω
, ν = 1 − ω

2 + ω
. (A.5)

Finally, the components of effective modulus tensors for the isotropic linear viscoelastic
material can be written as:

c11 = c22 = E

1 − ν2 = 3Kω(2 + ω)

(1 + 2ω)
, c12 = νE

1 − ν2 = 3Kω(1 − ω)

(2 + ω)

c44 = c55 = c66 = G = 3Kω

2
. (A.6)
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